SECTION 07 60 00
FLASHING AND SHEET METAL

SPEC WRITER NOTES:
1. Delete or edit text in [] if not applicable to project. Also delete any other paragraph not applicable in the section and renumber the paragraphs.
2. This section requires close coordination with roofing and masonry sections for flashing installed by other trades and for flashings integral with manufactured metal roofing/wall systems where matching finish is required of the same material.
3. Coordinate with drawing terminology for correct and uniform nomenclature.
4. Follow the recommendations of the National Roofing Contractors Association "Roofing and Waterproofing Manual" for design criteria.
5. Modify this section to address reroofing of existing roofing system. Coordinate with Section 07 01 50.19 PREPARATION FOR REROOFING for reroofing of existing facilities.

PART 1 - GENERAL

1.1 DESCRIPTION

Formed sheet metal work for wall and roof flashing, copings, roof edge metal, fasciae, drainage specialties, and formed expansion joint covers are specified in this section.

1.2 RELATED WORK

SPEC WRITER NOTE: Edit Related Work to reflect other sections relating directly to this section or referenced in this section.

A. Manufactured flashing, copings, roof edge metal, and fasciae: Section 07 71 00 ROOF SPECIALTIES.
B. Membrane base flashings and stripping: //Section 07 51 00, BUILT-UP BITUMINOUS ROOFING// //Section 07 52 16 MODIFIED BITUMINOUS MEMBRANE ROOFING//.
C. Flashing components of factory finished roofing and wall systems: Division 07 roofing and wall system sections.
D. Joint Sealants: Section 07 92 00, JOINT SEALANTS.
E. Color of factory coated exterior architectural metal and anodized aluminum items: Section 09 06 00, SCHEDULE FOR FINISHES.

F. Integral flashing components of manufactured roof specialties and accessories or equipment: //Section 07 71 00, ROOF SPECIALTIES// //Section 07 72 00, ROOF ACCESSORIES//, Division 22, PLUMBING sections and Division 23 HVAC sections.

G. Paint materials and application: Section 09 91 00, PAINTING.

H. Flashing and sheet metal in connection with prefabricated metal buildings: Section 13 34 19, METAL BUILDING SYSTEMS.

I. Flashing of Roof Drains: Section 22 14 00, FACILITY STORM DRAINAGE.

1.3 APPLICABLE PUBLICATIONS

SPEC WRITER NOTES:
1. Update applicable publications to current issue at time of project specification preparation.
2. Update material requirements to agree with applicable requirements (types, grades, classes,) specified in the referenced Applicable Publications.

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.

B. Aluminum Association (AA):
AA-C22A41...............Aluminum Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick
AA-C22A42...............Chemically etched medium matte, with integrally colored anodic coating, Class I Architectural, 0.7 mils thick
AA-C22A44...............Chemically etched medium matte with electrolytically deposited metallic compound, integrally colored coating Class I Architectural, 0.7-mil thick finish

4435/ES-1-11............Wind Design Standard for Edge Systems Used with Low Slope Roofing Systems

D. American Architectural Manufacturers Association (AAMA):
AAMA 620-02.............Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Aluminum
AAMA 621-02.............Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Hot Dipped Galvanized (HDG) and Zinc-Aluminum Coated Steel Substrates

E. ASTM International (ASTM):
A653/A653M-15.............Steel Sheet Zinc-Coated (Galvanized) or Zinc Alloy Coated (Galvanized) by the Hot- Dip Process
B32-14....................Solder Metal
B209-14....................Aluminum and Aluminum-Alloy Sheet and Plate
B370-12....................Copper Sheet and Strip for Building Construction
D173-03(R2011).............Bitumen-Saturated Cotton Fabrics Used in Roofing and Waterproofing
D412-15....................Vulcanized Rubber and Thermoplastic Elastomers-Tension
D1187-97(R2011).........Asphalt Base Emulsions for Use as Protective Coatings for Metal
D1784-11..................Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds
D3656-13..................Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns
D4586-12..................Asphalt Roof Cement, Asbestos Free

G. National Association of Architectural Metal Manufacturers (NAAMM):
AMP 500-06...............Metal Finishes Manual

A-A-1925A..................Shield, Expansion; (Nail Anchors)
UU-B-790A..................Building Paper, Vegetable Fiber

1.4 PERFORMANCE REQUIREMENTS

SPEC WRITER NOTE: Select applicable subparagraph below based upon FM Approvals 1-28, Table 4. Coordinate with uplift requirements of Division 07 roofing section.

A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:

1. Wind Zone 1: 0.48 to 0.96 kPa (10 to 20 lbf/sq. ft.): 1.92-kPa (40-lbf/sq. ft.) perimeter uplift force, 2.87-kPa (60-lbf/sq. ft.) corner uplift force, and 0.96-kPa (20-lbf/sq. ft.) outward force.

2. Wind Zone 1: 1.00 to 1.44 kPa (21 to 30 lbf/sq. ft.): 2.87-kPa (60-lbf/sq. ft.) perimeter uplift force, 4.31-kPa (90-lbf/sq. ft.) corner uplift force, and 1.44-kPa (30-lbf/sq. ft.) outward force.

3. Wind Zone 2: 1.48 to 2.15 kPa (31 to 45 lbf/sq. ft.): 4.31-kPa (90-lbf/sq. ft.) perimeter uplift force, 5.74-kPa (120-lbf/sq. ft.) corner uplift force, and 2.15-kPa (45-lbf/sq. ft.) outward force.

4. Wind Zone 3: 2.20 to 4.98 kPa (46 to 104 lbf/sq. ft.): 9.96-kPa (208-lbf/sq. ft.) perimeter uplift force, 14.94-kPa (312-lbf/sq. ft.) corner uplift force, and 4.98-kPa (104-lbf/sq. ft.) outward force.

SPEC WRITER NOTE: Standard below applies to shop-fabricated sheet metal copings and roof edge metal items tested under cited standard; it is a requirement of the current International Building Code. NRCA member firms are able to meet below utilizing NRCA-approved and tested details.

B. Wind Design Standard: Fabricate and install //copings// //roof-edge flashings// tested per ANSI/SPRI/FM ES-1 to resist design pressure //insert design pressure// //indicated on Drawings//.

1.5 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

SPEC WRITER NOTE: Add to shop drawing list special items not specified in this section that are added to this section.

B. Shop Drawings: For all specified items, including:
1. Flashings
2. Copings
3. Gravel Stop-Fascia
4. Gutter and Conductors
5. Expansion joints
6. Fascia-cant

C. Manufacturer's Literature and Data: For all specified items, including:
 1. Two-piece counterflashing
 2. Thru wall flashing
 3. Expansion joint cover, each type
 4. Nonreinforced, elastomeric sheeting
 5. Copper clad stainless steel
 6. Polyethylene coated copper
 7. Bituminous coated copper
 8. Copper covered paper
 9. Fascia-cant

D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

SPEC WRITER NOTE: Retain paragraphs below that correspond to project requirements.

