SECTION TABLE OF CONTENTS

DIVISION 46 - WATER AND WASTEWATER EQUIPMENT

SECTION 46 66 56

OPEN-CHANNEL DISINFECTION EQUIPMENT

02/11

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY ASSURANCE
 1.3.1 Contractor Qualifications
 1.3.2 Manufacturer's Qualifications
 1.3.3 Equipment Parts
 1.3.4 System Performance
1.4 PRECONSTRUCTION CONFERENCE
1.5 DELIVERY, STORAGE, AND HANDLING
1.6 EXTRA MATERIALS

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Operation of Existing Facility
 2.1.2 Design Conditions
 2.1.3 Performance Requirements
 2.1.3.1 Inactivation
 2.1.3.2 UV Dose
 2.1.3.3 Nominal Average Intensity
 2.1.3.4 UV Density
 2.1.3.5 Retention Time
 2.1.3.6 Plug Flow
 2.1.3.7 Dispersion
 2.1.3.8 Turbulence
 2.1.3.9 Channel Volume
 2.1.3.10 Headloss
 2.1.3.11 Cross Sectional Area
 2.1.3.12 Aspect Ratio
2.2 MATERIALS
 2.2.1 Standard Products
 2.2.2 Nameplates
2.3 EQUIPMENT
 2.3.1 Layout
2.3.2 Equipment Construction
 2.3.2.1 UV Lamp Module
 2.3.2.2 UV Lamps
 2.3.2.3 UV Lamp Sleeve
 2.3.2.4 Lamp End Seal and Lamp Holder
 2.3.2.5 UV Lamp Module Support Rack
2.3.3 Lamp Array Configuration
 2.3.3.1 Horizontal
 2.3.3.2 Vertical
2.3.4 Water Level Control

2.4 ELECTRICAL
 2.4.1 Parameters
 2.4.2 Interconnect Cables
 2.4.3 Connectors and Receptors
 2.4.4 Ballasts
 2.4.5 Cableway
 2.4.6 Instrumentation and System Controls
 2.4.6.1 Controls
 2.4.6.2 Lamp Status Indicators
 2.4.6.3 UV Intensity Detection System
 2.4.6.4 Minor Alarms
 2.4.6.5 Major Alarms
 2.4.6.6 Flow Pacing

2.5 CLEANING SYSTEM
 2.5.1 General Requirements
 2.5.2 Cleaning Tank
 2.5.3 Cleaning Rack
 2.5.4 Cleaning Fluid

2.6 PAINTING

2.7 ANCHOR BOLTS

PART 3 EXECUTION

3.1 EXAMINATION
3.2 INSTALLATION
3.3 FRAMED INSTRUCTIONS
3.4 FIELD QUALITY CONTROL
 3.4.1 Operating Test
 3.4.2 Performance Testing
3.5 MANUFACTURERS' FIELD SERVICES
 3.5.1 Manufacturer's Representative
 3.5.2 Site Visits
3.6 ADJUSTING AND CLEANING
3.7 CLOSEOUT ACTIVITIES
 3.7.1 Operating and Maintenance Manuals
 3.7.2 Field Training
 3.7.2.1 Instruction Plan
 3.7.2.2 Training Outline

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for ultraviolet (UV) disinfection equipment for treatment of wastewater.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This specification should be used to allow the Contractor to install proven "off-the-shelf" units supplied by reputable vendors. This guide specification includes technical requirements for ultraviolet disinfection equipment and controls. This specification will not be used for disinfection of water or industrial wastes.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in
the text by basic designation only and listed in
this paragraph by organization, designation, date,
and title.

Use the Reference Wizard's Check Reference feature
when you add a Reference Identifier (RID) outside of
the Section's Reference Article to automatically
place the reference in the Reference Article. Also
use the Reference Wizard's Check Reference feature
to update the issue dates.

References not used in the text will automatically
be deleted from this section of the project
specification when you choose to reconcile
references in the publish print process.

The publications listed below form a part of this specification to the
extent referenced. The publications are referred to within the text by
the basic designation only.

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI C82.4 (2017) Lamp Ballasts - Ballasts for High-
Intensity-Discharge and Low-Pressure
Sodium Lamps

(1000 Volts Maximum)

NEMA ICS 1 (2000; R 2015) Standard for Industrial
Control and Systems: General Requirements

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2020; ERTA 20-1 2020; ERTA 20-2 2020; TIA
20-1; TIA 20-2; TIA 20-3; TIA 20-4)
National Electrical Code

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

Wastewater Disinfection

1.2 SUBMITTALS

NOTE: Review submittal description (SD) definitions
in Section 01 33 00 SUBMITTAL PROCEDURES and edit
the following list to reflect only the submittals
required for the project.

