PART 1 - GENERAL

1.1 DESCRIPTION

A. Field applied insulation for thermal efficiency and condensation control for
 1. HVAC piping, ductwork and equipment.
 //2. Boiler plant mechanical systems including burner fuel oil storage and handling facilities but excluding outside steam distribution.//
 //3. Re-insulation of HVAC piping, ductwork and equipment, plumbing piping and equipment and boiler plant piping, breeching and stacks and equipment after asbestos abatement.//

B. Definitions

 1. ASJ: All service jacket, white finish facing or jacket.
 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical//, Boiler Plant// and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, //interstitial spaces, //unfinished attics, crawl spaces and pipe basements are not considered finished areas.
6. FSK: Foil-scrim-kraft facing.
7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F); Boiler Plant breechings and stack temperature range 150-370 degrees C (300-700 degrees F) and piping media and equipment 32 to 230 degrees C (90 to 450 degrees F)/.
8. Density: kg/m³ - kilograms per cubic meter (Pcf - pounds per cubic foot).
9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 a. Flat surface: Watt per square meter (BTU per hour per square foot).
 b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
13. HPS: High pressure steam (415 kPa [60 psig] and above).
14. HPR: High pressure steam condensate return.
15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig]).
16. MPR: Medium pressure steam condensate return.
17. LPS: Low pressure steam (103 kPa [15 psig] and below).
18. LPR: Low pressure steam condensate gravity return.
19. PC: Pumped condensate.
20. HWH: Hot water heating supply.
21. HWHR: Hot water heating return.
22. GH: Hot glycol-water heating supply.
23. GHR: Hot glycol-water heating return.
24. FWPD: Feedwater pump discharge.
25. FWPS: Feedwater pump suction.
26. CTPD: Condensate transfer pump discharge.
27. CTPS: Condensate transfer pump suction.
28. VR: Vacuum condensate return.
29. CPD: Condensate pump discharge.
30. R: Pump recirculation.
31. FOS: Fuel oil supply.
32. FOR: Fuel oil return.
33. CW: Cold water.
34. SW: Soft water.
35. HW: Hot water.
36. CH: Chilled water supply.
37. CHR: Chilled water return.
38. GC: Chilled glycol-water supply.
39. GCR: Chilled glycol-water return.
40. RS: Refrigerant suction.
41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
//B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.//
//C. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT.//
D. Section 07 84 00, FIRESTOPPING.
E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
//F. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.//
G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
H. Section 23 21 13, HYDRONIC PIPING.
I. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
J. Section 23 22 23, STEAM CONDENSATE PUMPS
1.3 QUALITY ASSURANCE

A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC // and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION//.

B. Criteria:

1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

 4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

 4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

 4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

 (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

 (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.2 Pneumatic tubing for control systems shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1820, Standard for Safety Fire Test of Pneumatic Tubing for Flame and Smoke Characteristics. //

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

2. Test methods: ASTM E84, UL 723, or NFPA 255.

3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For
pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.

C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Shop Drawings:

1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 a. Insulation materials: Specify each type used and state surface burning characteristics.
 b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 c. Insulation accessory materials: Each type used.
 d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 e. Make reference to applicable specification paragraph numbers for coordination.

C. Samples:

1. Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/blanket; 150 mm (6 inches) long, full diameter for round types.
2. Each type of facing and jacket: Minimum size 100 mm (4 inches square).
3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.
1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

B. Federal Specifications (Fed. Spec.):
 L-P-535E (2)-99........Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride - Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):
 MIL-A-3316C (2)-90......Adhesives, Fire-Resistant, Thermal Insulation
 MIL-A-24179A (1)-87.....Adhesive, Flexible Unicellular-Plastic Thermal Insulation
 MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier
 MIL-C-20079H-87..........Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):
 B209-07..................Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 C411-05..................Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation
 C533-09..................Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation
C534-08.................Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C547-07.................Standard Specification for Mineral Fiber pipe Insulation

C552-07.................Standard Specification for Cellular Glass Thermal Insulation

