Secure / Safe  

the WBDG Secure / Safe Committee

Overview

The design and construction of secure and safe buildings (minimal danger or risk of harm) continues to be the primary goal for owners, architects, engineers, project managers, and other stakeholders. In addition to those listed, other stakeholders include: construction managers, developers, facilities managers, code officials, fire marshals, building inspectors, city/county/state officials, emergency managers, law enforcement agencies, lenders, insurers, and product manufacturers. Risk assessment is the activity that estimates potential building and infrastructure losses from earthquakes, riverine and coastal floods, hurricane winds, and other hazards. Realizing this goal is often a challenge due to funding limitations, resistance from the occupants due to impacts on operations, productivity, and accessibility, and the impacts on the surrounding environment and building architecture due to perimeter security, hardening, and standoff requirements including provisions for post-event security as necessary. Understanding the impact site security has on the overall security of the building is important as well.

A balance between the security and safety goals and the other design objectives and needs of the facility can be attained. The establishment of an integrated design process where all of the design team members understand each other's goals can aid in overcoming these challenges and will lead to the development of a solution which addresses all of the requirements. Understanding the interrelationship with the other WBDG design objectives (i.e., Sustainable, Aesthetics, Cost-Effective, Historic Preservation, Accessible, Functional / Operational and Productive), early in the design process, is an essential step in overcoming the obstacles commonly encountered in the achievement of a secure and safe building.

Exterior of National Museum of the American Indian

Exterior of the National Museum of the American Indian in Washington, DC. The five-story, 250,000 sf, curvilinear building is clad in a golden-colored Kasota limestone designed to evoke natural rock formations shaped by wind and water over thousands of years.

Consistent with areas of professional responsibility, it is useful to identify four fundamental principles of all-hazard building design:

  • Plan for Fire Protection
    Planning for fire protection for a building involves a systems approach that enables the designer to analyze all of the building's components as a total building fire safety system package.

  • Protect Occupant Safety and Health
    Some injuries and illnesses are related to unsafe or unhealthy building design and operation. These can usually be prevented by measures that take into account issues such as indoor air quality, electrical safety, fall protection, ergonomics, and accident prevention.

  • Natural Hazards Mitigation
    Each year U.S. taxpayers pay over $35 billion for recovery efforts, including repairing damaged buildings and infrastructure, from the impacts of hurricanes, floods, earthquakes, tornados, blizzards, and other natural disasters. A significant percentage of this amount could be saved if our buildings properly anticipated the risk associated with major natural hazards.

  • Provide Security for Building Occupants and Assets
    Effective secure building design involves implementing countermeasures to deter, detect, delay, and respond to attacks from human aggressors. It also provides for mitigating measures to limit hazards to prevent catastrophic damage and provide resiliency should an attack occur.

Designing buildings for security and safety requires a proactive approach that anticipates—and then protects—the building occupants, resources, structure, and continuity of operations from multiple hazards. The first step is to understand the requirement of the facility and the expectation of facilities performance in response to the hazards and threat identified. The expected facility response to the threats and hazards is critical in determining if the facility is design to provide basic life safety code compliances for safe egress or if the facility is required to maintain full operations after the event. In most cases the minimum design criteria for fire protection, occupational safety and natural hazard safety are prescribed within the building codes and standards. Organizations and Agencies many also prescribe security design criteria for the protection of personnel, critical assets and information such and weapon, secret information and currency storage After establishing the prescriptive design requirements the first step in this process is to understand the various risks they pose and determine if additional mitigation measures to reduce risk are cost effective. There are a number of defined assessment types to consider that will lead the project team in making security and safety design decisions. This effort identifies the resources or "assets" to be protected, highlights the possible perils or "threats," and establishes a likely consequence of occurrence or "risk." This assessment is weighed against the vulnerabilities specific to the site or facility. Based on these assessments and analysis, building owners and other invested parties select the appropriate safety and security measures to implement. Their selection will depend on the security requirements, acceptable levels of risk, the cost-effectiveness of the measures proposed for total design efficiency, evaluation of life cycle cost, and the impact these measures have on the design, construction, and use of the building.