The Guide Specification technical editors have
designated those items that require Government
approval, due to their complexity or criticality,
with a "G." Generally, other submittal items can be
reviewed by the Contractor's Quality Control
System. Only add a "G" to an item, if the submittal
is sufficiently important or complex in context of
For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Layout; G[, [____]]

SD-03 Product Data
 Equipment; G[, [____]]
 Framed Instructions

SD-06 Test Reports.
 Design Conditions
 Operating Test
 Site Visits
1.3 QUALITY ASSURANCE

1.3.1 Contractor Qualifications

Have a minimum of [2] [_____] years experience in the construction of water, wastewater, and/or industrial wastewater facilities.

1.3.2 Manufacturer's Qualifications

Manufacturer shall have experience in the production of substantially similar equipment, and shall show evidence of satisfactory operation of identical equipment to that proposed in at least 3 installations for a period not less than one year disinfecting secondary effluent with similar effluent flow and characteristics to the treatment plant in this contract.

1.3.3 Equipment Parts

Parts shall be manufactured to standard sizes and gauges so that repair parts furnished at any time can be installed in the field. Like parts of duplicate units shall be interchangeable.

1.3.4 System Performance

The installed UV system shall produce an effluent which meets the bacteriological requirements of this specification. The effluent quality exiting the system shall be equal to or better than the specification requirement.

1.4 PRECONSTRUCTION CONFERENCE

Preinstallation conference will be required by the Contracting Officer. Include subContractors, suppliers, and UV equipment manufacturer.

1.5 DELIVERY, STORAGE, AND HANDLING

Protect from damage, deterioration, weather, excessive humidity, excessive temperature variation, dirt, dust, and contaminants equipment and materials delivered, handled, and placed in storage, from the time of shipment until installation is completed and the equipment and materials
are ready for operation. Equipment shall be marked and stored to permit easy identification and inspection. Each item of the equipment shall be tagged or marked as identified in the delivery schedule or on the shop drawings. Include with each shipment complete packing lists and bills of materials.

1.6 EXTRA MATERIALS

Spare parts shall be new, exact replacements, and separately packaged. Submit the parts list including recommended spare parts and maintenance supplies with current unit prices and source of supply for each item of operable equipment. List shall include parts recommended by the manufacturer to be replaced after 1 and 3 years of service. List special tools, instruments, accessories, and special lifting and handling devices required for periodic maintenance, repair, adjustment, and calibration.

Include with the package bill of materials with quantity, item description, and part number. Furnish the following spare parts and safety equipment:

a. One completely assembled lamp module.
b. Ten percent of the total number of the system lamps.
c. Five percent of the total number of the system ballasts.
d. Ten percent of the total number of the system lamp sleeves.
e. Ten sets of lamp end seals.
f. Ten sets of lamp socket connectors.
g. [Four] [_____] personnel safety shields which block out UV wavelengths between 200 and 400 nm.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Provide an ultraviolet (UV) disinfection system complete and operational with controls and accessories as shown and as specified. Provide equipment suitable for outdoor open channel, gravity flow installation including, but not limited to, the following components, and appurtenances necessary for the interconnection of components, in the quantities required:

a. UV lamp module with support rack and bracket.
b. UV system instrumentation, controls, and power distribution.
c. Wireway and interconnecting cables.
d. Water level control device.
e. UV intensity monitoring system.
f. Elapsed time meter.
g. Cleaning system.
h. Spare parts.

2.1.1 Operation of Existing Facility

**
NOTE: Include the following paragraph only where UV disinfection system is replacing another disinfection system at the existing wastewater treatment plant.
**

Maintain the continuous flow of wastewater and disinfection until the new
system is tested, approved and fully operational. No discharge of untreated wastewater, reduction in existing hydraulic capacity or organic treatment capacity will be allowed.

2.1.2 Design Conditions

**

NOTE: Determine or estimate plant flows, total suspended solids (TSS), UV transmittance, and influent microorganism count. A value for UV transmittance must be determined from an independent laboratory. Occasionally, a wastewater quality may be encountered which exceeds the experience of design engineers (e.g. due to an unfamiliar process design, a familiar but poorly operated process, an under-designed plant, an unusual influent to the treatment plant, etc.). In these cases, a pilot study should be conducted to provide information required for design. Channels must be designed for peak design flow.

