SECTION 23 05 12
GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

SPEC WRITER NOTES:
1. Delete between // // if not applicable to project. Also delete any other item or paragraph not applicable in the Section and renumber the paragraphs.
2. Coordinate electrical requirements with Electrical Engineer. Electrical power requirements shall be as shown on the electrical drawings and shall not be shown on the mechanical drawings.
3. Provide the year of latest edition to each publication listed in Article 1.3 APPLICABLE PUBLICATIONS.

PART 1 - GENERAL

1.1 DESCRIPTION
A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
B. A complete listing of common acronyms and abbreviations are included in //Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT AND STEAM GENERATION// //Section 23 05 11, COMMON WORK RESULTS FOR HVAC//.

1.2 RELATED WORK
A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
D. //Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.//
E. //Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT AND STEAM GE
F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
G. //Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.//
H. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
I. Section 26 24 19, MOTOR CONTROL CENTERS.
J. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

SPEC WRITER NOTE:
1. Make material requirements agree with requirements specified in the referenced Applicable Publications. Verify and update the publication list to that which applies to the project, unless the reference applies to all mechanical systems. Publications that apply to all mechanical systems may not be
specifically referenced in the body of the specification, but, shall form a part of this specification.

2. Insert the year of approved latest edition of the publications between the brackets and delete the brackets //----// if applicable to this project.

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

B. American Bearing Manufacturers Association (ABMA):
 9-//2015//............Load Ratings and Fatigue Life for Ball Bearings
 11-//2014//............Load Ratings and Fatigue Life for Roller Bearings

C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
 90.1-//2013//............Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings

D. Institute of Electrical and Electronics Engineers (IEEE):
 112-//2017//............Standard Test Procedure for Polyphase Induction Motors and Generators
 841-//2009//............IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage Induction Motors--Up to and Including 370 kW (500 hp)

E. National Electrical Manufacturers Association (NEMA):
 MG 1-//2019//............Motors and Generators
 250-//2014//............Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA):
 70-//2014//............National Electrical Code (NEC)
1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Information and material submitted under this section shall be marked “SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT”, with applicable paragraph identification.

C. Submit motor submittals with driven equipment.

D. Shop Drawings:
 1. Provide documentation to demonstrate compliance with contract documents.
 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.

E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 1. Include complete list indicating all components of the systems.
 2. Include complete diagrams of the internal wiring for each item of equipment.
 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.

H. //Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.//
I. //Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.//

1.5 AS-BUILT DOCUMENTATION

SPEC WRITER NOTE: Coordinate O&M Manual requirements with Section 01 00 00, GENERAL REQUIREMENTS. O&M manuals shall be submitted for content review as part of the close-out documents.

A. Submit manufacturer’s literature and data updated to include submittal review comments and any equipment substitutions.

B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

SPEC WRITER NOTE: Select and edit one of the bracketed options after the paragraph below to indicate the format in which the contractor must provide record drawing files. Select the hand-marked option only when the designer has been separately contracted to provide the record drawings from the contractor’s mark-ups. Select the BIM option only when a BIM model will be generated, which is typically only performed by the designer on some Design-Bid-Build projects or by the contractor on some Design-Build projects.

C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or
breach of the 'third party testing company' requirement. Provide record drawings as follows:

1. //Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.//

2. //As-built drawings are to be provided, with a copy of them on AutoCAD version // provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.//

3. //As-built drawings are to be provided, with a copy of them in three-dimensional Building Information Modeling (BIM) software version // provided on CD or DVD.//

D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 – PRODUCTS

2.1 MOTORS

A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.

B. For severe duty TEFC motors, IEEE 841 shall apply.

C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.

D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.

E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time-delay (20 seconds minimum) relay for switching from high to low speed.