A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
B. Copper ASTM B370, cold-rolled temper.
C. Bituminous Coated Copper: Minimum copper ASTM B370, weight not less than 1 kg/m² (3 oz/sf). Bituminous coating shall weigh not less than 2 kg/m² (6 oz/sf); or, copper sheets may be bonded between two layers of coarsely woven bitumen-saturated cotton fabric ASTM D173. Exposed fabric surface shall be crimped.
D. Copper Covered Paper: Fabricated of electro-deposit pure copper sheets ASTM B370, bonded with special asphalt compound to both sides of creped, reinforced building paper, UU-B-790, Type I, style 5, or to a three ply sheet of asphalt impregnated creped paper. Grooves running along the width of sheet.
E. Polyethylene Coated Copper: Copper sheet ASTM B370, weighing 1 Kg/m² (3 oz/sf) bonded between two layers of (two mil) thick polyethylene sheet.
F. Aluminum Sheet: ASTM B209, alloy 3003-H14 //except alloy used for color anodized aluminum shall be as required to produce specified color. Alloy required to produce specified color shall have the same structural properties as alloy 3003-H14//.

G. Galvanized Sheet: ASTM, A653.

H. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056 inch) thick. Sheeting shall have not less than 7 MPa (1,000 psi) tensile strength and not more than seven percent tension-set at 50 percent elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1 mm (1/32 inch) diameter mandrel and then bent at same point over same size mandrel in opposite direction through 360 degrees at temperature of -30°C (-20 °F).

2.2 FLASHING ACCESSORIES

A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.

B. Rosin Paper: Fed-Spec. UU-B-790, Type I, Grade D, Style 1b, Rosin-sized sheathing paper, weighing approximately 3 Kg/10 m² (6 lbs/100 sf).

C. Bituminous Paint: ASTM D1187, Type I.

D. Fasteners:
 1. Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.
 2. Nails:
 a. Minimum diameter for copper nails: 3 mm (0.109 inch).
 b. Minimum diameter for aluminum nails: 3 mm (0.105 inch).
 c. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
 d. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
 3. Rivets: Not less than 3 mm (1/8 inch) diameter.

E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.

F. Insect Screening: ASTM D3656, 18 by 18 regular mesh.
G. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:

B. Concealed Locations (Built into Construction):
 1. Copper: 30g (10 oz) minimum 0.33 mm (0.013 inch thick).
 2. Stainless steel: 0.25 mm (0.010 inch) thick.
 3. Copper clad stainless steel: 0.25 mm (0.010 inch) thick.
 4. Galvanized steel: 0.5 mm (0.021 inch) thick.

C. Exposed Locations:
 1. Copper: 0.4 Kg (16 oz).
 2. Stainless steel: 0.4 mm (0.015 inch).
 3. Copper clad stainless steel: 0.4 mm (0.015 inch).

D. Thickness of aluminum or galvanized steel is specified with each item.

2.4 FABRICATION, GENERAL

A. Jointing:
 1. In general, copper, stainless steel and copper clad stainless steel joints, except expansion and contraction joints, shall be locked and soldered.
 2. Jointing of copper over 0.5 Kg (20 oz) weight or stainless steel over 0.45 mm (0.018 inch) thick shall be done by lapping, riveting and soldering.
 3. Joints shall conform to following requirements:
 a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 4. Flat and lap joints shall be made in direction of flow.
 5. Edges of bituminous coated copper, copper covered paper, nonreinforced elastomeric sheeting and polyethylene coated copper shall be jointed by lapping not less than 100 mm (4 inches) in the direction of flow and cementing with asphalt roof cement or sealant as required by the manufacturer's printed instructions.
 6. Soldering:
a. Pre tin both mating surfaces with solder for a width not less than 38 mm (1 1/2 inches) of uncoated copper, stainless steel, and copper clad stainless steel.
b. Wire brush to produce a bright surface before soldering lead coated copper.
c. Treat in accordance with metal producers recommendations other sheet metal required to be soldered.
d. Completely remove acid and flux after soldering is completed.

B. Expansion and Contraction Joints:
1. Fabricate in accordance with the Architectural Sheet Metal Manual recommendations for expansion and contraction of sheet metal work in continuous runs.
2. Space joints as shown or as specified.
3. Space expansion and contraction joints for copper, stainless steel, and copper clad stainless steel at intervals not exceeding 7200 mm (24 feet).
4. Space expansion and contraction joints for aluminum at intervals not exceeding 5400 mm (18 feet), except do not exceed 3000 mm (10 feet) for gravel stops and fascia-cant systems.
5. Fabricate slip-type or loose locked joints and fill with sealant unless otherwise specified.
6. Fabricate joint covers of same thickness material as sheet metal served.

C. Cleats:
1. Fabricate cleats to secure flashings and sheet metal work over 300 mm (12 inches) wide and where specified.
2. Provide cleats for maximum spacing of 300 mm (12 inch) centers unless specified otherwise.
3. Form cleats of same metal and weights or thickness as the sheet metal being installed unless specified otherwise.
4. Fabricate cleats from 50 mm (2 inch) wide strip. Form end with not less than 19 mm (3/4 inch) wide loose lock to item for anchorage. Form other end of length to receive nails free of item to be anchored and end edge to be folded over and cover nail heads.

D. Edge Strips or Continuous Cleats:
1. Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
2. Except as otherwise specified, fabricate edge strips or minimum 0.6 Kg (24 ounce) copper, 0.6 mm (0.024 inch) thick stainless steel, 1.25 mm (0.050 inch) thick aluminum.

3. Use material compatible with sheet metal to be secured by the edge strip.

4. Fabricate in 3000 mm (10 feet) maximum lengths with not less than 19 mm (3/4 inch) loose lock into metal secured by edge strip.

5. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the flashing to be hooked over the lower edge at least 19 mm (3/4-inch).

6. Fabricate anchor edge maximum width of 75 mm (3 inches) or of sufficient width to provide adequate bearing area to insure a rigid installation using 1 Kg (32 oz) copper, 0.8 mm (0.031 inch) thick stainless steel, 1.6 mm (0.0625 inch) thick aluminum.

E. Drips:
1. Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascias, gravel stops, wall copings, by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.
2. Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.

F. Edges:
1. Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.
2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.
3. All metal roof edges shall meet requirements of IBC, current edition.

SPEC WRITER NOTE: For alteration work and small projects, minimize number of specified optional flashing materials. Match existing metals.