**

Ultraviolet equipment shall disinfect wastewater effluent with the following characteristics:

<table>
<thead>
<tr>
<th>Peak flow, cubic meter per sec Mgd</th>
<th>Initial [_____]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design [_____]</td>
</tr>
<tr>
<td>Average flow, cu. meter/sec Mgd</td>
<td>Initial [_____]</td>
</tr>
<tr>
<td></td>
<td>Design [_____]</td>
</tr>
<tr>
<td>Minimum flow, cu. meter/sec Mgd</td>
<td>[_____]</td>
</tr>
<tr>
<td>Total suspended solids (TSS), mg/L</td>
<td>[_____]</td>
</tr>
<tr>
<td>Average turbidity, NTU</td>
<td>[_____]</td>
</tr>
<tr>
<td>UV transmittance at 253.7 nanometers (nm), through a 1 cm cell</td>
<td>[_____]</td>
</tr>
<tr>
<td>Influent [fecal coliform][______], MPN/100 mL</td>
<td>[_____]</td>
</tr>
</tbody>
</table>

Submit the following reports confirming compliance with the design conditions characteristics:

a. Results of tests done by an independent testing laboratory showing effective hydraulic design of the reactor, including headloss calculations.

b. Documentation showing that the type of ballast required for the particular lamp supplied for the system have performed successfully for a period of not less than one year.

c. Hydraulic calculations demonstrating compliance with the specified hydraulic characteristics.
d. Residence time distribution (RTD) data plotted as concentration versus time, and as cumulative tracer passed versus time in accordance with EPA 625/1-86/021. The Contracting Officer reserves the right to require separate tests to be conducted on a system identical in design to the proposed system if the hydraulic test data submitted by the manufacturer is determined to be unacceptable.

e. The results of a bioassay test done on a scaled model of the full size system by an independent and certified laboratory shall be submitted to the Contracting Officer. The bioassay results shall be used to verify the theoretical calculations only and shall be conducted in accordance with Section 7.3.3.1 of EPA 625/1-86/021. The test protocol and results shall have been certified by the laboratory which conducted the testing. Tests performed on similar equipment designs of another manufacturer shall not be acceptable.

f. The test unit used in the development of the RTD curves and bioassay test shall have had a minimum of 20 lamps utilizing the same lamps, electronic lamp controller, ballast and automatic level controller as that proposed in the full scale system.

2.1.3 Performance Requirements

**

NOTE: Typical values for nominal average intensity, UV density and theoretical retention time are 5100 microwatts per square cm, 3.35 watts per liter, and 7 seconds, respectively. Nominal average intensity will vary between manufacturers. Density depends upon the design of the particular UV system and the number of lamp banks. Retention time depends upon the channel geometry and number of lamp banks. Insert values per specified equipment manufacturer's calculations.

**

2.1.3.1 Inactivation

**

NOTE: Predominate effluent criteria used in performance requirements for UV systems is for whole body contact: 200 most probable number (MPN)/100 ml of fecal coliforms, with a maximum 7-day average of 400 MPN/100 ml. Some states have different microbe and disinfection standards; therefore, determine the site specific disinfection requirements from the state permitting authority.

**

Provide a system capable of reducing the influent [fecal coliform] [_____] count to [200 MPN/100 mL] [_____] on a 30 day geometric mean of daily samples.

2.1.3.2 UV Dose

**

NOTE: Conventional units for UV dosage are microwatt-seconds per square cm. The standard dosage of UV radiation is determined by the

SECTION 46 66 56 Page 9
effluent; unfiltered effluent may require a 30,000 dosage while a dosage of 16,000 to 20,000 is more typical of filtered effluent to achieve a disinfection safety factor of 2.0. Insert value per equipment manufacturer's recommendation.

The UV dosage shall be not less than [_____] microwatt-seconds per square cm based on peak design flow conditions, lamp output at 65 percent of its initial level after 1 year (8750 hours) of lamp operation without fouling on the lamp sleeves, and minimum UV transmittance as stated in paragraph Design Conditions.

2.1.3.3 Nominal Average Intensity

The nominal average intensity within the channel shall be not less than [_____] microwatts per square cm at a transmittance of 70 percent after 100 hour burn-in of lamps and with no fouling on the lamp sleeves.

2.1.3.4 UV Density

The UV density of the channel shall be not less than [_____] watts/liter.

2.1.3.5 Retention Time

The actual retention time (t) of the effluent within the system determined by hydraulic analysis shall be not less than 0.9 times the theoretical retention time (T). The theoretical retention time (T) shall be not less than [_____] seconds at the peak design flowrate.

2.1.3.6 Plug Flow

The flow characteristics through the system shall closely simulate ideal plug flow conditions under the full operating flow range. The Morrill Dispersion Index, defined as the time required for 90 percent of the salt and dye traces to pass, divided by the time required for 10 percent to pass, shall be less than 2.0. The ratio of the time required for 50 percent of tracer to pass to the mean residence time shall have a value between 0.9 and 1.1. The ratio of the time of initial tracer appearance to the theoretical residence time shall have a value greater than 0.5.