F. Voltage ratings shall be as follows:
 1. Single phase:
 a. Motors connected to 120-volt systems: 115 volts.
 b. Motors connected to 208-volt systems: 200 volts.
 c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 2. Three phase:
 a. Motors connected to 208-volt systems: 200 volts.
 b. Motors, less than 74.6 kW (100 hp), connected to 240-volt or 480-volt systems: 208-230/460 volts, dual connection.
 c. Motors, 74.6 kW (100 hp) or larger, connected to 240-volt systems: 230 volts.
 d. Motors, 74.6 kW (100 hp) or larger, connected to 480-volt systems: 460 volts.
 e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA MG 1 for connection to the nominal system voltage shown on the drawings.

G. Number of phases shall be as follows:
 1. Motors, less than 373 W (1/2 hp): Single phase.
 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 3. Exceptions:
 a. Hermetically sealed motors.
 b. Motors for equipment assemblies, less than 746 W (1 hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.

SPEC WRITER NOTE: Indicate motor enclosures on equipment scheduled on the drawings.

I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.

J. Motor Enclosures:
 1. Shall be the NEMA types as specified and/or shown in the Contract Documents.
 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.

K. Electrical Design Requirements:
 1. Motors shall be continuous duty.
 2. The insulation system shall be rated minimum of Class B, 130 degrees C (266 degrees F).
 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.

L. Mechanical Design Requirements:

1. Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.

2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.

3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.

4. Grease fittings, if provided, shall be Alemite type or equivalent.

5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.

6. Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.

7. Noise level shall meet the requirements of the application.

8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.

9. All external fasteners shall be corrosion resistant.

10. Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.

11. Winding thermostats, when specified shall be normally closed, connected in series.

12. Grounding provisions shall be in the main terminal box.

M. Special Requirements:

1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.

3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.

4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.

5. Motors utilized with variable frequency drives shall be rated “inverter-duty” per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.

N. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.

O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

<table>
<thead>
<tr>
<th>Rating kW (hp)</th>
<th>Minimum Premium Efficiencies Open Drip-Proof</th>
<th>Minimum Premium Efficiencies Totally Enclosed Fan-Cooled (TEFC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.746 (1)</td>
<td>82.5% 85.5% 77.0%</td>
<td>0.746 (1) 82.5% 85.5% 77.0%</td>
</tr>
<tr>
<td>1.12 (1.5)</td>
<td>86.5% 86.5% 84.0%</td>
<td>1.12 (1.5) 86.5% 86.5% 84.0%</td>
</tr>
</tbody>
</table>
P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.

Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

<table>
<thead>
<tr>
<th>Rating kW (hp)</th>
<th>6 poles</th>
<th>4 poles</th>
<th>2 poles</th>
<th>Rating kW (hp)</th>
<th>6 poles</th>
<th>4 poles</th>
<th>2 poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18 (0.25)</td>
<td>67.5</td>
<td>69.5</td>
<td>65.6</td>
<td>0.18 (0.25)</td>
<td>62.2</td>
<td>68.5</td>
<td>66.6</td>
</tr>
<tr>
<td>0.25 (0.33)</td>
<td>71.4</td>
<td>73.4</td>
<td>69.5</td>
<td>0.25 (0.33)</td>
<td>66.6</td>
<td>72.4</td>
<td>70.5</td>
</tr>
<tr>
<td>0.37 (0.5)</td>
<td>75.3</td>
<td>78.2</td>
<td>73.4</td>
<td>0.37 (0.5)</td>
<td>76.2</td>
<td>76.2</td>
<td>72.4</td>
</tr>
<tr>
<td>0.55 (0.75)</td>
<td>81.7</td>
<td>81.1</td>
<td>76.8</td>
<td>0.55 (0.75)</td>
<td>80.2</td>
<td>81.8</td>
<td>76.2</td>
</tr>
</tbody>
</table>
PART 3 - EXECUTION

3.1 INSTALLATION
A. Install motors in accordance with manufacturer’s recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS
A. All tests shall be witnessed by the Commissioning Agent or by the COR.
B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING
A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING
A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
B. Components provided under this section of the specification will be tested as part of a larger system.
3.5 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer’s technical representative for one hour to instruct each VA personnel responsible in operation and maintenance of the system.

B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.