Summary of Modifications/Changes in this Update

This Summary of Changes is for information only. It is not a part of the referenced document, and should not be used for project documentation.

DATE OF THIS VERSION (new)
January 1, 2014

TITLE OF DOCUMENT (new title if applicable):
Click here to enter text.

DATE OF VERSION BEING SUPERSEDED (old):
December 1, 2013

DESCRIPTION OF DOCUMENT (previous title, number, other identifying data):
Seismic Restraint Requirements for Non-Structural Components, 13 05 41

SUMMARY OF CHANGES IN THIS VERSION:
1. Updated the date for the VA publication H-18-8, VA Seismic Design Requirements
2. Updated the date for IBC
3. Updated Seismic bracing for partitions to comply with section 4.0 of H-18-8
4. Updated Seismic bracing for ceilings and lighting fixtures to comply with section 4.0 of H-18-8
SECTION 13 05 41
SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS

SPEC WRITER NOTE: Delete between //----// if not applicable to the project. Also, delete any other item or paragraph not applicable in the section and renumber the paragraphs.

PART 1 - GENERAL

1.1 DESCRIPTION:

A. Provide seismic restraint in accordance with the requirements of this section in order to maintain the integrity of nonstructural components of the building so that they remain safe and functional in case of seismic event.

C. Definitions: Non-structural building components are components or systems that are not part of the building’s structural system whether inside or outside, above or below grade. Non-structural components of buildings include:

1. Architectural Elements: Facades that are not part of the structural system and its shear resistant elements; cornices and other architectural projections and parapets that do not function structurally; glazing; nonbearing partitions; suspended ceilings; stairs isolated from the basic structure; cabinets; bookshelves; medical equipment; and storage racks.

2. Electrical Elements: Power and lighting systems; substations; switchgear and switchboards; auxiliary engine-generator sets; transfer switches; motor control centers; motor generators; selector and controller panels; fire protection and alarm systems; special life support systems; and telephone and communication systems.

3. Mechanical Elements: Heating, ventilating, and air-conditioning systems; medical gas systems; plumbing systems; sprinkler systems; pneumatic systems; boiler equipment and components.

4. Transportation Elements: Mechanical, electrical and structural elements for transport systems, i.e., elevators and dumbwaiters, including hoisting equipment and counterweights.

1.2 RELATED WORK:

SPEC WRITER NOTE: Include here all applicable specification sections.

A. Section No.______
1.3 QUALITY CONTROL:

A. Shop-Drawing Preparation:
 1. Have seismic-force-restraint shop drawings and calculations prepared by a professional structural engineer experienced in the area of seismic force restraints. The professional structural engineer shall be registered in the state where the project is located.
 2. Submit design tables and information used for the design-force levels, stamped and signed by a professional structural engineer registered in the State where project is located.

B. Coordination:
 1. Do not install seismic restraints until seismic restraint submittals are approved by the Resident Engineer.
 2. Coordinate and install trapezes or other multi-pipe hanger systems prior to pipe installation.

C. Seismic Certification:
 In structures assigned to IBC Seismic Design Category C, D, E, or F, permanent equipments and components are to have Special Seismic Certification in accordance with requirements of section 13.2.2 of ASCE 7 except for equipment that are considered rugged as listed in section 2.2 OSHPD code application notice CAN No. 2-1708A.5, and shall comply with section 13.2.6 of ASCE 7.

1.4 SUBMITTALS:

A. Submit a coordinated set of equipment anchorage drawings prior to installation including:
 1. Description, layout, and location of items to be anchored or braced with anchorage or brace points noted and dimensioned.
 2. Details of anchorage or bracing at large scale with all members, parts brackets shown, together with all connections, bolts, welds etc. clearly identified and specified.
 3. Numerical value of design seismic brace loads.
 4. For expansion bolts, include design load and capacity if different from those specified.

B. Submit prior to installation, a coordinated set of bracing drawings for seismic protection of piping, with data identifying the various support-to-structure connections and seismic bracing structural connections, include:
 1. Single-line piping diagrams on a floor-by-floor basis. Show all suspended piping for a given floor on the same plain.
2. Type of pipe (Copper, steel, cast iron, insulated, non-insulated, etc.).
3. Pipe contents.
4. Structural framing.
5. Location of all gravity load pipe supports and spacing requirements.
7. Location of all seismic bracing.
9. Type of connection (Vertical support, vertical support with seismic brace etc.).
10. Seismic brace reaction type (tension or compression): Details illustrating all support and bracing components, methods of connections, and specific anchors to be used.