2.1.3.7 Dispersion

The dispersion coefficient, which accounts for the deviation of the channel's hydraulic behavior from that of perfect plug flow, shall be less than 100 square cm per second. The dispersion number (ratio of the dispersion coefficient to the product of flow velocity and channel length) shall be less than 0.1.

2.1.3.8 Turbulence

Flow through the system shall be turbulent with a Reynolds Number greater than 4,000 at average flow.

2.1.3.9 Channel Volume

Full use shall be made of the channel volume throughout the flow range. The ratio of the mean residence time (theta) to theoretical residence time (T) shall be greater than 0.9.
2.1.3.10 Headloss

The headloss caused by each bank of horizontal lamp modules shall be such that at the peak flow rate no lamp is exposed to the atmosphere and the maximum depth over the uppermost lamp sleeves is 40 mm. The headloss through vertical lamp banks shall not exceed 150 mm.

2.1.3.11 Cross Sectional Area

The cross-sectional area occupied by the lamp module frame at the entrance and exit of each bank shall be no greater than 35 percent of the cross-sectional area occupied by the effluent in the channel.

2.1.3.12 Aspect Ratio

The system shall have a minimum aspect ratio (ratio of channel length to hydraulic radius) of 15 per lamp bank.

2.2 MATERIALS

Metal in contact with plant effluent shall be either Type 316 or Type 304 stainless steel, passivated. Wiring which may be exposed to UV light shall be of a material that resists degradation by UV light. Material exposed to UV light shall be stainless steel, passivated; quartz; polytetrafluoroethylene or other UV resistant material.

2.2.1 Standard Products

Provide material and equipment which are the standard product of a manufacturer regularly engaged in the manufacture of the product and which essentially duplicate equipment that has been in satisfactory operation for at least 2 years prior to bid opening. Submit written evidence that equipment and accessories are products of a qualified and experienced manufacturer. Equipment shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site.

2.2.2 Nameplates

Provide major equipment items with the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment.

2.3 EQUIPMENT

Submit product data to include: design calculations relevant to the type of system proposed indicating removal performance including dose; nominal average intensity within each reactor; UV density; theoretical retention time of effluent within the system; dispersion coefficient; maximum headloss caused by each bank of lamp modules; lamp module cross-sectional area; aspect ratio of lamp bank; installation list; manufacturer's illustrations; and a statement by the equipment manufacturer listing any exception to or deviations from the contract drawings and specifications.

2.3.1 Layout

The physical layout of the system shown is based on equipment manufactured by [______]. Submit drawings showing fabrication methods, assembly,
accessories, installation details and point-to-point wiring diagrams; instrumentation and controls; equipment; dimensions; make and model; materials of construction and installation instructions. Drawings shall indicate clearances required for maintenance and operation and shall also contain complete wiring and schematic diagrams, equipment layout, dimensions, templates and directions for the installation of anchor bolts and other anchorages and any other details required to demonstrate that the system has been coordinated and will properly function as a unit.

If UV equipment proposed is sufficiently different than that shown, submit detailed, modified layout drawings and descriptions for approval by the Contracting Officer within 5 working days following Notice to Proceed. Also obtain approval, if applicable, from the State permitting authority for the sufficiently different equipment and layout proposed within [15] [_____] working days following Notice to Proceed.

2.3.2 Equipment Construction

2.3.2.1 UV Lamp Module

a. Module shall consist of lamps with each lamp placed in an individual sleeve. Module shall be capable of being withdrawn as a unit and replaced without interrupting operation of any other module, shall be self-supporting in the channel, and shall be capable of supporting a weight of 90 kg 200 pounds.

b. Horizontal lamp module shall have lamps in sleeves sealed and supported in a NEMA 6P stainless steel frame. Electrical wires which carry power to the lamps and ballasts shall be completely enclosed in the frame and shall be isolated from the wastewater. The frame shall be capable of protecting lamps and sleeves from foreign material or debris within the channel.

c. Vertically oriented module shall have lamps installed in a weatherproof, watertight enclosure. Sleeve shall be fitted to the enclosure using compression fitting and neoprene gasket. Wiring shall have numbered terminal strips which correspond to the numbering in the main power panel. Lamp enclosure shall be fitted with a waterproof wiring connector to allow the enclosure to be disconnected and removed from the channel. Lamp connection shall be above the waterline or shall be waterproof. Safety interlock switch shall turn off power to the lamps when module enclosure covers are opened. A Class B, ground fault circuit interrupter shall be provided for each enclosure to turn off power if water enters the enclosure. Lamps shall be arranged so that they can be replaced without disassembling or removing lamp module.

d. System shall allow for complete system shutdown or by-pass. System shall allow continuous disinfection while replacing lamps, sleeves, and ballasts; and while cleaning the lamp sleeves.

e. Individual lamp modules weighing 25 kg 55 pounds or less shall be removable without requiring mechanical lifting devices. Systems with individual lamp modules weighing over 25 kg 55 pounds shall be provided with a mechanical lifting device as [specified] [indicated].