C553-08.................Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications

C612-10.................Standard Specification for Mineral Fiber Block and Board Thermal Insulation

C1126-04.................Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation

C1136-10.................Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation

D1668-97a (2006)........Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing

E84-10..................Standard Test Method for Surface Burning Characteristics of Building Materials

E136-09b..................Standard Test Methods for Behavior of Materials in a Vertical Tube Furnace at 750 degrees C (1380 F)

E. National Fire Protection Association (NFPA):

90A-09..................Standard for the Installation of Air Conditioning and Ventilating Systems

96-08..................Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations

101-09..................Life Safety Code

251-06..................Standard methods of Tests of Fire Endurance of Building Construction Materials
PART 2 - PRODUCTS

SPEC WRITE NOTE: Make material requirements agree with applicable requirements specified in the referenced Applicable Publications. Update and specify only that which applies to the project.

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.

SPEC WRITER NOTE: See HVAC Design Manual Appendix 7-A Table 7-A1 for high humidity areas. Specify class B-5 duct insulation for high humidity areas.

B. ASTM C553 (Blanket, Flexible) Type I, // Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) // Class B-5, Density 32 kg/m³ (2 pcf), k = 0.04 (0.27) // at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.

C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up
to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL
A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

SPEC WRITER NOTE: Polyisocyanurate insulation does not meet the 50 smoke rating and therefore shall not be specified for piping or ductwork located indoors (only suitable for exterior locations per paragraph 1.3.B).

2.5 POLYISOCYANURATE CLOSED-CELL RIGID
A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
B. Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL
ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 DUCT WRAP FOR KITCHEN HOOD GREASE DUCTS
A. Light weight, high temperature mineral fiber or ceramic fiber insulating material with low thermal conductivity K value of 0.060 W/m² degrees C (0.417 Btu in/hr ft² degrees F) at mean temperature of 260 degrees C (500 degrees F).
B. Material shall be fully encapsulated by UL classified aluminum foil and tested to ASTM E84 standard.
C. Material shall be UL tested for internal grease fire to 1093 degrees C (2,000 degrees F) with zero clearance and for through-penetration firestop.

D. Material shall be UL classified for // 1 hour // 2 hour // fire rating for grease duct enclosure, and meet NFPA 96 requirements for direct applied insulating material to grease ducts with zero clearance.

E. Material flame spread and smoke developed ratings shall not be higher than 5, as per ASTM E 84/UL 723 Flammability Test.

2.8 CALCIUM SILICATE

A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.

B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.

C. Equipment Insulation: ASTM C533, Type I and Type II

D. Characteristics:

<table>
<thead>
<tr>
<th>Insulation Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEMS</td>
</tr>
<tr>
<td>Temperature, maximum degrees C (degrees F)</td>
</tr>
<tr>
<td>Density (dry), Kg/m³ (lb/ ft³)</td>
</tr>
<tr>
<td>Thermal conductivity: Min W/ m K (Btu in/h ft² degrees F)@ mean temperature of 93 degrees C (200 degrees F)</td>
</tr>
</tbody>
</table>

Surface burning characteristics:
- Flame spread Index, Maximum: 0
- Smoke Density index, Maximum: 0

2.9 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance ≤ 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.

B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive
closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

DESIGNER’S NOTE: See HVAC Design Manual Appendix 7-A Table 7-A1 for high humidity areas. Field applied vapor barrier jackets shall be provided for all exterior piping piping and ductwork as well as on interior piping and ductwork //exposed to outdoor air conveying fluids below ambient temperature. In addition, in high humidity areas, field applied vapor barrier jackets shall be provided for all interior piping conveying fluids below ambient temperature. The application of vapor barriers in areas other than high humidity areas and/or for all interior piping and/or ductwork conveying fluids below ambient temperature is optional for the designer.

D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork //exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity areas //conveying fluids below ambient temperature//. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.

G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

H. Aluminum Jacket-Piping systems// and circular breeching and stacks//:
ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

DESIGNER’S NOTE: Removable insulation jackets shall be used on steam equipment and piping that will contribute to energy loss if not insulated but will still require maintenance access (This typically includes steam meters, large PRV stations, etc.).