Hazard Mitigation refers to measures that can reduce or eliminate the vulnerability of the built environment to hazards, whether natural or man-made. The fundamental goal of hazard mitigation is to minimize loss of life, property, and function due to disasters. Designing to resist any hazard(s) should incorporate a comprehensive risk assessment. This process includes identification of the hazards present in the location and an assessment of their potential impacts and effects on the built environment based on existing or anticipated vulnerabilities and potential losses. When hazard mitigation is implemented in a risk-informed manner, every dollar spent on mitigation actions results in an average of four dollars' worth of disaster losses being avoided. See the Natural Hazard Mitigation Saves: 2019 Report.

Regulations, codes, standards, and best practices will guide the design of buildings to resist natural hazards. For new buildings, code requirements serve to define the minimum mitigation requirements, but compliance with regulations in building design is not always sufficient to guarantee that a facility will perform adequately when impacted by the forces for which it was designed. Indeed, individual evaluation of the costs and benefits of specific hazard mitigation alternatives can lead to effective strategies that will exceed the minimum requirements. Additionally, special mitigation requirements may be imposed on projects in response to locale-specific hazards. When a change in use or occupancy occurs, the designer must determine whether this change triggers other mitigation requirements and must understand how to evaluate alternatives for meeting those requirements.

It is common for different organizations to use varying nomenclature to refer to the components of risk assessment. For example, actual or potential adversary actions such as sabotage and terrorist attacks are referred to as "threats" by the law enforcement and intelligence communities, while natural phenomena such as hurricanes and floods are generally referred to as "hazards" by emergency managers; however, both are simply forces that have the potential to cause damage, casualties, and loss of function in the built environment. Regardless of who is conducting the risk assessment, the fundamental process of identifying what can happen at a given location, how it can affect the built environment, and what the potential losses could be, remains essentially the same from application to application.

Integrating Safe and Secure Design

There are times when design requirements addressing all the various threats will pose conflicts in arriving at acceptable design and construction solutions. Examples include Blast Resistant Glazing, which may impede emergency egress in case of fire; access control measures that prevent intrusion, but may also restrict emergency egress; and Leadership in Energy and Environmental Design (LEED) light pollution reduction and security lighting objectives. Conversely, site design and security can complement each other such as the design of a storm water management requirement that doubles as a vehicle barrier. Good communication between the design team, fire protection and security design team specialists through the entire design process is necessary to achieve the common goal of safe and secure buildings and facilities.

Most security and safety measures involve a balance of operational, technical, and physical safety methods. For example, to protect a given facility from unwanted intruders, a primarily operational approach might stress the deployment of guards around the clock; a primarily technical approach might stress camera surveillance and warning sirens; while a primarily physical approach might stress locked doorways and vehicle barriers. In practice, a combination of approaches is usually employed to some degree and a deficiency in one area may be compensated by a greater emphasis in the other two.

In addition to the operational/technical/physical taxonomy, it is useful to characterize risk reduction strategies as either structural or non-structural. Structural mitigation measures focus on those building components that carry gravity, wind, seismic and other loads, such as columns, beams, foundations, and braces. Examples of structural mitigation measures include building material and technique selection (e.g., use of ductile framing and shear walls), building code compliance, and site selection (e.g., soil considerations). In contrast, non-structural strategies focus on risks arising from damage to non-load-bearing building components, including architectural elements such as partitions, decorative ornamentation, and cladding; mechanical, electrical, and plumbing (MEP) components such as HVAC, life safety, and utility systems; and/or furniture, fixtures, and equipment (FF&E) such as desks, shelves, and other material contents. Non-structural mitigation actions include efforts to secure these elements to the structure or otherwise keep them in position and to minimize damage and functional disruption. These measures may be prescriptive, engineered, or non-engineered in nature.

It should be noted that in any given building, non-structural components, including general building contents, typically account for over three-quarters of the cost of a building; this figure can be even higher for specialized occupancies such as medical facilities. Additionally, structural and non-structural components can potentially interact during an incident, requiring a deliberative approach to implementing a comprehensive agenda of structural and non-structural mitigation actions.

Note: Information in these Secure/Safe pages must be considered together with other design objectives and within a total project context in order to achieve quality, high performance buildings.

Related Issues

Resilience

Natural and manmade hazardous events can impose a devastating cost to society. As Figure 1.1 shows, the costs of these disasters in the U.S. alone is staggering. Stakeholders of civil infrastructure have a vested interest in reducing these costs by improving and maintaining operational and physical performance.