C. Submit prior to installation, bracing drawings for seismic protection of suspended ductwork and suspended electrical and communication cables, include:
 1. Details illustrating all support and bracing components, methods of connection, and specific anchors to be used.
 2. Numerical value of applied gravity and seismic loads and seismic loads acting on support and bracing components.
 3. Maximum spacing of hangers and bracing.
 4. Seal of registered structural engineer responsible for design.

D. Submit design calculations prepared and sealed by the registered structural engineer specified above in paragraph 1.3A.

E. Submit for concrete anchors, the appropriate ICBC evaluation reports, OSHPD pre-approvals, or lab test reports verifying compliance with OSHPD Interpretation of Regulations 28-6.

1.5 APPLICABLE PUBLICATIONS:

A. The Publications listed below (including amendments, addenda revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only.

 SPEC WRITER NOTE: Edit applicable publications to indicate the most recent edition.

B. American Concrete Institute (ACI):
 355.2-07 Qualification for Post-Installed Mechanical Anchors in Concrete and Commentary

C. American Institute of Steel Construction (AISC):
 Load and Resistance Factor Design, Volume 1, Second Edition

D. American Society for Testing and Materials (ASTM):
A36/A36M-08 Standard Specification for Carbon Structural Steel
A53/A53M-10 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
A307-10 Standard Specification for Carbon Steel Bolts and Studs; 60,000 PSI Tensile Strength.
A325-10 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
A325M-09 Standard Specification for High-Strength Bolts for Structural Steel Joints [Metric]
A490-10 Standard Specification for Heat-Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength
A490M-10 Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints [Metric]
A500/A500M-10 Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
A501-07 Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing
A615/A615M-09 Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
A992/A992M-06 Standard Specification for Steel for Structural Shapes for Use in Building Framing
A996/A996M-09 Standard Specification for Rail-Steel and Axel-Steel Deformed Bars for Concrete Reinforcement
E488-96(R2003) Standard Test Method for Strength of Anchors in Concrete and Masonry Element

E. American Society of Civil Engineers (ASCE 7) Latest Edition.
G. VA Seismic Design Requirements, H-18-8, August 2013
H. National Uniform Seismic Installation Guidelines (NUSIG)

1.6 REGULATORY REQUIREMENT:

DESIGNER AND SPEC WRITER NOTES:

13 05 41 - 4
1. The design professional’s responsibilities are to identify the components to be restrained, to identify the lateral force coefficient, to provide details for restraints on the construction drawings, and to review and approve seismic restraint shop drawing details prepared by the Contractor/Vendor.

2. The designer (structural engineer) shall specify on the drawings:
 a) the short-period acceleration (S_{ds});
 b) the importance factor (I_p) for non-structural elements; and
 c) the maximum interstory drifts permitted in H-18-8.

//B. Exceptions: The seismic restraint of the following items may be omitted:

1. Equipment weighing less than 400 pounds, which is supported directly on the floor or roof.
2. Equipment weighing less than 20 pounds, which is suspended from the roof or floor or hung from a wall.
3. Gas and medical piping less than 2 ½ inches inside diameter.
4. Piping in boiler plants and equipment rooms less than 1 ¼ inches inside diameter.
5. All other piping less than 2 ½ inches inside diameter, except for automatic fire suppression systems.
6. All piping suspended by individual hangers, 12 inches or less in length from the top of pipe to the bottom of the support for the hanger.
7. All electrical conduits, less than 2 ½ inches inside diameter.
8. All rectangular air handling ducts less than six square feet in cross sectional area.
9. All round air handling ducts less than 28 inches in diameter.
10. All ducts suspended by hangers 12 inches or less in length from the top of the duct to the bottom of support for the hanger.

PART 2 – PRODUCTS

2.1 STEEL:
 A. Structural Steel: ASTM A36 // A36M // A992 //.
 B. Structural Tubing: ASTM A500, Grade B.
 D. Steel Pipe: ASTM A53/A53M, Grade B.

2.2 CAST-IN-PLACE CONCRETE:
 A. Concrete: 28 day strength, $f’c$ = // 25 MPa (3,000 psi) // 30 MPa (4,000 psi) // xx MPa 5000 psi
B. Reinforcing Steel: ASTM A615/615M or ASTM A996/A996M deformed.

PART 3 – EXECUTION

3.1 CONSTRUCTION, GENERAL:

A. Provide equipment supports and anchoring devices to withstand the seismic design forces, so that when seismic design forces are applied, the equipment cannot displace, overturn, or become inoperable.

B. Provide anchorages in conformance with recommendations of the equipment manufacturer and as shown on approved shop drawings and calculations.