//2.10 REMOVABLE INSULATION JACKETS

A. Insulation and Jacket:
1. Non-Asbestos Glass mat, type E needled fiber.
2. Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
4. Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.//

2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or
high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

<table>
<thead>
<tr>
<th>Nominal Pipe Size mm (inches)</th>
<th>Insert Blocks mm (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up through 125 (5)</td>
<td>150 (6) long</td>
</tr>
<tr>
<td>150 (6)</td>
<td>150 (6) long</td>
</tr>
<tr>
<td>200 (8), 250 (10), 300 (12)</td>
<td>225 (9) long</td>
</tr>
<tr>
<td>350 (14), 400 (16)</td>
<td>300 (12) long</td>
</tr>
<tr>
<td>450 through 600 (18 through 24)</td>
<td>350 (14) long</td>
</tr>
</tbody>
</table>

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

//C. Boiler Plant Pipe supports: MSS SP58, Type 39. Apply at all pipe support points, except where MSS SP58, Type 3 pipe clamps provided as part of the support system. //</p

2.12 ADHESIVE, MASTIC, CEMENT
C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
G. Other: Insulation manufacturers' published recommendations.

2.13 MECHANICAL FASTENERS
A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
B. Staples: Outward clinching // monel or // galvanized steel.
C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.14 REINFORCEMENT AND FINISHES
A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.15 FIRESTOPPING MATERIAL
Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.16 FLAME AND SMOKE
Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION
3.1 GENERAL REQUIREMENTS
A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.
Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.

//C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification. //

D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.

F. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.

G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.

H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.

//I. Insulate PRVs, flow meters, and steam traps.//

I. HVAC work not to be insulated:
 1. Internally insulated ductwork and air handling units.
 2. Relief air ducts (Economizer cycle exhaust air).
 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
SPEC WRITER NOTE: Edit this list if additional equipment is required, or if certain equipment is insulated for safety reasons.

4. Equipment: Expansion tanks, flash tanks, hot water pumps, //steam condensate pumps. //

5. In hot piping: Unions, flexible connectors, control valves, //PRVs//, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.

//J. Boiler plant work not to be insulated(NI) or if insulated the insulation shall be removal jacket type (RJ):

1. Pipes, valves and fittings:
 a. Gas fuel(NI)
 b. Oil unheated (NI)
 c. Compressed Air (NI)
 //d. Flowmeter sensing piping and blowdown // (NI)
 e. Level sensor piping and blowdown (NI)
 f. Tank drains (NI)
 g. Vents-tank, safety and back pressure valves except protective. (NI)
 h. Continuous blowdown and boiler water sampling except protective. (NI)
 i. Threaded valves (RJ)
 j. Check valves (RJ)
 k. Unions (RJ)
 l. Orifice flanges (RJ)
 m. Dielectric flanges and unions (RJ)
 n. Steam header drains (NI)
 o. Non-return stop and check valve drains (NI)
 p. Pneumatic controls (NI)
 q. Pressure transmission to gages (NI)
 r. Piping in control panels (NI)
 s. Tube cleaning piping (NI)
 t. Chemical feed from pump-type feeders (NI)
 u. Condensate piping from flash tank to condensate return pump (NI)

2. Boilers:
a. Water column, piping and blowdown (NI)
b. Auxiliary low water cutoff, piping and blowdown (NI)
c. Remote water level indicators and piping blowdown (NI)
d. Steam gage piping (NI)
e. Soot blower and piping (NI)
f. Safety valves and drip pan ells (NI)
g. Water level sensors and piping except where required by equipment manufacturer (NI)
h. Control piping and devices or interlocks (NI)
i. Drum heads (watertube boilers) (NI)

