SECTION 23 82 16
AIR COILS

SPEC WRITER NOTE:
1. Delete between //---// if not applicable to project. Also delete any other item or paragraph not applicable in the section and renumber the paragraphs.
2. Provide the year of latest edition to each publication listed in Article 1.5 APPLICABLE PUBLICATIONS.

PART 1 - GENERAL

1.1 DESCRIPTION
Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK
A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
B. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
C. Section 23 05 xx,
D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS
F. Section 23 09 23, DDC SYSTEMS for HVAC
G. Section 23 31 00, HVAC DUCTS AND CASINGS
H. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
I. Section 23 72 00, AIR TO AIR ENERGY RECOVERY EQUIPMENT
J. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
K. Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS
L. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS

1.3 QUALITY ASSURANCE
A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS
A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
C. Provide installation, operating and maintenance instructions.
E. Coils may be submitted with Section 23 36 00, AIR TERMINAL UNITS, Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS, Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS, or Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

SPEC WRITER NOTE: Insert the year of approved latest edition of the applications between the brackets //----// and delete the brackets if applicable to this project.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. Air Conditioning and Refrigeration Institute (AHRI):
 Directory of Certified Applied Air Conditioning Products
 AHRI 410-//2001//.......Forced-Circulation Air-Cooling and Air-Heating Coils
C. American Society for Testing and Materials (ASTM):
 B75/75M-//2019//.......Standard Specifications for Seamless Copper Tube
D. National Fire Protection Association (NFPA):
 70-//2017//............National Electric Code
E. National Electric Manufacturers Association (NEMA):
 250-//2014//............Enclosures for Electrical Equipment (1,000 Volts Maximum)
F. Underwriters Laboratories, Inc. (UL):
 1996-//2014//............Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

A. Conform to ASTM B75 and AHRI 410.
B. Surgical Suites – All Locations: All coils installed in the air handling units serving surgical suites, duct-mounted reheat coils, and
air terminal unit-mounted reheat coils shall be equipped with copper fins.

SPEC WRITER NOTE: Provide corrosion protection for all coils located in the air-handling unit coils in high-humidity locations (VA HVAC Design Manual Chapter 7) and as determined by the designer for a specific location. Coating should not be used for the chemically corrosive locations where the pH values are not within 3 to 12.

C. High Humidity Locations: For air-handling unit mounted coils provide the following corrosion treatment:

1. Epoxy Immersion Coating – Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.

2. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 a. Salt Spray Resistance (Minimum 6,000 Hours)
 b. Humidity Resistance (Minimum 1,000 Hours)
 c. Water Immersion (Minimum 260 Hours)
 d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 e. Impact Resistance (Up to 160 Inch/Pound)

D. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.

E. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.

F. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.

G. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
H. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.

I. Pressures kPa (PSIG):

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Water Coil</th>
<th>Steam Coil</th>
<th>Refrigerant Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>2070 (300)</td>
<td>1725 (250)</td>
<td>2070 (300)</td>
</tr>
<tr>
<td>Working</td>
<td>1380 (200)</td>
<td>520 (75)</td>
<td>1725 (250)</td>
</tr>
</tbody>
</table>

J. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.

K. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.

L. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS or Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.

M. Steam Distributing Coils: Conform to ASTM B75 and ARI 410. Minimum 9.5 mm (3/8-inch) steam distributing tubing installed concentrically in 25 mm (one-inch) OD condensing coil tubes.

N. Integral Face and Bypass Type Steam Coil:
 1. Exempt from ARI Test and Certification.
 2. Conform to ASTM B75 and ARI 410.
 3. Minimum 16 mm (5/8-inch) steam tube installed in concentrically 25 mm (one-inch) OD diameter tube.
 4. Casing: 1.9 mm (14 gage) galvanized steel with corrosion resistant paint.
 5. Tubes and Bypasses: Vertical or horizontal.

 DESIGNER NOTE: Pneumatic damper operators may be used only while connecting to any existing pneumatic control system.

O. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; 1.6 mm (16 gage) steel, coated with factory applied corrosion resistant baked enamel finish. Provide damper linkage and // pneumatic operator(s) // electric operators//. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. //
2.2 REHEAT COILS, DUCT MOUNTED

The coils shall be continuous circuit booster type for steam or hot water as shown on drawings. Use the same coil material as listed in Article 2.1.

2.3 WATER COILS, INCLUDING GLYCOL-WATER

A. Use the same coil material as listed in Paragraphs 2.1.

B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
 1. Cooling, all types.
 2. Heating or preheat.
 3. Runaround energy recovery. ARI certification of capacity adjustment is waived. See Section 23 72 00, AIR-TO-AIR ENERGY RECOVERY EQUIPMENT.

C. Cleanable Tube Type; manufacturer standard:
 1. Well water applications.
 2. Waste water applications.

2.4 VOLATILE REFRIGERANT COILS

A. Continuous circuit, straight tubes, dry expansion type equipped with multi-port distribution header, less expansion valve.

B. Minimum 16 mm (5/8-inch) tube diameter.

C. Designed for R22 or other EPA approved refrigerants.

2.5 ELECTRIC HEATING COILS

A. Standards: ARI 410 is not applicable. Electric coils shall meet the requirements of the National Electric Code (NEC-250) and UL //1996//.

B. General: Aluminized steel frame, spot welded. Duct mounted units may be flanged or slip-in design with built-in terminal box completely factory wired to terminals. Control panels for coils in air handling units may be built-in or remote in NEMA 1 enclosure.

C. Coils: Open type, 80 percent nickel, 20 percent chromium resistance wire, insulated by floating ceramic bushings and supported in aluminized steel brackets spaced on 100 mm (4-inch) maximum centers.

Coils shall be mechanically crimped in stainless steel terminals which are insulated from the frame with high temperature molded phenolic bushings.

D. Over Temperature Protection:
 1. Primary system: Automatic reset thermal cutout.
 2. Secondary system: Load-carrying manual reset thermal cutout factory wired in series with each heater stage.

E. Overcurrent Protection: Comply with UL and NEC.
SPEC WRITER NOTE: Specify mercury type contactors when quiet operation (reheat coil above ceiling) is required.

F. Contactors: Disconnecting magnetic type, (when required), except for duct mounted reheat coils contractors shall be disconnecting mercury type.

G. Airflow Interlock: Diaphragm operated differential airflow pressure switch.

SPEC WRITER NOTE: Verify that temperature controls are shown on the drawings. Include these temperature controls in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

H. Leaving air temperature control for electric coils mounted in air handling units shall be // 3 // // 6 // // 10 // // 18 // step control driven by a unit mounted modulating thermostat.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.

B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS and as required by Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer’s technical representative for four hours to instruct VA personnel in operation and maintenance of units.
B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 – COMMISSIONING OF HVAC SYSTEMS.

--- END ---