SECTION 26 05 73
OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

SPEC WRITER NOTE: Delete between // -- // if not applicable to project. Also, delete any other item or paragraph not applicable in the section and renumber the paragraphs. This section shall be included in all projects requiring new electrical systems, or modification to existing electrical systems. Purpose of this specification is to ensure that the selected manufacturer’s equipment shall perform as intended.

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.

B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.

SPEC WRITER NOTE: For renovation projects, insert the limits of the study in the blank space if a study of the entire electrical system is not specified.

C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the //individual device// //____// up to the utility source// and the on-site generator sources//.

1.2 RELATED WORK

A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.

B. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Medium-voltage circuit breaker switchgear.

C. Section 26 13 16, MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES: Medium-voltage fusible interrupter switches.

D. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low-voltage switchgear.

E. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
F. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
G. Section 26 24 19, MOTOR CONTROL CENTERS: Motor control centers.
H. Section 26 32 13, ENGINE GENERATORS: Engine generators.
I. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer’s licensed electrical engineer.

1.4 SUBMITTALS

A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:

1. Product data on the software program to be used for the study.
 Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.

2. Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.

3. Certifications: Two weeks prior to final inspection, submit the following.
 a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

B. Institute of Electrical and Electronics Engineers (IEEE):
 241-90...............Recommended Practice Electrical Systems in Commercial Buildings
 242-01...............Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
1.6 STUDY REQUIREMENTS

A. The study shall be in accordance with IEEE and NFPA standards.

B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.

C. One Line Diagram:

1. Show all electrical equipment and wiring to be protected by the overcurrent devices.

2. Show the following specific information:
 a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 b. Relay, circuit breaker, and fuse ratings.
 c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 d. Voltage at each bus.
 e. Identification of each bus, matching the identification on the drawings.
 f. Conduit, conductor, and busway material, size, length, and X/R ratios.

D. Short-Circuit Study:

1. The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.

2. Calculate the fault impedance to determine the available short-circuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.

3. Present the results of the short-circuit study in a table. Include the following:
a. Device identification.
b. Operating voltage.
c. Overcurrent protective device type and rating.
d. Calculated short-circuit current.

E. Coordination Study:

1. Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.

2. The following specific information shall also be shown on the coordination curves:
 a. Device identification.
 b. Potential transformer and current transformer ratios.
 c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 d. Applicable circuit breaker or protective relay characteristic curves.
 e. No-damage, melting, and clearing curves for fuses.
 f. Transformer in-rush points.

3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 a. Device identification.
 b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 c. Fuse rating and type.

F. Arc Flash Calculations and Analysis:

1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

2. Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.

3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.

5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTNGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---