3. Equipment:
a. Condensate return pump units (NI)
b. Vacuum return pump units (NI)
c. Pumps-inlet to outlet (NI)
d. Flash tanks (NI)
e. Safety valves (NI)
f. Water meters (NI)
g. Oil meters (NI)
h. Air compressors and tanks (NI)
i. Refrigerated or desiccant air drier (NI)
j. Chemical feeders (NI)
k. Boiler and feedwater sampler (NI)
l. All nameplates (NI)

4. Specialties:
/a. Pressure reducing valves/ (RJ)
b. Control valves—water and steam (NI)
c. Level sensors—piping, valves and blowdown (NI)
d. Back pressure regulators—oil and steam (NI)
e. Strainers under 65 mm (2-1/2 inch) pipe size (RJ)
f. Expansion bellows (RJ)
g. Flexible connectors (RJ)
h. Ball joints except piping between joints/ (NI)

K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.

L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. // The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated
to the necessary size and shape to fit on the elbow/fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.

M. Firestop Pipe and Duct insulation:
1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 a. Pipe risers through floors
 b. Pipe or duct chase walls and floors
 c. Smoke partitions
 d. Fire partitions

N. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm (3 inches) and smaller and 25 mm (1 inch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).

O. Provide vapor barrier jackets over insulation as follows:
1. All piping and ductwork exposed to outdoor weather.

DESIGNER’S NOTE: See HVAC Design <Manual Appendix 7-A Table 7-A1 for high humidity areas. The application of vapor barriers in areas other than high humidity areas and/or for all interior piping and ductwork conveying fluids below ambient temperature is optional for the designer.

//2. All interior piping and ducts conveying fluids //exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.)// below ambient air temperature //in high humidity areas//.

P. Provide metal jackets over insulation as follows:
1. All piping and ducts exposed to outdoor weather.
2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain board:

a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.

b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.

c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.

d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.

SPEC WRITER NOTE: Provide 50 mm (2 inch) duct insulation for supply and return duct work exposed to outdoor conditions. In paragraph 3.c below delete outdoor air duct insulation in mild climates (where the design temperature difference between the interior and exterior of the duct does not exceed 8 degrees C (15 degree F)).
3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, //interstitial spaces// and duct work exposed to outdoor weather:
 a. // 40 mm (1-1/2 inch) // 50 mm (2 inch) // thick insulation faced with ASJ (white all service jacket): Supply air duct // unlined air handling units // and afterfilter housing.
 b. // 40 mm (1-1/2 inch) // 50 mm (2 inch) // thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 c. Outside air intake ducts: // no insulation required // 25 mm (one inch) thick insulation faced with ASJ.
 d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.

4. Supply air duct in the warehouse and in the laundry: 25 mm (one inch) thick insulation faced with ASJ. //

5. Cold equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 a. Chilled water pumps, water filter, chemical feeder pot or tank.
 b. Pneumatic, cold storage water and surge tanks.

6. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 SPEC WRITER NOTE: Insulate steam condensate pump receivers, flash tanks, and similar equipment if room is very small and would become excessively hot, or if it could represent a work hazard in areas of frequent maintenance.
 a. Convertors, air separators, steam condensate pump receivers.
 b. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
 c. Domestic water heaters and hot water storage tanks (not factory insulated).
 d. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.

7. Laundry: Hot exhaust ducts from dryers and from ironers, where duct is exposed in the laundry.
B. Flexible Mineral Fiber Blanket:

1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.

2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.

3. Concealed supply air ductwork.
 a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.

4. Concealed return air duct:
 a. //In attics (where not subject to damage) and where exposed to outdoor weather: 50mm (2 inch) thick insulation faced with FSK, //
 b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 //c. In interstitial spaces (where not subject to damage): 40 mm (1-1/2 inch thick insulation faced with FSK. //
 d. Concealed return air ductwork in other locations need not be insulated.

5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.

6. Exhaust air branch duct from autopsy refrigerator to main duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.

C. Molded Mineral Fiber Pipe and Tubing Covering:
1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

2. Contractor's options for fitting, flange and valve insulation:
 a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).

3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

SPEC WRITER NOTE: Specify only cellular glass, polyisocyanurate (exterior only) or phenolic closed cell insulation for chilled water piping systems conveying fluids below ambient temperatures and/or where insulation for condensation control is specified.