2.3.2.2 UV Lamps

a. Lamp shall be low-pressure mercury vapor type of the hot-cathode,
instant-start design in which the coiled filamentary cathodes are heated by the arc current. The filament shall be a clamped design, and shall withstand shock and vibration.

b. Lamp shall have the following characteristics:

 1. 90 percent of UV radiation shall be within the wavelengths of 233.7 to 273.7 nm.

 2. Produce a minimum UV intensity of 190 microwatts per square cm at a distance of 1 meter.

 3. Maximum power input of 65 watts (not including ballast losses).

 4. Have a minimum arc length of 1475 mm 58 inches.

 5. Rated to produce zero levels of ozone.

 6. Have a minimum UV output of 26.7 watts at 100 hours.

c. Lamp base shall be metal and ceramic, resistant to UV light and ozone. Lamp tube shall be capable of transmitting 90 percent of the radiation produced therein.

d. Changing lamps shall not require removal of the sleeve from the lamp module frame. Lamp ballast shall be capable of being replaced by plant operating personnel.

e. System shall use lamps available from at least 2 currently active lamp manufacturers without modifications to the system.

2.3.2.3 UV Lamp Sleeve

a. Sleeve shall be clear fused quartz circular tubing. Sleeve shall be rated for transmittance of 89 percent or more and sleeve shall not be subject to solarization over its life. The nominal wall thickness shall be between 0.8 and 2.09 mm 20 and 53 inch.

b. One end of each sleeve shall be closed and the other end sealed by a lamp end seal and compressed O-ring. The closed end of the sleeve shall be held in place by means of a retaining O-ring. The sleeve shall not come in contact with any steel in the frame.

2.3.2.4 Lamp End Seal and Lamp Holder

a. The open end of the lamp sleeve shall be sealed by means of a stainless steel nut which compresses an external sleeve O-ring seal. The sleeve nut shall have a surface which allows a positive hand grip for tightening and shall not require any tools for removal.

b. The lamp holder shall be held in place in such a way as to isolate and seal the lamp from the module frame and other lamps in the module. Should a lamp sleeve fracture, the seal shall prevent moisture from entering the module frame and the electrical connections to other lamps in the module. The lamp holder shall incorporate UV resistant materials which prevent lamp sleeve from touching steel.
2.3.2.5 UV Lamp Module Support Rack

Rack shall be stainless steel construction and shall not allow UV light to radiate above the channel when the lamp modules are energized and fully immersed in the effluent.

2.3.3 Lamp Array Configuration

2.3.3.1 Horizontal

Horizontal lamp configuration shall be a uniform array with lamps parallel to each other and to the flow. Lamps shall be evenly spaced in horizontal and vertical rows with centerline spacings equal in both directions. The single array pattern shall be continuous and symmetrical throughout each reactor.

2.3.3.2 Vertical

Vertical lamp configuration shall be a staggered uniform array with lamps parallel to each other, but perpendicular to the flow. Lamps shall be evenly spaced with alternating rows offset by one-half the uniform centerline spacing.

2.3.4 Water Level Control

**
NOTE: If more than 1 channel is required, there needs to be a positive method of flow distribution to each channel. The downstream level control device is designed to build-up negligible head at peak flow rates and may not distribute flow equally to all channels. The equipment manufacturer should be consulted for recommended methods of flow distribution in multiple channels.

Automatic Slide/Sluice Gates: These gates are required, two per channel, if the UV system is to operate in an automatic mode for multiple channel configurations. These gates are not necessarily supplied by the UV equipment manufacturer. Additionally, it is the gate manufacturer's responsibility to properly install and set up each gate, such that a gate closed limit switch, one per gate, is transmitted to the UV Control Center. Each gate must be able to receive one opening and one closing signal from dry 10 amp contacts located in the Control Center. To insure disinfection under all conditions, gate interlocking, both mechanical and electrical, is required to prevent all gates from being closed at any given time. These interlocks are the responsibility of the gate manufacturer.

During automatic operation, if channels are to be placed in and out of service, accommodations should be made to drain the channel when the channel is not in service. Channels, when out of service, must be completely isolated and not allow any leakage through slide gates or valves to enter final
effluent.