C. Construct seismic restraints and anchorage to allow for thermal expansion.

D. Testing Before Final Inspection:

1. Test 10-percent of anchors in masonry and concrete per ASTM E488, and ACI 355.2 to determine that they meet the required load capacity. If any anchor fails to meet the required load, test the next 20 consecutive anchors, which are required to have zero failure, before resuming the 10-percent testing frequency.

2. Before scheduling Final Inspection, submit a report on this testing indicating the number and location of testing, and what anchor-loads were obtained.

3.2 EQUIPMENT RESTRAINT AND BRACING:

A. See drawings for equipment to be restrained or braced.

SPEC WRITER NOTE:
SMACNA does not cover all conditions such as, providing details for seismic restraints of equipment or details of flexible joints when crossing seismic or expansion joints, or bracing of in-line equipment, etc. Also, in areas of Very High seismicity, SMACNA details should be used with extreme care.

3.3 MECHANICAL DUCTWORK AND PIPING; BOILER PLANT STACKS AND BREACHING;
ELECTRICAL BUSWAYS, CONDUITS, AND CABLE TRAYS; AND TELECOMMUNICATION WIRES AND CABLE TRAYS

A. Support and brace mechanical ductwork and piping; electrical busways, conduits and cable trays; and telecommunication wires and cable trays including boiler plant stacks and breeching to resist directional forces (lateral, longitudinal and vertical).

B. Brace duct and breeching branches with a minimum of 1 brace per branch.

D. Provide supports and anchoring so that, upon application of seismic forces, piping remains fully connected as operable systems which will not displace sufficiently to damage adjacent or connecting equipment, or building members.
E. Seismic Restraint of Piping:
 1. Design criteria:
 a. Piping resiliently supported: Restrain to support // 120 //
 -percent of the weight of the systems and components and contents.
 b. Piping not resiliently supported: Restrain to support // 60 //
 -percent of the weight of the system components and contents.
 //2. Provide seismic restraints according to one of the following options:
 F. Piping Connections: Provide flexible connections where pipes connect to
 equipment. Make the connections capable of accommodating relative
 differential movements between the pipe and equipment under conditions
 of earthquake shaking.

3.4 PARTITIONS

SPEC WRITER NOTE:
1. Seismic bracing for partitions shall
 comply with the requirements of section
 4.0 of H-18-8
2. Masonry walls used as interior
 partitions or as exterior surfaces of
 buildings shall be properly anchored to
 the structure, and shall be designed to
 carry lateral loads imposed due to
 earthquake along with their own weight
 and other lateral forces.

A. In buildings with flexible structural frames, anchor partitions to only
 structural element, such as a floor slab, and separate such partition by
 a physical gap from all other structural elements.
B. Properly anchor masonry walls to the structure for restraint, so as to
 carry lateral loads imposed due to earthquake along with their own
 weight and other lateral forces.

3.5 CEILINGS AND LIGHTING FIXTURES

SPEC WRITER NOTE: Seismic bracing for
ceilings and lighting fixtures shall
comply with the requirements of section
4.0 of H-18-8

A. At regular intervals, laterally brace suspended ceilings against lateral
 and vertical movements, and provide with a physical separation at the
 walls.
B. Independently support and laterally brace all lighting fixtures. Refer
 to applicable portion of lighting specification, Section 26 51 00,
 INTERIOR LIGHTING.
3.6 FACADES AND GLAZING

DESIGNER NOTES:
1. Heavy rigid facades should be used only on rigid structural systems; they should never be attached to relatively flexible building frames.
2. Review building design to ensure contractor's ability to comply with the following paragraphs.
3. Design brick veneer anchors and back-up wall for applicable seismic forces at the project location.
4. Design attachments to structure for all façade materials to accommodate applicable seismic forces at the project location.

A. Do not install concrete masonry unit filler walls in a manner that can restrain the lateral deflection of the building frame. Provide a gap with adequately sized resilient filler to separate the structural frame from the non-structural filler wall.
B. Tie brick veneers to a separate wall that is independent of the steel frame as shown on construction drawings to ensure strength against applicable seismic forces at the project location.
C. Install attachments to structure for all façade materials as shown on construction drawings to ensure strength against applicable seismic forces at the project location.

3.7 STORAGE RACKS, CABINETS, AND BOOKCASES

A. Install storage racks to withstand earthquake forces and anchored to the floor or laterally braced from the top to the structural elements.
B. Anchor medical supply cabinets to the floor or walls and equip them with properly engaged, lockable latches.
C. Anchor filing cabinets that are more than 2 drawers high to the floor or walls, and equip all drawers with properly engaged, lockable latches.
D. Anchor bookcases that are more than 30 inches high to the floor or walls, and equip any doors with properly engaged, lockable latches.

--- END ---