D. Rigid Cellular Phenolic Foam:
 1. Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B

3. Provide secure attachment facilities such as welding pins.

4. Apply insulation with joints tightly drawn together

5. Apply adhesives, coverings, neatly finished at fittings, and valves.

6. Final installation shall be smooth, tight, neatly finished at all edges.

7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.

8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.

9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.

E. Cellular Glass Insulation:
 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.

2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING and Section 33 63 00, STEAM ENERGY DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 a. 75 mm (3 inches) thick for hot water piping.
 b. As scheduled at the end of this section for chilled water piping.
 c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 e. Underground insulation shall be inspected and approved by the Resident Engineer as follows:
 1) Insulation in place before coating.
 2) After coating.
f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.

3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.

4. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.

SPEC WRITER NOTE: Polyisocyanurate insulation does not meet the 50 smoke rating and therefore shall not be specified for piping or ductwork located indoors (only suitable for exterior locations per paragraph 1.3.B).

F. Polyisocyanurate Closed-Cell Rigid Insulation:

1. Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).

2. Install insulation, vapor barrier and jacketing per manufacturer’s recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.

3. Install insulation with all joints tightly butted (except expansion) joints in hot applications).

4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.

5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.

6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/fitting
insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.

7. For cold applications, the vapor barrier on elbows/fitting shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.

8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).

9. Underground piping: Follow instructions for above ground piping but the vapor retarder jacketing shall be 6 mil thick PVDC or minimum 30 mil thick rubberized bituminous membrane. Sand bed and backfill shall be a minimum of 150 mm (6 inches) all around insulated pipe.

10. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

11. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.

12. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.

SPEC WRITER NOTE: Flexible elastomeric thermal insulation may be specified in lieu of mineral fiber insulation. However its use greater than 38 mm (1-1/2 inch) thickness is restricted and shall not be specified for ceiling spaces used as unducted return air plenums.

G. Flexible Elastomeric Cellular Thermal Insulation:

1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.

2. Pipe and tubing insulation:
 a. Use proper size material. Do not stretch or strain insulation.
 b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section
23 05 11, COMMON WORK RESULTS FOR HVAC //and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION//.

c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.

3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.

4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.

6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 a. Chilled water pumps
 b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
 d. Piping inside refrigerators and freezers: Provide heat tape under insulation.

7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

H. Duct Wrap for Kitchen Hood Grease Ducts:

1. The insulation thickness, layers and installation method shall be as per recommendations of the manufacturer to maintain the fire integrity and performance rating.

2. Provide stainless steel jacket for all exterior and exposed interior ductwork.

I. Calcium Silicate:

1. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.
2. Engine Exhaust Insulation for Emergency Generator and Diesel Driven Fire Pump: Type II, Class D, 65 mm (2 1/2 inch) nominal thickness. Cover exhaust completely from engine through roof or wall construction, including muffler. Secure with 16 AWG galvanized annealed wire or 0.38 x 12 mm 0.015 x 1/2 IN wide galvanized bands on 300 mm 12 IN maximum centers. Anchor wire and bands to welded pins, clips or angles. Apply 25 mm 1 IN hex galvanized wire over insulation. Fill voids with 6 mm 1/4 IN insulating cement.

3. ETO Exhaust (High Temperature): Type II, class D, 65 mm (2.5 inches) nominal thickness. Cover duct for entire length. Provide sheet aluminum jacket for all exterior ductwork.

4. Kitchen Exhaust Duct work: Type II, class D, 65 mm (2.5 inches) nominal thickness. Wire insulation in place with 12 gauge galvanized wire.