G. Metal Options:
1. Where options are permitted for different metals use only one metal throughout.
2. Stainless steel may be used in concealed locations for fasteners of other metals exposed to view.

3. Where copper gravel stops, copings and flashings will carry water onto cast stone, stone, or architectural concrete, or stainless steel.

2.5 FINISHES

SPEC WRITER NOTES:

1. If more than one finish is used on project, precede finish spec with "Finish for (list items): "Following items are of aluminum: Coping, Gravel Stop and Fascia-Cant, Exp. Jt. Cover, Gutter and Downspout.

2. Coordinate with Section 09 06 00, SCHEDULE FOR FINISHES and drawings clearly identify locations of different colors or finish on the same item.

A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.

B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.

C. Finish exposed metal surfaces as follows, unless specified otherwise:
 1. Copper: Mill finish.
 2. Stainless Steel: Finish No. 2B or 2D.
 3. Aluminum:
 a. Clear Finish: AA-C22A41 medium matte, clear anodic coating, Class 1 Architectural, 18 mm (0.7 mils) thick.
 b. Colored Finish: AA-C22A42 (anodized) or AA-C22A44 (electrolytically deposited metallic compound) medium matte, integrally colored coating, Class 1 Architectural, 18 mm (0.7 mils) thick. Dyes will not be accepted.
 c. Fluorocarbon Finish: AAMA 620, high performance organic coating.
 d. Mill finish.
 4. Steel and Galvanized Steel:
 a. Finish painted under Section 09 91 00, PAINTING unless specified as prefinished item.
 b. Manufacturer's finish:
 1) Baked on prime coat over a phosphate coating.
 2) Baked-on prime and finish coat over a phosphate coating.
3) Fluorocarbon Finish: AAMA 621, high performance organic coating.

2.6 THROUGH-WALL FLASHINGS

SPEC WRITER NOTES:
2. Clearly detail flashings at copings, building set backs, sills, spandrels, lintels, and grade.
3. Coordinate with waterproofing or dampproofing to show interface.

A. Form through-wall flashing to provide a mechanical bond or key against lateral movement in all directions. Install a sheet having 2 mm (1/16 inch) deep transverse channels spaced four to every 25 mm (one inch), or ribbed diagonal pattern, or having other deformation unless specified otherwise.
 1. Fabricate in not less than 2400 mm (8 feet) lengths; 3000 mm (10 feet) maximum lengths.
 2. Fabricate so keying nests at overlaps.

B. For Masonry Work When Concealed Except for Drip:
 1. Either copper, stainless steel, or copper clad stainless steel.
 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 3. Form exposed portions of flashing with drip, approximately 6 mm (1/4 inch) projection beyond wall face.

C. For Masonry Work When Exposed Edge Forms a Receiver for Counter Flashing:
 1. Use same metal and thickness as counter flashing.
 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 3. Form exposed portion as snap lock receiver for counter flashing upper edge.

D. For Flashing at Architectural Precast Concrete Panels or Stone Panels.
 1. Use plan flat sheet of stainless steel.
 2. Form exposed portions with drip as specified or receiver.

E. Window Sill Flashing and Lintel Flashing:
 1. Use either copper, stainless steel, copper clad stainless steel plane flat sheet, or nonreinforced elastomeric sheeting, bituminous coated copper, copper covered paper, or polyethylene coated copper.
 2. Fabricate flashing at ends with folded corners to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening.
3. Turn up back edge as shown.
4. Form exposed portion with drip as specified or receiver.

F. Door Sill Flashing:
 1. Where concealed, use either 0.5 Kg (20 oz) copper, 0.5 mm (0.018 inch) thick stainless steel, or 0.5 mm (0.018 inch) thick copper clad stainless steel.
 2. Where shown on drawings as combined counter flashing under threshold, sill plate, door sill, or where subject to foot traffic, use either 0.6 Kg (24 ounce) copper, 0.6 mm (0.024 inch) stainless steel, or 0.6 mm (0.024 inch) thick stainless steel.
 3. Fabricate flashing at ends to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening with folded corners.

 SPEC WRITER NOTE: Do not use galvanized steel for base flashing.

2.7 BASE FLASHING

A. Use metal base flashing at vertical surfaces intersecting built-up roofing without cant strips or where shown.
 1. Use either copper, or stainless steel, thickness specified unless specified otherwise.
 2. When flashing is over 250 mm (10 inches) in vertical height or horizontal width use either 0.5 Kg (20 oz) copper or 0.5 mm (0.018 inch) stainless steel.
 3. Use stainless steel at aluminum roof curbs where flashing contacts the aluminum.
 4. Use either copper, or stainless steel at pipe flashings.
B. Fabricate metal base flashing up vertical surfaces not less than 200 mm (8 inch) nor more than 400 mm (16 inch).
C. Fabricate roof flange not less than 100 mm (4 inches) wide unless shown otherwise. When base flashing length exceeds 2400 mm (8 feet) form flange edge with 13 mm (1/2 inch) hem to receive cleats.
D. Form base flashing bent from strip except pipe flashing. Fabricate ends for riveted soldered lap seam joints. Fabricate expansion joint ends as specified.
E. Pipe Flashing: (Other than engine exhaust or flue stack)
 1. Fabricate roof flange not less than 100 mm (4 inches) beyond sleeve on all sides.
2. Extend sleeve up and around pipe and flange out at bottom not less than 13 mm (1/2 inch) and solder to flange and sleeve seam to make watertight.

3. At low pipes 200 mm (8 inch) to 450 mm (18 inch) above roof:
 a. Form top of sleeve to turn down into the pipe at least 25 mm (one inch).
 b. Allow for loose fit around and into the pipe.

4. At high pipes and pipes with goosenecks or other obstructions which would prevent turning the flashing down into the pipe:
 a. Extend sleeve up not less than 300 mm (12 inch) above roofing.
 b. Allow for loose fit around pipe.

2.8 COUNTERFLASHING (CAP FLASHING OR HOODS)

SPEC WRITER NOTES:
1. Galvanized steel is not desired due to maintenance, especially painting, if used specify 0.6 mm (0.023 inch) thick material for counter flashing.
2. Use 1.25 mm (0.050 inch) thick aluminum for counter flashing.
3. Identify clearly locations of different metals if used for same item.

A. Either copper or stainless steel, unless specified otherwise.

B. Fabricate to lap base flashing a minimum of 100 mm (4 inches) with drip:
 1. Form lock seams for outside corners. Allow for lap joints at ends and inside corners.
 2. In general, form flashing in lengths not less than 2400 mm (8 feet) and not more than 3000 mm (10 feet).
 3. Two-piece, lock in type flashing may be used in-lieu-of one piece counter-flashing.
 4. Manufactured assemblies may be used.
 5. Where counterflushing is installed at new work use an integral flange at the top designed to be extended into the masonry joint or reglet in concrete.
 6. Where counterflushing is installed at existing work use surface applied type, formed to provide a space for the application of sealant at the top edge.