**

a. A level control device shall be placed [at the discharge end] [both ends] of each channel. Level control device shall maintain constant channel water level within tolerances required to keep lamps submerged and shall prevent excessive water layer over the top lamps.

b. [Automatic level controller shall be pivoted above the effluent water surface so that each unit shall open across the width of the channel. Counterweights shall be adjusted using counterbalance weight at startup for the full flow range and shall not require adjustment after initial setting. Material of construction shall be stainless steel, Lexan, Delrin bearings, counterweights of carbon steel with galvanized finish and corrosion resistant seal of neoprene or other suitable elastomer.] [Fixed weir shall be stainless steel.] [______].

c. A water level sensor shall be situated within the channel to provide an alarm indication and/or automatic system shutdown should the water level drop below the uppermost part of the top row of horizontal lamps. Alarm contacts for remote annunciation shall also be provided.

2.4 ELECTRICAL

2.4.1 Parameters

a. The system shall be divided into the proper number of parallel electrical subsystems for the peak design flow.

b. Each electrical subsystem shall be powered from a distribution center and shall include ground fault circuit detection, circuit protection, modules, and interconnecting cables.

c. One power panel shall be supplied for each module and shall be prewired by the manufacturer, except for the final connection of the individual modules to the power panel.

d. Ground fault detection shall be standard with the UV equipment manufacturer.

e. Control and monitoring components and power supply shall be housed in NEMA enclosures. Internal components shall be sealed from the environment. System electronics to be used in an interior environment shall be housed in enclosures conforming to NEMA 250 Type 12. System electronics to be used in an exterior and corrosive environment, as defined in NEMA 250, shall be housed in enclosures conforming to NEMA 250, Type 4X.

f. Sufficient cooling shall be provided to ballasts. Magnetic ballasts shall have a minimum allowable air flow per ballast of 0.014 cu. m/s 30 cfm.

g. Wiring and electrical connections shall be protected against moisture to prevent electrical shorts or failure. Electrical installation and materials shall conform to NFPA 70. The unit shall be completely wired requiring only an external connection for a single external power supply and remote control.

h. Controls and designations shall conform to NEMA ICS 1.
2.4.2 Interconnect Cables

a. Multiconductor unshielded cable shall be suitable for outdoor installation.

b. Insulation shall be thermoplastic rubber with operating range of minus 60 to 125 degrees C minus 76 to 52 degrees F with low temperature flexibility and flame retardants.

c. The UV stabilized jacketing shall be resistant to oils, chemicals, fuels, solvents, and to mechanical abuse and abrasion.

d. Cable shall be supplied by the equipment manufacturer and shall be of sufficient length and number for a complete system.

e. Cable shall be of a modular repairable type and shall allow for field replacement and repair of its components by plant operators.

2.4.3 Connectors and Receptors

Connector shall be waterproof Type S.O. cable for in-line connection. The design shall allow fast and easy positive coupling and uncoupling. Connector shall be mounted out of possible flood-prone environments. Connector shall be of a "snap-on" design having no threads and shall allow for visual confirmation that the connection is locked in place.

2.4.4 Ballasts

Ballast shall conform to ANSI C82.4; shall be coordinated to the ballast supplies; shall be rated for [120] [208] [240] [277] [480] [volts] [the voltage indicated]; and shall have a power factor of not less than 90 percent at a crest factor of 2.0 or less, and a voltage range of not less than plus or minus 10 percent. Ballast shall be suitable for operating at [minus 15] [minus 30] [minus 40] degrees C [5] [minus 22] [minus 40] degrees F and above. Magnetic ballast shall be located and/or enclosed in an environment not susceptible to the effects of heat, cold and moisture. Ballast shall be of a modular design allowing for quick disconnect and replacement by operators.

2.4.5 Cableway

If required by the equipment manufacturer, cable shall be installed in weatherproof and submersible cableway. The cableway shall be stainless steel, 1.98 or 1.59 mm thick 14 or 16 gauge. Cableway shall be gasketed and completely watertight under a submerged condition.

2.4.6 Instrumentation and System Controls

2.4.6.1 Controls

Equipment shall be of the fully automatic program control type and shall be capable of receiving standard 4-20 mA control signals from the plant effluent flowmeter. Control of 2 or more banks of modules shall be accomplished by turning lamp banks on and off in proportion to flow variations. Controls shall continuously adjust the UV intensity automatically in proportion to wastewater flow. Controls shall require no manual attention other than adjustment of the required UV intensity.
2.4.6.2 Lamp Status Indicators

a. Indicators shall indicate the status whether ON/OFF of each lamp in the module being powered.

b. Indicators shall indicate the status "POWER ON", only, in each module.

c. The lamp monitoring system shall indicate the geometric location of each individual lamp and operating status of each lamp by means of a neon lamp or alpha-numeric data display (LED or LCD). Upon lamp failure, the corresponding lamp shall be illuminated and contact closure shall occur for remote alarm annunciation. Contact closure for remote annunciation shall be provided to indicate lamp module failure due to ground fault interruption.