5. MRI Quench Vent Insulation: Type I, class D, 150 mm (6 inch) nominal thickness.

3.3 APPLICATION – BOILER PLANT, PIPE, VALVES, STRAINERS AND FITTINGS:
A. Temperature range 120 to 230 degrees C (251 to 450 degrees F);
1. Application; Steam service 110 kpa (16 psig nominal) and higher, high pressure condensate to trap assembly, boiler bottom blowoff from boiler to blowoff valve closest to boiler.
2. Insulation and Jacket:
 a. Calcium silicate for piping from zero to 1800 mm (6 feet) above boiler room floor, feedwater heater mezzanine floor or access platform and any floors or platforms on which tanks or pumps are located.
 b. Mineral fiber for remaining locations.
 c. ASJ with PVC premolded fitting coverings.
 d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on atomizing steam and condensate lines at boilers and burners.
3. Thickness:
Nominal Thickness Of Calcium Silicate Insulation (Boiler Plant)

<table>
<thead>
<tr>
<th>Pipe Diameter mm (in)</th>
<th>Insulation Thickness mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (1 and below)</td>
<td>125 (5)</td>
</tr>
<tr>
<td>25 to 38 (1-1/4 to 1- 1/2)</td>
<td>125 (5)</td>
</tr>
<tr>
<td>38 (1-1/2) and above</td>
<td>150 (6)</td>
</tr>
</tbody>
</table>

B. Temperature range 100 to 121 degrees C (211 to 250 degrees F):
1. Application: Steam service 103 kpa (15 psig) and below, trap assembly discharge piping, boiler feedwater from feedwater heater to boiler feed pump recirculation, feedwater heater overflow, heated oil from oil heater to burners.
2. Insulation and Jacket:
 a. Calcium silicate for piping from zero to 1800 mm (0 to 6 feet) above boiler room floor, feedwater heater mezzanine floor and access platform, and any floors or access platforms on which tanks or pumps are located.
 b. Mineral Fiber or rigid closed cell phenolic foam for remaining locations.
 c. ASJ with PVC premolded fitting coverings.
 d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on condensate lines at boilers and burners.
3. Thickness—calcium silicate and mineral fiber insulation:

Nominal Thickness Of Insulation

<table>
<thead>
<tr>
<th>Pipe Diameter mm (in)</th>
<th>Insulation Thickness mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (1 and below)</td>
<td>50 (2)</td>
</tr>
<tr>
<td>25 to 38 (1-1/4 to 1- 1/2)</td>
<td>50 (2)</td>
</tr>
<tr>
<td>38 (1-1/2) and above</td>
<td>75 (3)</td>
</tr>
</tbody>
</table>

4. Thickness—rigid closed-cell phenolic foam insulation:
C. Temperature range 32 to 99 degrees C (90 to 211 degrees F):

1. Application: Pumped condensate, vacuum heating return, gravity and pumped heating returns, condensate transfer, condensate transfer pump recirculation, heated oil system to heaters and returns from burners, condensate return from convertors and heated water storage tanks.

2. Insulation Jacket:
 a. Calcium silicate for piping from zero to 1800 mm (six feet above boiler room floor, feedwater heater mezzanine floor and access platform and any floor or access platform on which tanks or pumps are located.
 b. Mineral fiber or rigid closed-cell phenolic foam for remaining locations.
 c. ASJ with PVC premolded fitting coverings.

3. Thickness-calcium silicate and mineral fiber insulation:

<table>
<thead>
<tr>
<th>Pipe Diameter mm (in)</th>
<th>Insulation Thickness mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (1 and below)</td>
<td>38 (1.5)</td>
</tr>
<tr>
<td>25 to 38 (1-1/4 to 1-1/2)</td>
<td>38 (1.5)</td>
</tr>
<tr>
<td>38 (1-1/2) and above</td>
<td>75 (3)</td>
</tr>
</tbody>
</table>

4. Thickness-rigid closed-cell phenolic foam insulation:

<table>
<thead>
<tr>
<th>Pipe Diameter mm (in)</th>
<th>Insulation Thickness mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (1 and below)</td>
<td>19 (0.75)</td>
</tr>
<tr>
<td>25 to 38 (1-1/4 to 1-1/2)</td>
<td>19 (0.75)</td>
</tr>
<tr>
<td>38 (1-1/2) and above</td>
<td>25 (1)</td>
</tr>
</tbody>
</table>

D. Protective insulation to prevent personnel injury:
1. Application: Piping from zero to 1800 mm (6 feet) above all floors and access platforms including continuous blowoff, feedwater and boiler water sample, blowoff tank vent, flash tank vents and condensater tank vent, shot-type chemical feed, fire tube boiler bottom blowoff after valves, valve by-passes.