NOAA map by NCEI. In 2021, the United States experienced record-smashing 20 weather or climate disasters that each resulted in at least $1 billion in damages

Figure 1.1 U.S. 2021 Billion-Dollar Weather and Climate Disasters.
NOAA National Centers for Environmental Information

Throughout history, infrastructure resilience has been defined in numerous ways, the most widely used and most objective is by the National Infrastructure Advisory Council (NIAC*) (2009), which states:

"Infrastructure resilience is the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event."

No city, federal facility, or military installation is immune to challenges, whether natural or manmade, and given the world's growing population, more people than ever are in the potential path of catastrophe. Fortunately, cities can become resilient and withstand shock and stress. As conditions change over time, cities that are resilient can evolve in the face of disaster and stop failure from rippling through systems; they can re-establish function quickly and avoid long-term disruptions.

This section explores different aspects of resilience management, with increased costs of manmade and natural hazards the primary concern. To reduce these costs and ensure that infrastructure exhibits a high degree of resilience, a definition of resilience was incorporated using four components: robustness, resourcefulness, recovery, and redundancy.

Stakeholders of buildings stand to benefit from resilience management, for which there is a strong business case. Businesses locate where they can rely on critical infrastructure. Communities that become resilient will increasingly attract businesses because executives know they can rely on the services and workforce availability, even in the face of disruptive events.

Natural and manmade hazardous events are unpredictable, but they are still inevitable and impose a devastating cost to civil infrastructure. By improving and maintaining the operational and physical performance of our nation's building stock, strategies for resilience can be developed.

When planning and designing buildings, it is appropriate to try to mitigate the potential of the spiraling cost of operational failures by opting for more resilient performance through well-planned investments in better planning and designs. It no longer makes sense to wait until after a crisis to implement resilience efforts. If strategies for buildings are discussed and implemented now, there is a greater chance of increased efficiency, not only today but for the future, benefiting all buildings stakeholders.

Components of Building Resilience

The NIAC determined that resilience can be characterized by three key features:

"Robustness: the ability to maintain critical operations and functions in the face of crisis. This includes the building itself, the design of the infrastructure (office buildings, power generation, distribution structures, bridges, dams, levees), or in system redundancy and substitution (transportation, power grid, communications networks).

Resourcefulness: the ability to skillfully prepare for, respond to, and manage a crisis or disruption as it unfolds. This includes identifying courses of action and business continuity planning,; training,; supply chain management,; prioritizing actions to control and mitigate damage;, and effectively communicating decisions.

Rapid recovery: the ability to return to and/or reconstitute normal operations as quickly and efficiently as possible after a disruption. Components [of rapid recovery] include carefully drafted contingency plans, competent emergency operations, and the means to get the right people and resources to the right places."

It is proposed that resilience has another key feature: Redundancy, which means that there are back-up resources to support the originals in case of failure.

Sometimes, these four resilience features are simply called the 4Rs. Resilience is multidisciplinary and needs the cooperation of different disciplines for a successful outcome. Without multidisciplinary cooperation and contributions, there cannot be successful or efficient, resilient infrastructure.

For more on this topic see A Regional Resilience/Security Analysis Process for the Nation's Critical Infrastructure Systems , Building Resilience, and Architectural Graphic Standards - Building Resiliency.

DoD Cybersecurity Design Guidance and Tactics, Techniques and Procedures

The DoD adopted the Risk Management Framework (RMF) for all Information Technology and Operational Technology networks, components and devices to include Facility-Related Control Systems (FRCS). The DoD Unified Facility Criteria (UFC) 04-010-06 Cybersecurity of Facility-Related Control Systems, published in September 2016, describes requirements for incorporating cybersecurity in the design of all facility-related control systems. It defines a process based on the Risk Management Framework suitable for control systems of any impact rating, and applies to all planning, design and construction, renovation, and repair of new and existing facilities and installations that result in DoD real property assets, regardless of funding source. The publication is based on NIST SP 800-82 R2  and is generic enough such that it can be used by any organization.

The DoD Advanced Cyber Industrial Control Systems Tactics, Techniques and Procedures  is a step-by-step guide on how to Detect, Mitigate and Recover a Facility-Related Control System that has been attacked/compromised, and establishes the requirement for a Jump-Kit Rescue CD with the Fully Mission Capable Baseline configurations. The publication is generic enough such that can it be used by any organization.

