The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
NOTE: ENSURE ALL SHEATHING/CONCRETE/C MU SURFACES ARE PROPERLY PREPARED AND PRIMED IN ACCORDANCE WITH THE MANUFACTURER REQUIREMENTS PRIOR TO INSTALLING THE WALL DRAINAGE PLANE PRODUCT. DETAIL THE DRAINAGE PLANE PRODUCT TO PREVENT WATER INFILTRATION AT THE STONE VENEER ANCHORS AND OTHER PENETRATIONS. THE VARIOUS PRODUCTS THAT CAN BE USED FOR THE DRAINAGE PLANE MATERIAL HAVE A WIDE RANGE OF AIR AND VAPOR PERMEANCE VALUES; SEE THE TABLES AND THE GENERAL SECTION CONTAINED WITHIN THE WALL PORTION OF THE WBDG FOR MORE SPECIFIC INFORMATION WITH REGARDS TO VAPOR RETARDERS AND AIR BARRIERS.

KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER SMALL ROUND PENETRATION - STEP 1

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER SMALL ROUND PENETRATION -

STEP 3

INSTALL STAINLESS STEEL OR OTHER PREFORMED BOOT AROUND PENETRATION AND OVER HOLE WITH THE BOTTOM PORTION OF THE BOOT BEING AT LEAST 1-INCH LARGER THAN THE HOLE MADE FOR INSTALLATION THROUGH THE EXTERIOR SHEATHING AND CARRY UP ONTO THE EQUIPMENT/PLUMBING/CONDUIT ETC. A MINIMUM OF 1/2 INCH.

INSTALL THE STONE ANCHORS/STRAP FOR THE STONE BELOW THE SLAB LINE AS WELL AS THE INSULATION SECUREMENT DEVICES (IMPALING PINS OR OTHER APPROVED METHOD). IF A TROWEL-APPLIED PRODUCT IS USED IN LACE OF A WALL MEMBRANE OR SHEET PRODUCT, THE TROWEL-APPLIED PRODUCT MAY BE USED AS AN INSULATION ADHESIVE IN ADDITION TO THE MECHANICAL ADHESION METHOD SHOWN. CHECK WITH THE MANUFACTURER FOR ALL REQUIREMENTS. ALL METAL ACCESSORIES IN DIRECT CONTACT WITH NATURAL STONE VENEERS SHALL BE NON-CORROSI VE, 300 SERIES STAINLESS STEEL OR AN EQUIVALENT MATERIAL.

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER SMALL ROUND PENETRATION - STEP 4

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
STEP 5: INSTALL STONE VENEER CLADDING BELOW THE RELEIVING ANGLE WITH APPROPRIATE HANGERS. STONE ANCHORING ASSEMBLY TO BE DESIGNED BY A STRUCTURAL ENGINEER REGISTERED IN THE STATE WHERE THE PROJECT IS LOCATED. PROVIDE ALLOWANCE FOR THERMAL MOVEMENT OF THE STONE BOTH VERTICALLY AND HORIZONTALLY, INCLUDING SUFFICIENT GAP BETWEEN THE STONE AND THE RELEIVING ANGLE.

KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER SMALL ROUND PENETRATION - STEP 5

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER SMALL ROUND PENETRATION - STEP 6

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer’s recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER
SMALL ROUND
PENETRATION -
STEP 7

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER
SMALL ROUND
PENETRATION -
STEP 8

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:

The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STEP 10:
INSTALL STONE ANCHORS AND INSULATION SECUREMENT DEVICES (IMPALING PINS OR OTHER APPROVED METHOD), INCLUDING TWO REVERSE ANGLES. THE UPPER ANGLE MAY BE SECURED TO THE STONE FIRST. BOLTED CONNECTIONS ARE TYPICALLY USED.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER
SMALL ROUND PENETRATION - STEP 11

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER SMALL ROUND PENETRATION - STEP 12

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

STONE VENEER
SMALL ROUND
PENETRATION -
STEP 13

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer's recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.
KEY CONCEPTS:
The dimensions and material relationships shown in this detail are not to scale and have been exaggerated for clarity. Actual dimensions will vary, and should be carefully coordinated with sequencing and construction tolerances to ensure the long-term durability and performance of this and similar exterior wall details.

Interface conditions between building envelope materials, components and systems should be fully detailed in a manner that is both technically sound and serviceable. Detailing should, at a minimum, allow for coordination of drainage planes when two or more different wall types are used in the same facade; allow for thermal and moisture-induced changes in material properties and differential thermal movement; and allow for in-service deflection, shrinkage, creep and similar behavior considered to be within the allowable structural limits of the project without compromise to the weather-tight integrity and thermal performance of the building envelope.

The air barrier can either be formed by an exterior side air barrier or by employing the interior side airtight drywall approach.

The location of or need for a vapor retarder within wall assemblies will vary based upon climate, and can be significantly influenced by the storage capacity and vapor permeance of the materials selected for each layer of the wall system. A climate-specific, hygrothermal analysis for any wall assembly should be considered to further evaluate this concern.

See the General section of the WBDG for additional information and guidance.

The details, graphics and related information shown above are intended to illustrate basic design concepts and principles only and should be considered collectively with the appropriate narrative sections of the Whole Building Design Guide (WBDG). The information contained herein is not intended for actual construction, and is subject to revision based on changes and/or refinements in local, state and national building codes, emerging building envelope technologies, and advancements in the research and understanding of building envelope failure and failure mechanisms. The actual design and configuration of these and similar details will vary based upon applicable local, state and national building code requirements, climatic considerations, and economic constraints unique to each project. Full compliance with the manufacturer’s recommendations and recognized industry standards for each building envelope material, component and system specified for this and similar exterior wall assemblies is recommended, and should be reflected in the appropriate sections of the project specifications.