C. One-piece Counterflushing:
 1. Back edge turned up and fabricate to lock into reglet in concrete.
2. Upper edge formed to extend full depth of masonry unit in mortar joint with back edge turned up 6 mm (1/4 inch).

D. Two-Piece Counterflushing:
1. Receiver to extend into masonry wall depth of masonry unit with back edge turned up 6 mm (1/4 inch) and exposed edge designed to receive and lock counterflushing upper edge when inserted.
2. Counterflushing upper edge designed to snap lock into receiver.

E. Surface Mounted Counterflushing; one or two piece:
1. Use at existing or new surfaces where flashing can not be inserted in vertical surface.
2. One piece fabricate upper edge folded double for 65 mm (2 1/2 inches) with top 19 mm (3/4 inch) bent out to form "V" joint sealant pocket with vertical surface. Perforate flat double area against vertical surface with horizontally slotted fastener holes at 400 mm (16 inch) centers between end holes. Option: One piece surface mounted counter-flashing (cap flashing) may be used. Fabricate as detailed on Plate 51 of SMACNA Architectural Sheet Metal Manual.
3. Two pieces: Fabricate upper edge to lock into surface mounted receiver. Fabricate receiver joint sealant pocket on upper edge and lower edge to receive counterflushing, with slotted fastener holes at 400 mm (16 inch) centers between upper and lower edge.

F. Pipe Counterflushing:
1. Form flashing for water-tight umbrella with upper portion against pipe to receive a draw band and upper edge to form a "V" joint sealant receiver approximately 19 mm (3/4 inch) deep.
2. Fabricate 100 mm (4 inch) overlap at end.
3. Fabricate draw band of same metal as counter flashing. Use 0.6 Kg (24 oz) copper or 0.33 mm (0.013 inch) thick stainless steel or copper coated stainless steel.
4. Use stainless steel bolt on draw band tightening assembly.
5. Vent pipe counter flushing may be fabricated to omit draw band and turn down 25 mm (one inch) inside vent pipe.

G. Where vented edge decks intersect vertical surfaces, form in one piece, shape to slope down to a point level with and in front of edge-set notched plank; then, down vertically, overlapping base flashing.

2.9 GRAVEL STOPS

A. General:
1. Fabricate in lengths not less than 2400 mm (8 feet) long and maximum of 3000 mm (10 feet).

2. Fabricate internal and external corners as one-piece with legs not less than 600 mm (2 feet) or more than 1200 mm (4 feet) long.

3. Fabricate roof flange not less than 100 mm (4 inches) wide.

4. Fabricate top edge to extend above roof not less than 25 mm (one inch) for embedded gravel aggregate and not less than 100 mm (4 inches) for loose laid ballast.

5. Fabricate lower edge outward at an angle of 45 degrees to form drip and as fascia or as counter flashing as shown:
 a. Fabricate of one-piece material of suitable width for fascia height of 250 mm (10 inch) maximum or counterflashing lap of not less than 100 mm (4 inch) over base flashing.
 b. Fabricate bottom edge of formed fascia to receive edge strip.
 c. When fascia bottom edge forms counter flashing over roofing lap roofing not less than 150 mm (6 inches).

B. Formed Flat Sheet Metal Gravel Stops and Fascia:

1. Fabricate as shown of //0.05 mm (0.018 inch) thick stainless steel// //0.5 Kg (20 ounce) copper// //1.25 mm (0.050 inch) thick aluminum//.

2. When fascia exceeds 150 mm (6 inches) in depth, form one or more horizontal stops not less than 13 mm (1/2 inch) high in the fascia.

3. Fabricate as two-piece fascia when fascia depth exceeds 250 mm (10 inches).

4. At joint between ends of sheets, provide a concealed clip soldered or welded near one end of each sheet to hold the adjoining sheet in lapped position. The clip shall be approximately 100 mm (4 inches) wide and shall be the full depth of the fascia less 25 mm (one inch) at top and bottom. Clip shall be of the same thickness as the fascia.

5. Provide edge strip as specified with lower hooked edge bent outward at an angle of 45 degrees.

C. Formed (Corrugated Sheet) Sheet Metal Gravel Stops and Fascia:

1. Fabricate as shown of //0.4 mm (0.015 inch) thick stainless steel// //0.5 Kg (16 ounce) copper// //0.8 mm (0.032 inch) thick aluminum//.

2. Sheets shall have 2 mm (1/16 inch) deep corrugations either transversely or diagonally rolled into the sheet. Crimped sheets are not acceptable.

3. Factory fabricate prepackaged system, complete with fastenings.
4. Provide concealed flashing splice plate at joints not less than 150 mm (6 inches) long and continuous edge strip at lower edge of fascia made from same metal.
5. Fabricate as two-piece fascia when fascia depth exceeds 175 mm (7 inches).

2.10 BITUMEN STOPS
A. Fabricate bitumen stops for bituminous roofing edges for use with formed sheet metal gravel stops, pipe penetrations, and other penetrations through roof deck without a curb.
B. Fabricate with 19 mm (3/4 inch) vertical legs and 75 mm (3 inch) horizontal legs.
C. When used with gravel stop or metal base flashing use same metal for bitumen stop in thickness specified for concealed locations.

2.11 HANGING GUTTERS

SPEC WRITER NOTE: See Architectural Sheet Metal Manual for minimum thickness of sheet metal and specify. Detail gutter and show size on drawings.

A. Fabricate gutters of not less than the following:
 1. //0.4// //0.5// //0.6//Kg (//16// //20// //24// oz) copper..
 2. //0.5// //0.6// //0.8//mm (//0.018// //0.025// //0.031//inch) thick stainless steel..
 3. //0.6// //0.8// //1.3//mm (//0.025// //0.032// //0.051//inch) thick aluminum..
B. Fabricate hanging gutters in sections not less than 2400 mm (8 feet) long, except at ends of runs where shorter lengths are required.
 SPEC WRITER NOTE: When gutter back is against fascia specify higher back edge.
C. Building side of gutter shall be //not less than 38 mm (1 1/2 inches) higher than exterior side// //same height as exterior side//.
D. Gutter Bead: Stiffen outer edge of gutter by folding edge over approximately 19 mm (3/4 inch) toward roof and down approximately 19 mm (3/4 inch) unless shown otherwise.
E. Gutter Spacers:
 1. Fabricate of same material and thickness as gutter.
 2. Fabricate 25 mm (one inch) wide strap and fasten to gutters not over 900 mm (36 inches) on center.
3. Turn back edge up 25 mm (one inch) and lap front edge over gutter
 bead.
4. Rivet and solder to gutter except rivet and seal to aluminum.

