PART 1 - GENERAL

1.1 DESCRIPTION

A. Sump pumps. See schedule on Drawings for pump capacity and head.
B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

A. //Section 01 00 01, GENERAL REQUIREMENTS (Major NCA Projects).//
B. //Section 01 00 02, GENERAL REQUIREMENTS (Minor NCA Projects).//
C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
E. //Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.//
F. //Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Restraint.//
G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
H. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
I. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
J. //Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.//
K. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

SPEC WRITER NOTE: Make material requirements agree with applicable requirements specified in the referenced Applicable Publications. Verify and update the publication list to that which applies to the project, unless the reference applies to all plumbing systems. Publications that apply to all plumbing systems may not be specifically referenced in the body of the specification, but, shall form a part of this specification.

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American National Standard Institute (ANSI)/Hydraulic Institute (HI):
 1.1-1.2-2014............Rotodynamic Centrifugal Pumps for Nomenclature and Definitions
 1.3-2013.................Rotodynamic Centrifugal Pumps for Design and Application
 1.4-2014..................Rotodynamic Centrifugal Pumps for Manuals Describing Installation, Operation, and Maintenance
C. American Society for Testing and Materials (ASTM):
 B584-2014...............Standard Specification for Copper Alloy Sand Castings for General Applications
D. National Electrical Manufacturers Association (NEMA):
 250-2014.................Enclosures for Electrical Equipment (1000 Volts Maximum)
E. Underwriters' Laboratories, Inc. (UL):
 508-1999 (R2013)........Standards for Industrial Control Equipment

1.4 SUBMITTALS
A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 29, SUMP PUMPS", with applicable paragraph identification.
C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 1. Pump:
 a. Manufacturer and model.
 b. Operating speed (rpm).
 c. Capacity.
 d. Characteristic performance curves.
2. Electric Motor:
 a. Manufacturer, // frame and type //.
 b. Speed.
 d. Efficiency.
3. Control panel.
4. Sensors.
D. Certified copies of all the factory and construction site test data sheets and reports.
E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 1. Include complete list which indicates all components of the system.
 2. Include complete diagrams of the internal wiring for each item of equipment.
 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance, and troubleshooting.
F. //Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.//
G. //Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.//

1.5 QUALITY ASSURANCE
A. Bio-Based Materials: For products designated by the USDA’s Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
B. Guaranty: Warranty of Construction, FAR clause 52.246-21.

1.6 AS-BUILT DOCUMENTATION

SPEC WRITER NOTE: Coordinate O&M Manual requirements with Section 01 00 00, GENERAL REQUIREMENTS. O&M manuals shall be submitted for content review as part of the close-out documents.
A. Submit manufacturer’s literature and data updated to include submittal review comments and any equipment substitutions.

B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the ‘third party testing company’ requirement.

D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

SPEC WRITER NOTE: Coordinate and assure that the electrical characteristics specified below are clearly shown on the proper drawings.
2.1 SUMP PUMP

A. Centrifugal, vertical, submersible pump and motor, designed for // 60 // 82 // degrees C (// 140 // 180 // degrees F) maximum water service. Driver shall be electric motor. Support shall be rigid type. Provide perforated, suction strainer. Systems may include one, two, or more pumps with alternator as required by Contract Documents. // Pump // Pumps // shall be capable of continuous duty cycle.

1. Pump housings may be cast iron, bronze, aluminum or stainless steel.
 Cast iron and aluminum housings for submersible pumps shall be epoxy coated. Bio-based materials shall be utilized when possible.

B. Impeller: Statically and dynamically balanced, keyed and secured to shaft, // bronze ASTM B584 // cast iron ASTM A532/A532M //.

C. Shaft: Stainless steel or other approved corrosion resisting metal.

D. Bearings: As required to hold shaft alignment, anti-friction type for thrust permanently lubricated. Bio-based materials shall be utilized when possible.

SPEC WRITER NOTE: Use NEMA Type 4 for drip-proof (vertical) or NEMA Type 6P for completely enclosed (submersible).

E. Seal: Mechanical.

F. Motor: Maximum 40 degrees C (104 degrees F) ambient temperature rise above the maximum fluid temperature being pumped, drip-proof hermetically sealed, lifting eye, capacitor start type, voltage and phase as shown in schedule on Electrical drawings conforming to NEMA // Type 1 // Type 4X //. Size the motor capacity to operate pump without overloading the motor at any point on the pump curve. Refer to Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.