The DoD ESTCP Cybersecurity Guidelines website is a comprehensive "One Stop Shop" for cybersecurity guidance. ESTCP FRCS projects will be required to meet RMF requirements and demonstrate the capability to meet certain cybersecurity criteria, and if required, obtain an Authorization To Operate (ATO) on the DoD Information Network (DoDIN). The site provides step-by-step instructions to create a baseline risk assessment in the planning and design phases, how to create a Test and Development Environment, a Design and Construction Sequence Table that identifies deliverables and expected timeframe such as when and how to perform Factory Acceptance Testing (FAT) in the construction phase; and conduct full Site Acceptance Testing (to include penetration testing) for system turnover, templates, resources, and tools.

Occupant Emergency Plan

Occupant emergency plans are an integral part of an emergency management program. Properly developed plans can reduce the risk to personnel, property, and other assets while minimizing work disruption during and immediately following an emergency. See U.S. Department of Energy Model Occupant Emergency Plan.

Occupant Emergency Plans should be developed for building Operations staff and occupants to be able to respond to all forms of attacks and threats. Clearly defined lines of communication, responsibilities, and operational procedures are all important parts of Emergency Plans. Emergency Plans are an essential element of protecting life and property from attacks and threats by preparing for and carrying out activities to prevent or minimize personal injury and physical damage. This will be accomplished by pre-emergency planning; establishing specific functions for Operational staff and occupants; training Organization personnel in appropriate functions; instructing occupants of appropriate responses to emergency situations and evacuation procedures; and conducting actual drills.

Information Sensitivity/Handling

Protected Critical Infrastructure Information Program (PCII)

As a result of the heightened level of interest in homeland security following the attacks of 11 September 2001, the public is even more interested in efforts to protect people, buildings, and operations from disasters. This interest presents both benefits and challenges, because much of the same information that can be used to gather support for mitigation can also be used by potential terrorists, saboteurs, or others with malevolent intent. For that reason, project delivery teams must carefully maintain the security of any information that pertains to vulnerabilities or facility infrastructure particularly when the building is part of a critical infrastructure or system. Per the Department of Homeland Security (DHS), critical infrastructure is defined as "the assets, systems, and networks, whether physical or virtual, so vital to the United States that their incapacitation or destruction would have a debilitating effect on security, national economic security, public health or safety, or any combination thereof." The DHS Protected Critical Infrastructure Information Program (PCII) was developed as an information-protection program that enhances information sharing between the private sector and the government. PCII is used by DHS and other federal, state and local organizations to analyze and secure critical infrastructure and protected systems, identify vulnerabilities and develop risk assessments, and enhance recovery preparedness measures. Legal counsel should be obtained on how best to protect such sensitive information from unauthorized use within the provisions of applicable local, state, and federal laws.

Controlled Unclassified Information (CUI)

Presidential Memorandum of May 7, 2008, entitled Designation and Sharing of Controlled Unclassified Information (CUI) directs that CUI be used in place of SBU as the single categorical designation for information within the scope of the CUI definition to refer generally to such information.

There are currently over 100 different ways of characterizing Sensitive but Unclassified (SBU) information. Additionally, there is no common definition, and no common protocols describing under what circumstances a document should be marked, under what circumstances a document should no longer be considered SBU, and what procedures should be followed for properly safeguarding or disseminating SBU information. As a result of this lack of clarity concerning SBU, information is inconsistently marked, without any common definitions related to these ad hoc markings. CUI reform is designed to address these deficiencies, in that it will provide a common definition and standardize processes and procedures.

Established by Executive Order 13556, the Controlled Unclassified Information (CUI)  program standardizes the way the Executive branch handles unclassified information that requires safeguarding or dissemination controls pursuant to and consistent with law, regulations, and Government-wide policies.

For buildings, the primary CUI Category will be Controlled Technical Information (CTI). This means technical information with military or space application that is subject to controls on the access, use, reproduction, modification, performance, display, release, disclosure, or dissemination. Controlled technical information is to be marked with one of the distribution statements B through F, in accordance with Department of Defense Instruction 5230.24, "Distribution Statements of Technical Documents." The term does not include information that is lawfully publicly available without restrictions. "Technical Information" means technical data or computer software, as those terms are defined in Defense Federal Acquisition Regulation Supplement clause 252.227-7013, "Rights in Technical Data - Noncommercial Items" (48 CFR 252.227-7013). Examples of technical information include research and engineering data, engineering drawings, and associated lists, specifications, standards, process sheets, manuals, technical reports, technical orders, catalog-item identifications, data sets, studies, and analyses and related information, and computer software executable code and source code.