F. Outlet Tubes:
1. Form outlet tubes to connect gutters to conductors of same metal and
 thickness as gutters extend into the conductor 75 mm (3 inch).
 Flange upper end of outlet tube 13 mm (1/2 inch).
2. Lock and solder longitudinal seam //except use sealant in lieu of
 solder with aluminum//.
3. //Solder tube to gutter.// Seal aluminum tube to gutter and rivet to
 gutter.
4. Fabricate basket strainers of same material as gutters.

G. Gutter Brackets:
 SPEC WRITER NOTE: Do not use spike and
 ferrule anchor systems. Use strap hangers
 or gutter brackets. Design brackets for
 gutter girth.
1. Fabricate of same metal as gutter. Use the following:
 a. //3 by 25 mm (1/8 by 1 inch)// //6 by 25 mm (1/4 by 1 inch)//
 copper.
 b. //3 by 25 mm (1/8 by 1 inch)// //3 by 40 mm (1/8 by 1 1/2 inch)//
 stainless steel.
 c. //5 by 25 mm (3/16 by 1 inch)// //6 by 25 mm (1/4 by 1 inch)//
 aluminum.
2. Fabricate to gutter profile.
3. Drill two 5 mm (3/16 inch) diameter holes in anchor leg for
 countersunk flat head screws.

2.12 CONDUCTORS (DOWNSPOUTS)

A. Fabricate conductors of same metal and thickness as gutters in sections
 approximately 3000 mm (10 feet) long //with 19 mm (3/4 inch) wide flat
 locked seams//.
 SPEC WRITER NOTE: Use open faced
 downspouts in icing areas.
1. Fabricate open face channel shape with hemmed longitudinal edges.
B. Fabricate elbows by mitering, riveting, and soldering except seal
 aluminum in lieu of solder. Lap upper section to the inside of the
 lower piece.
C. Fabricate conductor brackets or hangers of same material as conductor,
 2 mm (1/16 inch) thick by 25 mm (one inch) minimum width. Form to
support conductors 25 mm (one inch) from wall surface in accordance with Architectural Sheet Metal Manual Plate 34, Design C for rectangular shapes and E for round shapes.

D. Conductor Heads:
1. Fabricate of same material as conductor.
2. Fabricate conductor heads to not less than 250 mm (10 inch) wide by 200 mm (8 inch) deep by 200 mm (8 inches) from front to back.
3. Form front and side edges channel shape not less than 13 mm (1/2 inch) wide flanges with edge hemmed.
4. Slope bottom to sleeve to conductor or downspout at not less than 60 degree angle.
5. Extend wall edge not less than 25 mm (one inch) above front edge.
6. Solder joints for water tight assembly.
7. Fabricate outlet tube or sleeve at bottom not less than 50 mm (2 inches) long to insert into conductor.

2.13 SPLASHPANS

SPEC WRITER NOTE: Use splash pans where conductors discharge on built-up bituminous roofs.

A. Fabricate splashpans from the following:
 1. 0.4 Kg (16 oz) copper.
 2. 0.4 mm (0.015 inch) thick stainless steel.
 3. 1.25 mm (0.050 inch) thick aluminum.

B. Fabricate in accordance with Architectural Sheet Metal Manual Plate 35 with not less than two ribs as shown in alternate section.

2.14 REGLETS

SPEC WRITER NOTE: Verify reglets are detailed and location clearly shown.

A. Fabricate reglets of one of the following materials:
 1. 0.4 Kg (16 ounce) copper.
 2. Stainless steel, not less than 0.3 mm (0.012 inch) thick.
 3. Plastic coated extruded aluminum, not less than 1.4 mm (0.055 inch) thick prefilled with butyl rubber sealer and complete with plastic wedges inserted at 1000 mm (40 inches) on centers.
 4. Plastic, ASTM D1784, Type II, not less than 2 mm (0.075 inch) thick.

B. Fill open-type reglets with fiberboard or other suitable separator, to prevent crushing of the slot during installation.
C. Bend edges of reglets for setting into concrete to an angle of not less than 45 degrees, and make wide enough to provide firm anchorage in the concrete.

D. Fabricate reglets for building into horizontal masonry mortar joints not less than 19 mm (3/4 inch) deep, nor more than 25 mm (one inch) deep.

E. Fabricate mitered corners, fittings, and special shapes as may be required by details.

F. Reglets for concrete may be formed to receive flashing and have a 10 mm (3/8 inch), 45 degree snap lock.

2.15 INSULATED EXPANSION JOINT COVERS

A. Either type optional, use only one type throughout.

B. Types:

1. Construct of two preformed, stainless steel strips, not less than 0.4 mm (0.015 inch) thick, mechanically and adhesively bonded to both sides of a 2 mm (1/16 inch) thick neoprene or butyl sheet, or to a 0.4 mm (32 mil) thick reinforced chlorinated polyethylene sheet. Adhesively attach a 10 mm (3/8 inch) thick sheet of closed cell, neoprene foam insulation, to the underside of the neoprene, butyl, or chlorinated polyethylene sheet.

2. Constructed of a 2 mm (1/16 inch) thick vinyl sheet, flanged at both sides with stainless steel strips not less than 0.4 mm (0.015 inch) thick. Vinyl sheet locked and encased by the stainless steel strip and prepunched for nailing. A 10 mm (3/8 inch) thick closed cell polyvinyl chloride foam insulating strip shall be heat laminated to the underside of the vinyl sheet between the stainless steel strips.

C. Expansion joint covers shall have factory fabricated mitered corners, crossing tees, and other necessary accessories. Furnish in the longest available lengths.

D. Metal flange of sufficient width to extend over the top of the curb and down curb sides 50 mm (2 inches) with hemmed edge for lock to edge strip.

2.16 ENGINE EXHAUST PIPE OR FLUE OR STACK FLASHING

A. Flashing at penetrations through roofing shall consist of a metal collar, sheet metal flashing sleeve and hood.

SPEC WRITER NOTE: Verify flashing and collar systems is detailed on drawings to
comply with specification. No exceptions acceptable. Do not allow wood in contact with collar.

B. Fabricate collar with roof flange of 1.2 mm (0.047 inch) minimum thickness black iron or galvanized steel sheet.
 1. Fabricate inside diameter of collar 100 mm (4 inches) larger than the outside diameter of the item penetration the roofing.
 2. Extend collar height from structural roof deck to not less than 350 mm (14 inches) above roof surface.
 3. Fabricate collar roof flange not less than 100 mm (4 inches) wide.
 4. Option: Collar may be of steel tubing 3 mm (0.125 inch) minimum wall thickness, with not less than four, 50 mm x 100 mm x 3 mm (2 inch by 4 inch by 0.125 inch) thick tabs bottom edge evenly spaced around tube in lieu of continuous roof flange. Full butt weld joints of collar.