G. Starting Switch: Manually operated, tumbler type, as specified in Section 26 29 11, MOTOR CONTROLLERS.

H. Automatic Control and Level Alarm: Furnish a control panel in a NEMA 1 enclosure for indoors or in a NEMA 4X enclosure for outdoors. The controls shall be suitable for operation with the electrical characteristics listed on the Electrical drawings. The control panel shall have a level control system with switches to start and stop pumps automatically, and to activate a high water alarm. The level control system shall include sensors in the sump that detect the level of the
liquid. The pump is also connected to a control which has the ability to prevent oil from being pumped. The same unit shall activate an alarm when oil is detected. The sensors may be float type switches, ultrasonic level sensors, or transducers. The high water alarm shall have a red beacon light at the control panel and a buzzer, horn, or bell. The alarm shall have a silencing switch. Provide auxiliary contacts for remote communication with, and alarm monitoring to, the BAS using a BACnet compatible open-protocol type interface to DDC Controls System.

1. The circuitry of the control panel shall include:
 a. Power switch to turn on/off the automatic control mechanism
 b. HOA switches to manually override automatic control mechanism
 c. Run lights to indicate when pumps are powered up
 d. Level status lights to indicate when water in sump has reached the predetermined on/off and alarm levels
 e. Magnetic motor contactors
 f. Disconnect/breaker for each pump
 g. Automatic motor overload protection
 h. Wiring terminal block
 i. Dead front
 j. Auxiliary contacts
 k. Control circuit protection
 l. Fused control step down transformer

2. Sensors that detect the level of water in the sump shall be so arranged as to allow the accumulation of enough volume of liquid below the normal on-level that the pump will run for a minimum cycle time as recommended by the pump manufacturer. Sensors shall be located to activate the alarm adequately before the water level rises to the inlet pipe.

3. Provide two separate power supplies to the control panel, one for the control/alarm circuitry and one for power to the pump motors. Each power supply is to be fed from its own breaker so that if a pump overload trips a breaker, the alarm system shall still function. Each power supply is to be wired in its own conduit.

4. Wiring from the sump to the control panel shall have separate conduits for the pump power and for the sensor switches. All conduits are to be sealed at the basin and at the control panel to
prevent the intrusion of moisture and of flammable and/or corrosive gases.

I. Sump: Furnish // cast iron // fiberglass // steel // polyethylene // basin with gas tight covers. Cover shall have 275 mm by 381 mm (11 inch by 15 inch) manhole with bolted cover, vent connection, openings for pumps and controls. Sump shall be sized to allow an adequate volume of water to accumulate for a minimum one-minute cycle of pump operation.

J. Provide a check and ball valve in the discharge of each pump. Refer to Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.

K. Removal/Disconnect System: In a system utilizing a submersible pump, where sump depth, pump size, or other conditions make removal of the pump unusually difficult or unsafe, a manufacturer’s removal/disconnect system shall be provided. The system shall consist of a discharge fitting mounted on vertical guide rails attached to the sump or quick connect pipe fitting connection to piping. The pump shall be fitted with an adapter fitting that easily connects to/disconnects from the discharge fitting as the pump is raised from or lowered into the sump. The discharge piping shall connect to the discharge fitting so that it is disconnected without workers entering the pit. Where the sump depth is greater than five feet or other conditions exist to make the removal of the pump difficult or hazardous, the system shall include a rail guided quick disconnect apparatus to allow the pump to be pulled up out of the sump.

PART 3 - EXECUTION
PART 1 -
PART 2 -
PART 3 -

3.1 STARTUP AND TESTING

A. Pump installation to comply with ANSI/HI 1.4 for sump pumps.

B. Leak Test: Charge piping system and test for leaks. Test until there are no leaks. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
C. The tests shall include system capacity and all control and alarm functions.
D. When any defects are detected, correct defects and repeat test.
E. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to startup and testing.

3.2 COMMISSIONING
A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
B. Components provided under this section of the specification will be tested as part of a larger system.//

3.3 DEMONSTRATION AND TRAINING
A. Provide services of manufacturer’s technical representative for four// hours to instruct VA Personnel in operation and maintenance of units.
B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.//