2.4.6.3 UV Intensity Detection System

a. A submersible UV sensor shall continuously sense the UV intensity produced in each bank of lamp modules. The sensor shall measure only the germicidal portion of the light emitted by the lamps within the channel between 254.5 and 255.0 nm. The UV intensity shall be displayed on the intensity meter. Each UV intensity probe shall be located at a point of minimum expected intensity within the lamp array. The probe shall mount to any lamp in the array and shall be clip-on and self-aligning to assure the proper spacing from the tube without necessity of handtools. The probe shall be factory calibrated with verification in the field prior to startup. The UV equipment manufacturer shall provide justification for the sensor location.

b. One UV intensity meter shall be provided per bank of lamp modules. The meter shall indicate safe intensity, low intensity, and unsafe intensity by means of color codes on the meter face, or have a 0 to 100 percent scale. The UV intensity meter shall be clearly labeled and located on the remote control panel.

c. A nonresettable elapsed time meter shall be provided per bank of lamp modules. The meter shall record hours of UV bank operation from 0 to 99,999 hours.

d. One hand/off/auto switch shall be provided for each UV bank and for each automatic slide gate shown and specified.

e. Alarms shall be time delayed to prevent nuisance alarms.

2.4.6.4 Minor Alarms

Minor alarms and dry contacts shall be provided to indicate that maintenance attention is required. Minor alarms shall include:

a. Low warning UV intensity.

b. Individual lamp failure.

2.4.6.5 Major Alarms

Major alarms and dry contacts shall be provided to indicate an extreme condition in which the disinfection performance may be jeopardized. Major alarms shall include:

a. Low UV intensity.
b. Lamp failure of 2 or more adjacent lamps.
c. Multiple lamp failure.
d. Module failure.

2.4.6.6 Flow Pacing

**
NOTE: If the system consists of 2 or more banks of lamps, the system can be flow-paced using a signal from an effluent flow monitoring device in the plant.
**

a. A flow pacing system shall be provided to turn the UV banks on and off in relationship to the signal received from the plant effluent flowmeter. Flow pacing sequence shall be as recommended by the UV equipment manufacturer. Where lamp dimming is used, a controller shall be provided to allow plant operator to ratio the flow to UV dosage and UV intensity. Where on/off control is used, the system shall allow the operator to vary the flowrate setting and allow the operator the option to operate individual banks in either the manual or automatic mode. Logic and time delays shall be provided to regulate the UV bank ON/OFF cycle to prevent excessive cycling on both startup and shutdown of the UV bank. Multicycle lamps may be specified in applications which demand up to 100,000 annual cycles.

b. Normal mode of operation shall place each effluent channel continuously in service.

2.5 CLEANING SYSTEM

2.5.1 General Requirements

Provide cleaning equipment and cleaning solutions. Cleaning system shall [be a permanent in-channel installation] [an out-of-channel installation] [a portable cleaning installation with basin] for cleaning individual lamp sleeves or entire lamp modules.

2.5.2 Cleaning Tank

Portable cleaning tank shall be stainless steel and equipped with air blower (compressor), lamp module rack, hose connections and drains. Tank shall hold at least [3 horizontal modules] [1 vertical module] and be equipped with hard rubber casters. Tank shall have a sealed cover to prevent spilling. Unit shall be equipped with disconnect switch, a grounded plug and 3 m 10 feet of outdoor cable.

2.5.3 Cleaning Rack

A cleaning rack mounted above the portable cleaning tank shall be provided to hold one horizontal module above the cleaning liquid for hand wiping of the sleeves.

2.5.4 Cleaning Fluid

Sleeve conditioner and cleaning solution shall be provided for 12 months of normal operation. Conditioner and cleaning solution shall be supplied in containers not greater than 20 L 5 gallon capacity.
2.6 PAINTING

Shop painting of ferrous metal surfaces shall be in accordance with manufacturer's standard practices.

2.7 ANCHOR BOLTS

Stainless steel anchor bolts of the size required and with ample strength for the purpose intended shall be provided by the Contractor. Hooked anchor bolts shall be directly embedded during placement of concrete.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION

Perform installation in accordance with the drawings, shop drawings, and manufacturer's instructions and recommendations.

3.3 FRAMED INSTRUCTIONS

Framed instructions under glass or in laminated plastic, including wiring and control diagrams showing the complete layout of the entire system, shall be posted where directed. Condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for normal safe operation, and procedures for safely starting and stopping the system shall be prepared in typed form and posted beside the diagrams. The framed instructions shall be posted before acceptance testing of the systems.