C. Fabricate sleeve base flashing with roof flange of either copper, stainless steel, or copper clad stainless steel.
 1. Fabricate sleeve roof flange not less than 100 mm (4 inches) wide.
 2. Extend sleeve around collar up to top of collar.
 3. Flange bottom of sleeve out not less than 13 mm (1/24 inch) and soldered to 100 mm (4 inch) wide flange to make watertight.
 4. Fabricate interior diameter 50 mm (2 inch) greater than collar.

D. Fabricate hood counter flashing from same material and thickness as sleeve.
 1. Fabricate the same as pipe counter flashing except allow not less than 100 mm (4 inch) lap below top of sleeve and to form vent space minimum of 100 mm (4 inch) wide.
 2. Hem bottom edge of hood 13 mm (1/2 inch).
 3. Provide a 50 mm (2 inch) deep drawband.

E. Fabricate insect screen closure between sleeve and hood. Secure screen to sleeve with sheet metal screws.

2.17 SCUPPERS

SPEC WRITER NOTE: See SMACNA plates 26 and 28 for scupper, Detail required on drawings.

A. Fabricate scuppers with minimum of 100 mm (4 inch) wide flange.

B. Provide flange at top on through wall scupper to extend to top of base flashing.
C. Fabricate exterior wall side to project not less than 13 mm (1/2 inch) beyond face of wall with drip at bottom outlet edge.

D. Fabricate not less than 100 mm (4 inch) wide flange to lap behind gravel stop fascia.

E. Fabricate exterior wall flange for through wall scupper not less than 25 mm (one inch) wide on top and sides with edges hemmed.

F. Fabricate gravel stop bar of 25 mm x 25 mm (one by one inch) angle strip soldered to bottom of scupper.

G. Fabricate scupper not less than 200 mm (8 inch) wide and not less than 125 mm (5 inch) high for through wall scupper.

H. Solder joints watertight.

2.18 GOOSENECK ROOF VENTILATORS

A. Form of 1.3 mm (0.0508 inch) thick sheet aluminum, reinforce as necessary for rigidity, stiffness, and connection to curb, and to be watertight.
 1. Form lower-edge to sleeve to curb.
 2. Curb:
 a. Form for 100 mm (4 inch) high sleeve to ventilator.
 b. Form for concealed anchorage to structural curb and to bear on structural curb.
 c. Form bottom edge of curb as counterflashing to lap base flashing.

B. Provide open end with 1.6 mm (16 gage), stainless steel wire guard of 13 mm (1/2 inch) square mesh.
 1. Construct suitable aluminum angle frame to retain wire guard.
 2. Rivet angle frame to end of gooseneck.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:
 1. Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.

5. Coordinate with masonry work for the application of a skim coat of mortar to surfaces of unit masonry to receive flashing material before the application of flashing.

6. Apply a layer of 7 Kg (15 pound) saturated felt followed by a layer of rosin paper to wood surfaces to be covered with copper. Lap each ply 50 mm (2 inch) with the slope and nail with large headed copper nails.

7. Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.

8. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.

9. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.

10. Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.

11. Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.

12. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.

13. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.

14. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 b. Paint dissimilar metal with a coat of bituminous paint.
c. Apply an approved caulking material between aluminum and dissimilar metal.

15. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.

16. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.

17. Bitumen Stops:
 a. Install bitumen stops for built-up roof opening penetrations through deck and at formed sheet metal gravel stops.
 b. Nail leg of bitumen stop at 300 mm (12 inch) intervals to nailing strip at roof edge before roofing material is installed.

3.2 THROUGH-WALL FLASHING

A. General:
 1. Install continuous through-wall flashing between top of concrete foundation walls and bottom of masonry building walls; at top of concrete floors; under masonry, concrete, or stone copings and elsewhere as shown.
 2. Where exposed portions are used as a counterflashings, lap base flashings at least 100 mm (4 inches) and use thickness of metal as specified for exposed locations.
 3. Exposed edge of flashing may be formed as a receiver for two piece counter flashing as specified.
 4. Terminate exterior edge beyond face of wall approximately 6 mm (1/4 inch) with drip edge where not part of counter flashing.
 5. Turn back edge up 6 mm (1/4 inch) unless noted otherwise where flashing terminates in mortar joint or hollow masonry unit joint.
 6. Terminate interior raised edge in masonry backup unit approximately 38 mm (1 1/2 inch) into unit unless shown otherwise.
 7. Under copings terminate both edges beyond face of wall approximately 6 mm (1/4 inch) with drip edge.
 8. Lap end joints at least two corrugations, but not less than 100 mm (4 inches). Seal laps with sealant.
 9. Where dowels, reinforcing bars and fastening devices penetrate flashing, seal penetration with sealing compound. Sealing compound is specified in Section 07 92 00, JOINT SEALANTS.
10. Coordinate with other work to set in a bed of mortar above and below flashing so that total thickness of the two layers of mortar and flashing are same as regular mortar joint.

11. Where ends of flashing terminate turn ends up 25 mm (1 inch) and fold corners to form dam extending to wall face in vertical mortar or veneer joint.

12. Turn flashing up not less than 200 mm (8 inch) between masonry or behind exterior veneer.

13. When flashing terminates in reglet extend flashing full depth into reglet and secure with lead or plastic wedges spaced 150 mm (6 inch) on center.

14. Continue flashing around columns:
 a. Where flashing cannot be inserted in column reglet hold flashing vertical leg against column.
 b. Counterflash top edge with 75 mm (3 inch) wide strip of saturated cotton unless shown otherwise. Secure cotton strip with roof cement to column. Lap base flashing with cotton strip 38 mm (1 1/2 inch).

SPEC WRITER NOTES: Details required of flashing.
1. Verify details show flashing at masonry faced concrete walls and termination of back edge.
2. Coordinate with waterproofing to define interface with metal flashing at joint.
3. Show metal flashing to have not less than 200 mm (8 inch) high vertical portion and termination against or in concrete backup or into masonry backup mortar joint.

B. Flashing at Top of Concrete Foundation Walls Where concrete is exposed.
 Turn up not less than 200 mm (8 inch) high and into masonry backup mortar joint or reglet in concrete backup as specified.

C. Flashing at Top of Concrete Floors (except where shelf angles occur):
 Place flashing in horizontal masonry joint not less than 200 mm (8 inch) below floor slab and extend into backup masonry joint at floor slab 38 mm (1 1/2 inch).