2. Insulation thickness: 25 mm (1 inch).

3. Insulation and jacket: Calcium silicate with ASJ except provide aluminum jacket on piping at boilers within 1800 mm (6 feet) of floor. Use PVC premolded fitting coverings when all service jacket is utilized.

E. Installation:

1. At pipe supports, weld pipe covering protection saddles to pipe, except where MS-SP58, type 3 pipe clamps are utilized.

2. Insulation shall be firmly applied, joints butted tightly, mechanically fastened by stainless steel wires on 300 mm (12 inch) centers.

3. At support points, fill and thoroughly pack space between pipe covering protective saddle bearing area.

4. Terminate insulation and jacket hard and tight at anchor points.

5. Terminate insulation at piping facilities not insulated with a 45 degree chamfered section of insulating and finishing cement covered with jacket.

6. On calcium silicate, mineral fiber and rigid closed-cell phenolic foam systems, insulated flanged fittings, strainers and valves with sections of pipe insulation cut, fitted and arranged neatly and firmly wired in place. Fill all cracks, voids and coat outer surface with insulating cement. Install jacket. Provide similar construction on welded and threaded fittings on calcium silicate systems or use premolded fitting insulation.

7. On mineral fiber systems, insulate welded and threaded fittings more than 50 mm (2 inches) in diameter with compressed blanket insulation (minimum 2/1) and finish with jacket or PVC cover.

8. Insulate fittings 50 mm (2 inches) and smaller with mastic finishing material and cover with jacket.

9. Insulate valve bonnet up to valve side of bonnet flange to permit bonnet flange removal without disturbing insulation.

10. Install jacket smooth, tight and neatly finish all edges. Over wrap ASJ butt strips by 50 percent. Secure aluminum jacket with stainless
3.4 APPLICATION—BOILER FLUE GAS SYSTEMS

A. Temperature range 150 to 370 degrees C (300 to 700 degrees F):
 1. Application: Transitions, stacks and breechings from boiler outlet to stack outlet; induced draft fans (if provided); flue gas recirculation fans and ductwork (if provided).
 2. Thickness:
 a. Single-wall duct systems: 50 mm (2 inches).
 b. Double-wall factory-fabricated duct systems with air space between walls: None.
 3. Insulation and jacket: Calcium Silicate with aluminum sheet metal jacket.

B. Protective Insulation to Prevent Personnel Injury:
 1. Application: Double wall factory-fabricated duct system with uninsulated air space between walls within 900 mm (3 feet) horizontally and 1800 mm (6 feet) vertically of platform or floor.
 2. Insulation thickness: 25 mm (1 inch).
 3. Insulation and jacket: Calcium Silicate with aluminum sheet metal jacket.

C. Insulating:
 1. Provide attachment facilities such as angles, welded studs, clip angles.
 2. Apply insulation with joints tightly butted and staggered. Seal joints with high temperature cement.
 3. Provide metal corner beads.
 4. Band insulation firmly in place to provide a smooth surface. Maximum band spacing shall not be more than 300 mm (12 inches).
 5. Install jacket. All surfaces outside of building must be weather tight. At termination of stub stacks, provide metal closure system which is connected and sealed to perimeter of stack to prevent water penetration of insulation.

3.5 APPLICATION—BOILER DEAERATING FEEDWATER HEATER, TANKS

A. Temperature range 38 to 120 degrees C (100 to 250 degrees F)
 1. Application: Deaerating feedwater heater and storage tank, condensate storage tanks, heat exchangers, blowoff tank.
 2. Insulation Thickness:
a. Feedwater heater and storage tanks: 75 mm (3 inches)
b. Condensate storage tanks: 50 mm (2 inches)
c. Blowoff tank, heat exchangers: 25 mm (1 inch).