CUI Registry

NARA Marking Controlled Unclassified Information Rev 1.1 (Marking Handbook)
This handbook was developed to assist authorized holders by providing examples of correctly marked Controlled Unclassified Information(CUI). Markings alert holders to the presence of CUI and, when portion markings are used, identify the exact information or portion that needs protection. Markings can alert holders to any CUI dissemination and safeguarding controls.

CUI Marking Handbook vol.1 

NIST SP 800-171 Protecting Controlled Unclassified Information In Nonfederal Systems and Organizations. The protection of Controlled Unclassified Information (CUI) while residing in nonfederal information systems and organizations is of paramount importance to federal agencies and can directly impact the ability of the federal government to successfully carry out its designated missions and business operations. The requirements apply to all components of nonfederal information systems and organizations that process, store, or transmit CUI, or provide security protection for such components. The CUI requirements are intended for use by federal agencies in contractual vehicles or other agreements established between those agencies and nonfederal organizations.

All DoD vendors/contractors need to comply with the DFARS-CUI Guide. This Cybersecurity Plan covers a company's business systems, CAD/BIM, data, and processes.

Storefront and Public Space Safety

According to the latest data from the Storefront Safety Council, Vehicle-into-Building crashes occur 100 times a day causing nearly 2,600 deaths and more than 16,000 injuries annually. Further, forty-six percent of all storefront crashes result in an injury and eight percent result in a fatality. These figures, reviewed by Lloyd's of London, equate to more than 36,000 storefront crashes every year in the United States.

While we may think these happen only to private sector shops and stores, consider that many federal, state, and local government buildings are also located on city streets or in retail settings, which make them vulnerable to these crashes as well.

Vehicle crash in a Dollar Store in Chico, California

Vehicle crash in a Dollar Store in Chico, California.
Photo Credit: Storefront Safety Council

The value of crash rated bollards, planters, and site furnishings in protecting pedestrians, outdoor dining patrons, shoppers, and employees inside stores from out-of-control vehicles cannot be disputed. Incidents where a vehicle is employed by terrorists to inflict mass casualties at large gatherings like parades, marathons, and holiday festivities further reinforce the need for and high value of crash rated barriers. More recently, intentional vehicle crashes have increased significantly, caused by disgruntled customers, angry drivers, and thieves intent on stealing the contents of shops and stores.

security camera still of vehicle crash into restaurant patio and dining area in New York City

Vehicle crash into a restaurant patio and dining area in New York City.
Photo Credit: Storefront Safety Council

While restaurant and store owners may be reluctant to pay the cost of these barriers, they should weigh in the losses they face when their place of business is closed for reconstruction after an incident and for the personal injury and wrongful deaths suits for which they may be liable.

For more information on this topic see the Storefront Safety Council.

Building Information Modeling

Building Information Modeling (BIM) can be a useful tool for building security. For example, intelligent objects in 3D provide better understanding of vulnerabilities and better correlation with other design aspects like building and site access, location and types of doors and windows, and structural design characteristics for seismic versus blast design. BIM will further the integration between project team members, design disciplines, and the various stages of a project to achieve the goal of a high performance building. Properly maintained, BIM can provide complete, up-to-date information on the building and its' systems throughout the building service life.

Relevant Codes and Standards

Additional Resources

Publications

Websites

Other

  • Building Research Information Knowledgebase (BRIK)—an interactive portal offering online access to peer-reviewed research projects and case studies in all facets of building, from predesign, design, and construction through occupancy and reuse.

Tools

  • DHS ICS-CERT Cyber Security Tool (CSET)—The Cyber Security Evaluation Tool (CSET®) is a Department of Homeland Security (DHS) product that assists organizations in protecting their key national cyber assets. It was developed by cybersecurity experts under the direction of the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT). The tool provides users with a systematic and repeatable approach to assessing the security posture of their cyber systems and networks. It includes both high-level and detailed questions related to all industrial control and IT systems

Training Courses