D. Flashing at Cavity Wall Construction: Where flashing occurs in cavity walls turn vertical portion up against backup under waterproofing, if any, into mortar joint. Turn up over insulation, if any, and horizontally through insulation into mortar joint.
E. Flashing at Veneer Walls:
1. Install near line of finish floors over shelf angles or where shown.
2. Turn up against sheathing.
3. At stud framing, hem top edge 19 mm (3/4 inch) and secure to each stud with stainless steel fasteners through sheathing.
4. At concrete backing, extend flashing into reglet as specified.
5. Coordinate with installation of waterproofing or asphalt felt for lap over top of flashing.

F. Lintel Flashing when not part of shelf angle flashing:
1. Install flashing full length of lintel to nearest vertical joint in masonry over veneer.
2. Turn ends up 25 mm (one inch) and fold corners to form dam and extend end to face of wall.
3. Turn back edge up to top of lintel; terminate back edge as specified for back-up wall.

G. Window Sill Flashing:
1. Install flashing to extend not less than 100 mm (4 inch) beyond ends of sill into vertical joint of masonry or veneer.
2. Turn back edge up to terminate under window frame.
3. Turn ends up 25 mm (one inch) and fold corners to form dam and extend to face of wall.

H. Door Sill Flashing:
1. Install flashing under bottom of plate sills of doors over curbs opening onto roofs. Extend flashing out to form counter flashing or receiver for counter flashing over base flashing. Set in sealant.
2. Extend sill flashing 200 mm (8 inch) beyond jamb opening. Turn ends up one inch in vertical masonry joint, extend end to face of wall. Join to counter flashing for water tight joint.
3. Where doors thresholds cover over waterproof membranes install sill flashing over water proof membrane under thresholds. Extend beyond opening to cover exposed portion of waterproof membrane and not less than 150 mm (6 inch) beyond door jamb opening at ends. Turn up approximately 6 mm (1/4 inch) under threshold.

I. Flashing at Masonry, Stone, or Precast Concrete Copings:
1. Install flashing with drips on both wall faces unless shown otherwise.
2. Form penetration openings to fit tight against dowel or other item with edge turned up. Seal penetrations with sealant.
3.3 BASE FLASHING

SPEC WRITER NOTE: Limit use of metal base flashing to small penetrations; less than 3000 mm (10 feet) in length and pipes, where possible.

A. Install where roof membrane type base flashing is not used and where shown.
1. Install flashing at intersections of roofs with vertical surfaces or at penetrations through roofs, to provide watertight construction.
2. Install metal flashings and accessories having flanges extending out on top of the built-up roofing before final bituminous coat and roof aggregate is applied.
3. Set flanges in heavy trowel coat of roof cement and nail through flanges into wood nailers over bituminous roofing.
4. Secure flange by nailing through roofing into wood blocking with nails spaced 75 mm (3 inch) on centers or, when flange over 100 mm (4 inch) wide terminate in a 13 mm (1/2 inch) folded edge anchored with cleats spaced 200 mm (8 inch) on center. Secure one end of cleat over nail heads. Lock other end into the seam.

B. For long runs of base flashings install in lengths of not less than 2400 mm (8 feet) nor more than 3000 mm (ten feet). Install a 75 mm (3 inch) wide slip type, loose lock expansion joint filled with sealant in joints of base flashing sections over 2400 mm (8 feet) in length. Lock and solder corner joints at corners.

C. Extend base flashing up under counter flashing of roof specialties and accessories or equipment not less than 75 mm (3 inch).

3.4 COUNTERFLASHING (CAP FLASHING OR HOODS)

SPEC WRITER NOTE: At steel pipes a standard screwed iron fitting for clamping counterflashing may be used in lieu of turning metal down into pipe. Check with PLUMBING specification.

A. General:
1. Install counterflashing over and in conjunction with installation of base flashings, except as otherwise specified or shown.
2. Install counterflashing to lap base flashings not less than 100 mm (4 inch).
3. Install upper edge or top of counterflashing not less than 225 mm (9 inch) above top of the roofing.
4. Lap joints not less than 100 mm (4 inch). Stagger joints with relation to metal base flashing joints.

5. Use surface applied counterflashing on existing surfaces and new work where not possible to integrate into item.

6. When fastening to concrete or masonry, use screws driven in expansion shields set in concrete or masonry. Use screws to wood and sheet metal. Set fasteners in mortar joints of masonry work.

B. One Piece Counterflashing:

1. Where flashing is installed at new masonry, coordinate to insure proper height, embed in mortar, and end lap.

2. Where flashing is installed in reglet in concrete insert upper edge into reglet. Hold flashing in place with lead wedges spaced not more than 200 mm (8 inch) apart. Fill joint with sealant.

3. Where flashing is surface mounted on flat surfaces.
 a. When top edge is double folded anchor flat portion below sealant "V" joint with fasteners spaced not over 400 mm (16 inch) on center:
 1) Locate fasteners in masonry mortar joints.
 2) Use screws to sheet metal or wood.
 b. Fill joint at top with sealant.

4. Where flashing or hood is mounted on pipe.
 a. Secure with draw band tight against pipe.
 b. Set hood and secure to pipe with a one by 25 mm x 3 mm (1 x 1/8 inch) bolt on stainless steel draw band type clamp, or a stainless worm gear type clamp.
 c. Completely fill joint at top with sealant.

C. Two-Piece Counterflashing:

1. Where receiver is installed at new masonry coordinate to insure proper height, embed in mortar, and lap.

2. Surface applied type receiver:
 a. Secure to face construction in accordance, with manufacturers instructions.
 b. Completely fill space at the top edge of receiver with sealant.

3. Insert counter flashing in receiver in accordance with fabricator or manufacturer's instructions and to fit tight against base flashing.

D. Where vented edge occur install so lower edge of counterflashing is against base flashing.
E. When counter flashing is a component of other flashing install as shown.

3.5 REGLETS

A. Install reglets in a manner to provide a watertight installation.
B. Locate reglets not less than 225 mm (9 inch) nor more than 400 mm (16 inch) above roofing, and not less than 125 mm (5 inch) nor more than 325 mm (13 inch) above cant strip.
C. Butt and align end joints or each section of reglet and securely hold in position until concrete or mortar are hardened:
 1. Coordinate reglets for anchorage into concrete with formwork construction.
 2. Coordinate reglets for masonry to locate horizontally into mortar joints.

3.6 GRAVEL STOPS

SPEC WRITER NOTE: Install gravel stops on raised curb with tapered edge strip not less than 38 mm (1 1/2 inches) above roof line. Verify detail conforms using blocking.

