Pyshcrometrics:

Sensible loads: $Q = 1.08 \times CFM \times \Delta T$

Latent loads: $Q = 0.68 x CFM x \Delta w$

Total loads: $Q = 4.5 \times CFM \times \Delta h$

Water-side loads: $Q = 500 \times GPM \times \Delta T$

Air Percentage:

Economizer Outside
$$\%_{OA} = \frac{T_{MA} - T_{RA}}{T_{OA} - T_{RA}} \times 100$$

Flow:

 $Air\ Pressure:\ TP = SP + VP$

Air Velocity: $V = 4.005 \times \sqrt{VP}$

Air Flow: Q = VxA

Load Management:

Boiler: $Q_{equip} = \frac{Q_{load}}{\eta_{dist} x \eta_{comb} x \eta_{cyc}}$

Chiller: $Q_{equip} = \frac{Q_{load}}{\eta_{dist} x \eta_{HGR}} x \eta_{kW/ton} x 12,000$

Centrifugal Machines

Pump Equation: $P = \frac{GPM \times \Delta H}{3,956 \times \eta_p \times \eta_m \times \eta_{VFD}}$

Fan Equation: $P = \frac{CFM \times \Delta p}{6,356 \times \eta_f \times \eta_b \times \eta_m \times \eta_{VFD}}$

Affinity Laws: $Q_2 = Q_1 x \frac{N_2}{N_1} = Q_1 x \frac{D_2}{D_2}$

 $H_2 = H_1 x \left(\frac{Q_2}{Q_1}\right)^2 = H_1 x \left(\frac{N_2}{N_1}\right)^2 = H_1 x \left(\frac{D_2}{D_1}\right)^2$

 $BHP_2 = BHP_1 x \left(\frac{Q_2}{Q_1}\right)^3 = BHP_1 x \left(\frac{N_2}{N_1}\right)^3 = BHP_1 x \left(\frac{D_2}{D_1}\right)^3$

Motors: $LF = \frac{RPM_{sync} - RPM_{meas}}{RPM_{sync} - RPM_{rated}}$

where: Q = heat load (Btu/hr)

CFM =*cubic feet minute airflow*

GPM =gallons per minute water flow

 ΔT = change in air or water temp (°F)

 Δw = change in humidity ratio (gr/lb_a)

 Δh = change in specific enthalpy (Btu/lb_a)

 $%_{OA}$ = outside air faction

 $T_{MA} = mixed \ air \ temp \ (°F)$

 $T_{RA} = return \ air \ temp \ (°F)$

 T_{OA} = outside air temp (°F)

where: TP = total air pressure (in w.c.)

 $SP = static \ air \ pressure \ (in \ w.c.)$

VP = velocity pressure (in w.c.)

V = velocity (feet per min)

Q = *airflow* (*cubic feet per minute*)

A = flow area (square feet)

where: Q_{equip} = HVAC equipment input

(Btu/hr for boiler, kW for chiller)

 $Q_{load} = local load (Btu/hr)$

 η_{dist} = thermal distribution efficiency (75-95%)

 η_{comb} = heating combustion efficiency (75%-95%)

 η_{cyc} = cycling/purge loss efficiency (75%-95%)

 η_{HGP} = efficiency from hot gas bypass use (35%-100%)

 $\eta_{kW/ton}$ = chiller efficiency in kW per ton (0.5-2.5 kW/ton)

where: P = pump or fan power (kW)

CFM = airflow (cubic feet per minute)

 η_p = pump efficiency (40%-80%)

 $\eta_m = motor\ efficiency\ (75\%-95\%)$

 η_{VFD} = variable frequency drive efficiency (95-99%)

GPM = water flow (gallons per minute)

 η_b = drive belt efficiency (90-99%)

Q = *flow* (*cubic feet per minute or gallons per minute*)

N = speed (rpm)

D = diameter(in)

H= *pressure* (inches of water column or feet of head)

BHP = brake horsepower

LF = induction motor load factor

RPM = synchronous, measured, or rated speed (rev per min)

Electrical:

DC Load: $P_{DC} = \frac{I \times V}{1,000}$ $AC: P_{1\emptyset} = \frac{I \times V \times PF}{1,000}$ $P_{3\emptyset} = \frac{I \times V \times PF \times \sqrt{3}}{1,000}$

where: P = electrical power (kW)

I = current (amps)

V = voltage (volts)

PF = power factor