3. Insulation and covering: Calcium silicate with glass cloth jacket.

B. Insulating:

1. Insulate tanks with an assembly of chamfered block to fit curvature. Secure with 1.6 mm diameter (16 gage) wire or stainless steel bands 300 mm (12 inches) on centers, fill all voids and interstices with finishing cement coat, imbed hexagonal wire mesh in first finish coat. Provide a second finish coat and a glass cloth covering.

2. Apply glass cloth with adhesive, smooth, tight and neatly finished at all cloth edges; prime to receive paint.

3. Do not insulate over nameplates and data plates. Nameplates and data plates must be legible.

3.6 APPLICATION ON HEATED OR TRACED OIL FACILITIES OUTSIDE OF BUILDING

A. Temperature range 30 to 120 degrees C (85 to 250 degrees F).

1. Application: Aboveground oil storage tank, oil and steam or hot water underground and aboveground piping systems.

2. Insulation thickness:
 a. Tanks; 38 mm (1-1/2 inches) plus finish.
 b. Oil suction and return piping: 38 mm (1-1/2 inches plus finish).
 c. Steam or hot water piping: 38 mm (1-1/2 inches) plus finish.

B. Insulation and jacket (aboveground tanks and piping): Calcium silicate with glass cloth or aluminum jacket, weatherproof jacket when used outside of building.

C. Insulation and Jacket (underground piping); Calcium silicate with fiberglass scrim jacket located within secondary containment. Allow space for heating cable (if provided) along bottom line of piping. //

3.7 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.
3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

SPEC WRITER NOTE: Insulate vent piping for PRV safety valves, receivers and flash tanks where protection to personnel is required.

<table>
<thead>
<tr>
<th>Operating Temperature Range/Service</th>
<th>Insulation Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>122-177 degrees C (251-350 degrees F) (HPS, MPS)</td>
<td>Mineral Fiber (Above ground piping only)</td>
</tr>
<tr>
<td>Less than 25 (1)</td>
<td>75 (3)</td>
</tr>
<tr>
<td>93-260 degrees C (200-500 degrees F) (HPS, HPR)</td>
<td>Calcium Silicate</td>
</tr>
<tr>
<td>100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)</td>
<td>Mineral Fiber (Above ground piping only)</td>
</tr>
<tr>
<td>100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)</td>
<td>Rigid Cellular Phenolic Foam</td>
</tr>
<tr>
<td>38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)</td>
<td>Mineral Fiber (Above ground piping only)</td>
</tr>
<tr>
<td>38-99 degrees C (100-211 degrees F)</td>
<td>Rigid Cellular Phenolic Foam</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Material and Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>39-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)</td>
<td>Polyiso-cyanurate Closed-Cell Rigid (Exterior Locations only)</td>
</tr>
<tr>
<td>38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)</td>
<td>Flexible Elastomeric Cellular Thermal (Above ground piping only)</td>
</tr>
<tr>
<td>4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)</td>
<td>Rigid Cellular Phenolic Foam</td>
</tr>
<tr>
<td>4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)</td>
<td>Cellular Glass Closed-Cell</td>
</tr>
<tr>
<td>4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)</td>
<td>Cellular Glass Closed-Cell</td>
</tr>
<tr>
<td>4-16 degrees C (40-60 degrees F) (CH, CHR, GC and GCR (where underground)</td>
<td>Polyiso-cyanurate Closed-Cell Rigid</td>
</tr>
<tr>
<td>4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)</td>
<td>Polyiso-cyanurate Closed-Cell Rigid (Exterior Locations only)</td>
</tr>
<tr>
<td>(40-60 degrees F) (CH, CHR, GC, GCR</td>
<td>Flexible Elastomeric Cellular</td>
</tr>
<tr>
<td>and RS for DX refrigeration)</td>
<td>Thermal (Above ground piping only)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
</tr>
</tbody>
</table>

- - - E N D - - -