A. General:
 1. Install gravel stops and fascias with allowance for expansion at each joint; minimum of 6 mm (1/4 inch).
 2. Extend roof flange of gravel stop and splice plates not less than four inches out over roofing and nail or screw to wood nailers. Space fasteners on 75 mm (3 inch) centers in staggered pattern.
 3. Install continuous cleat for fascia drip edge. Secure with fasteners as close to lower edge as possible on 75 mm (3 inch) centers.
 4. Where ends of gravel stops and fascias abut a vertical wall, provide a watertight, flashed and sealant filled joint.
 5. Set flange in roof cement when installed over built-up roofing.
 6. Edge securement for low-slope roofs: Low-slope membrane roof systems metal edge securement, except gutters, shall be designed in accordance with ANSI/SPRI/FM ES-1, except the basic wind speed shall be determined from Figure 1609, of IBC 2003.

B. Sheet metal gravel stops and fascia:
 1. Install with end joints of splice plates sheets lapped three inches.
 2. Hook the lower edge of fascia into a continuous edge strip.
 3. Lock top section to bottom section for two piece fascia.
C. Corrugated sheet gravel stops and fascia:
 1. Install 300 mm (12 inch) wide sheet flashing centered under joint. A combination bottom and cover plate, extending above and beneath the joint, may be used.
 2. Hook lower edge of fascia into a continuous edge strip.

D. Scuppers:
 1. Install scupper with flange behind gravel stops; leave 6 mm (1/4 inch) joint to gravel stop.
 2. Set scupper at roof water line and fasten to wood blocking.
 3. Use sealant to seal joint with fascia gravel stops at ends.
 4. Coordinate to lap over conductor head and to discharge water into conductor head.

3.7 COPINGS

A. General:
 1. On walls topped with a wood plank, install a continuous edge strip on the front // and rear // edge of the plank. Lock the coping to the edge strip with a 19 mm (3/4 inch) loose lock seam.
 2. Where shown turn down roof side of coping and extend down over base flashing as specified for counter-flashing. Secure counter-flashing to lock strip in coping at continuous cleat.
 3. Install ends adjoining existing construction so as to form space for installation of sealants. Sealant is specified in Section 07 92 00, JOINT SEALANTS.

B. Aluminum Coping:
 1. Install with 6 mm (1/4 inch) joint between ends of coping sections.
 2. Install joint covers, centered at each joint, and securely lock in place.

SPEC WRITER NOTE: If prefinished galvanized steel copings are used change par C title and specify as if aluminum with sealant in lieu of solder.

C. //Stainless steel// //Copper// Copings:
 1. Join ends of sheets by a 19 mm (3/4 inch) locked and soldered seam, except at intervals of 9600 mm (32 feet), provide a 38 mm (1 1/2 inch) loose locked expansion joint filled with sealant or mastic.
 2. At straight runs between 7200 mm (24 feet) and 19200 mm (64 feet) locate expansion joint at center.
3. At straight runs that exceed 9600 mm (32 feet) and form the leg of a corner locate the expansion joint not more than 4800 mm (16 feet) from the corner.

3.8 EXPANSION JOINT COVERS, INSULATED
A. Install insulated expansion joint covers at locations shown on curbs not less than 200 mm (8 inch) high above roof surface.
B. Install continuous edge strips of same metal as expansion joint flange, nailed at not less than 75 mm (3 inch) centers.
C. Install insulated expansion joint covers in accordance with manufacturer's directions locking edges to edge strips.

3.9 ENGINE EXHAUST PIPE OR STACK FLASHING
A. Set collar where shown and secure roof tabs or flange of collar to structural deck with 13 mm (1/2 inch) diameter bolts.
B. Set flange of sleeve base flashing not less than 100 mm (4 inch) beyond collar on all sides as specified for base flashing.
C. Install hood to above the top of the sleeve 50 mm (2 inch) and to extend from sleeve same distance as space between collar and sleeve beyond edge not sleeve:
 1. Install insect screen to fit between bottom edge of hood and side of sleeve.
 2. Set collar of hood in high temperature sealant and secure with one by 3 mm (1/8 inch) bolt on stainless steel draw band type, or stainless steel worm gear type clamp. Install sealant at top of head.

3.10 HANGING GUTTERS
A. Hang gutters with high points equidistant from downspouts. Slope at not less than 1:200 (1/16 inch per foot).
B. Lap joints, except for expansion joints, at least 25 mm (one inch) in the direction of flow. Rivet and seal or solder lapped joints.
C. Support gutters in brackets spaced not more than 600 mm (24 inch) on centers, brackets attached to facial or wood nailer by at least two screws or nails.
 1. For copper or copper clad stainless steel gutters use brass or bronze brackets.
 2. For stainless steel gutters use stainless steel brackets.
3. For aluminum gutters use aluminum brackets or stainless steel brackets.

4. Use brass or stainless steel screws.

D. Secure brackets to gutters in such a manner as to allow free movement of gutter due to expansion and contraction.

SPEC WRITER NOTE: Insure roof plan shows location of gutters, outlets or conductors, and expansion joints.

E. Gutter Expansion Joint:
 1. Locate expansion joints midway between outlet tubes.
 2. Provide at least a 25 mm (one inch) expansion joint space between end baffles of gutters.
 3. Install a cover plate over the space at expansion joint.
 4. Fasten cover plates to gutter section on one side of expansion joint only.
 5. Secure loose end of cover plate to gutter section on other side of expansion joint by a loose-locked slip joint.

F. Outlet Tubes: Set bracket strainers loosely into gutter outlet tubes.

3.11 CONDUCTORS (DOWNSPOUTS)

A. Where scuppers discharge into downspouts install conductor head to receive discharge with back edge up behind drip edge of scupper. Fasten and seal joint. Sleeve conductors to gutter outlet tubes and fasten joint and joints between sections.

B. Set conductors plumb and clear of wall, and anchor to wall with two anchor straps, located near top and bottom of each section of conductor. Strap at top shall be fixed to downspout, intermediate straps and strap at bottom shall be slotted to allow not less than 13 mm (1/2 inch) movement for each 3000 mm (10 feet) of downspout.

C. Install elbows, offsets and shoes where shown and required. Slope not less than 45 degrees.

3.12 SPLASH PANS

A. Install where downspouts discharge on low slope roofs unless shown otherwise.

B. Set in roof cement prior to pour coat installation or sealant compatible with single ply roofing membrane.
3.13 GOOSENECK ROOF VENTILATORS

A. Install on structural curb not less than 200 mm (8 inch) high above roof surface.

B. Securely anchor ventilator curb to structural curb with fasteners spaced not over 300 mm (12 inch) on center.

C. Anchor gooseneck to curb with screws having nonprene washers at 150 mm (6 inch) on center.

--- END ---