3.4 FIELD QUALITY CONTROL

3.4.1 Operating Test

After Contractor and Contracting Officer have mutually agreed that the equipment installation is complete and ready for continuous operation, Contractor shall conduct an operating test of the equipment and controls in the presence of the Contracting Officer to demonstrate satisfactory operation.

Test report, in book form, shall include field tests performed to adjust each component and field tests conducted to prove compliance with the specified performance criteria. Test report shall indicate the final position of controls.

3.4.2 Performance Testing

a. Begin performance testing after the UV equipment has been installed and field tested. Collect samples at times when the flow through the plant is at or near the peak flow rating from one section of the channel. Where multiple systems are supplied, the plant flow shall be at or near the peak flow rating of at least one system or one section of the UV system.
b. The samples collected shall be analyzed for the following, using standard testing methods or procedures:

(1) [Fecal coliform] [_____] in MPN/100 mL just prior to UV disinfection.

(2) [Fecal coliform] [_____] in MPN/100 mL just after UV disinfection.

(3) Total suspended solids prior to disinfection.

(4) Percent UV transmittance at 254 nm with 1 cm cell length prior to disinfection.

c. Performance testing shall continue for 14 days and samples shall be collected 3 times per 24 hour period. The data obtained shall be recorded in booklet form. Test reports shall indicate the final position of controls.

d. The effluent quality exiting the UV unit shall be equal to or better than the specification requirement. Retesting shall continue for at least 2 consecutive days or until satisfactory bacteriological results have been obtained.

e. Submit statements signed by responsible official or representatives of the manufacturer attesting to conformance to the specified requirements. The statements shall be dated after performance testing has been completed, shall name the project, and shall list the specific requirements which are being certified.

3.5 MANUFACTURERS' FIELD SERVICES

3.5.1 Manufacturer's Representative

Services of a qualified manufacturer's field service representative shall be provided. The representative shall supervise the installation, adjustment, testing of equipment and instruct plant operators in the care, operation, and maintenance of the equipment.

3.5.2 Site Visits

Manufacturer's representative shall assist in the proper installation and checking of the equipment for a period of time necessary to insure a completed installation. Submit a written report of the results of each visit by the manufacturer's representative, including purpose and time of visit, tasks performed and results obtained.

The representative shall, for a period not less than three full days, start up the equipment, supervise initial operations, perform the required field tests and instruct plant operators in the proper care, operation and maintenance of the equipment. Upon request of the Government, at any time during the 1-year warranty period, the representative shall recheck the system, recalibrate and adjust equipment, answer plant operator's questions and review operation and maintenance procedures.

3.6 ADJUSTING AND CLEANING

Equipment shall be tested, calibrated, adjusted and operated to verify its satisfactory operation. Equipment shall be cleaned of dirt, dust and foreign matter.
3.7 CLOSEOUT ACTIVITIES

3.7.1 Operating and Maintenance Manuals

a. Submit operating instructions outlining the step-by-step procedures required for system startup, normal operation, short- and long-term deactivation, and shutdown. An introduction and overall equipment description, purpose, functions, and simplified theory of operation shall be included in the beginning of the instructions. Instructions shall include the manufacturer's name, model number, service manual, parts list, and brief description of each piece of equipment and its basic operating features. Instructions shall include component layouts, simplified wiring, and control diagrams for the system as installed. Performance test data shall be reflected in the operating instructions.

b. Submit maintenance instructions listing routine maintenance procedures, calibration procedures, possible breakdowns and repairs and trouble shooting guides, prior to the start of the training course.

3.7.2 Field Training

Instruction shall be a combination of classroom and hands-on training at the site. Representative shall instruct designated maintenance and operations personnel in the recommended corrective and preventive maintenance procedures for the equipment. Submit the proposed lesson plan of field instruction, 30 days prior to commencement of scheduled training. Field training shall cover each item contained in the operating and maintenance manuals.

3.7.2.1 Instruction Plan

A lesson plan shall be prepared which shall include the elements presented in the outline specified below. Specific components and procedures shall be identified in the proposed lesson plan. Specific instruction topics shall be detailed. Training aids to be utilized in the instruction shall be referenced and attached where applicable to the proposed lesson plan. Hands-on demonstrations planned for the instruction and estimated duration of each segment of the training shall be described in the lesson plan.

3.7.2.2 Training Outline

The elements presented in the following outline shall be included in the instruction as a minimum:

a. Equipment operation.
b. Detailed component description.
c. Equipment preventative maintenance.
d. Equipment troubleshooting.
e. Equipment corrective maintenance.
f. Hands-on demonstrations.

-- End of Section --