SECTION 46 07 53.19

COMPOSTING TOILET

02/11

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 DELIVERY, STORAGE, AND HANDLING

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Design
 2.1.2 Performance
2.2 JOINT SEALANTS
2.3 LUMBER
2.4 DRAIN PIPE
2.5 STOOL, CHUTE, SEAT, AND LID
2.6 COMPOSTING VENTILATION SYSTEM
 2.6.1 Electrically Powered Exhaust Fan
 2.6.2 Interior Vent Pipe
 2.6.3 Exterior Pipe
 2.6.4 Vent Pipe Roof Sleeves
 2.6.5 Slip Joint
 2.6.6 Support Box
 2.6.7 Roof Jack and Rain Collar
 2.6.8 Rain Cap
 2.6.9 Braces
2.7 URINALS
2.8 COMPOST BAFFLES
2.9 LIQUID BAFFLE, DRAIN PORTS, AND SCREENS
2.10 LIQUID DRAIN FITTINGS
2.11 AIR DUCTS
2.12 AIR INTAKES
2.13 SIGNS
2.14 FIRE EXTINGUISHER
2.15 COMPOST RAKE
2.16 COMPOST HOLDING TANK
 2.16.1 Design
 2.16.2 Polyethylene Tank
 2.16.2.1 Alternative Standards I
 2.16.2.2 Alternative Standards II
 2.16.3 Fiberglass Tank
 2.16.4 Stainless Steel Tank

2.17 COMPOST ACCESS DOOR
 2.17.1 Design and Construction
 2.17.2 Surrounding Area

2.18 INSPECTION DOOR
 2.18.1 Design and Construction
 2.18.2 Maintenance Provisions

2.19 SOURCE QUALITY CONTROL
 2.19.1 Molded Unit Inspection
 2.19.1.1 Impact Test
 2.19.1.2 Degree of Cross-Linking Test
 2.19.2 Factory Testing

PART 3 EXECUTION

3.1 INSTALLATION
3.2 CLEANING
3.3 FRAMED INSTRUCTIONS
3.4 CLOSEOUT ACTIVITIES
 3.4.1 Spare Parts
 3.4.2 Operation and Maintenance Manuals
 3.4.3 Training Course

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for packaged composting toilets that can be used for human waste treatment at remote sites where a power source (AC or DC) is provided but water is not.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically
place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)

ASM INTERNATIONAL (ASM)

ASM 06118G (1993) ASM Metals Reference Book (3rd Ed)

ASTM INTERNATIONAL (ASTM)

SECTION 46 07 53.19 Page 4
1.2 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list, and corresponding submittal items in the text, to reflect only the submittals required for the project. The Guide Specification technical editors have classified those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For Army projects, fill in the empty brackets following the "G" classification, with a code of up to three characters to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" classification indicates submittals required as proof of compliance for sustainability Guiding Principles Validation or Third Party Certification and as described in Section 01 33 00 SUBMITTAL PROCEDURES.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detail Drawings; G[, [_____]]

Installation; G[, [_____]]
1.3 DELIVERY, STORAGE, AND HANDLING

Protect from the weather, humidity and temperature variations, dirt, dust, and other contaminants equipment delivered and placed in storage.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Provide the large, continuous composting type composting toilet. Add wastes at the top of the pile so that the composting material will eventually flow by gravity to the finished compost area as the underlying finished compost is removed. The composting toilet shall include the composting chamber, ventilation fan and vent stack, stool with chute, and urinal with piping. These elements and necessary related appurtenances and pieces shall be supplied by a single composting toilet manufacturer.

Submit detail drawings of equipment and material to be provided. Detail drawings containing complete wiring and schematic diagrams and other details required to demonstrate that the system is coordinated and will function properly as a unit.

2.1.1 Design

The composting chamber shall hold a minimum of [_____] cubic meter feet of composting material. The composting chamber shall receive wastes from [_____] stools, and from [_____] urinals. Design the vents, air ducts, and air inlets to the composting chamber so that air can flow from the user compartment into the composting chamber but not in the reverse direction, and so that no air can reach the vent without first passing through the composting material. The toilet shall be designed so that all liquid entering the composting chamber will drain over and through the composting pile, and not along the chamber walls. The toilet shall collect all excess liquid to an easily accessible liquid holding area. The toilet shall [contain a pump for removing excess liquid] [be equipped with a drainage port in the bottom of the liquid holding area that can be
connected to a liquid disposal system]. Depending on liquid volume, expected usage, and if a pump is used, the pump shall be a permanently installed [automatic] [manual] variety with automatic control. The toilet shall be designed and constructed so that liquids can enter the composting chamber only through the waste ports. Materials and joints in the toilet shall be impermeable to liquids and not subject to biological, chemical, or physical corrosion. Wood shall be preserved in accordance with AWPA P5.

2.1.2 Performance

The composting toilet shall produce an inert, odor-free compost with a moisture content less than 60 percent. The finished compost shall not produce enough gas to inflate a plastic bag which is 80 percent full of compost after being sealed in the bag for 24 hours at an ambient temperature. The toilet shall prevent the entry of insects in the user compartment and surrounding area through the use of noncorrosive screens over all air and ventilation inlets. Assure that the composting toilet is installed properly and demonstrate that it will operate properly.

2.2 JOINT SEALANTS

Joint sealants shall be resistant to water and biological decomposition in conformance with CID A-A-272.

2.3 LUMBER

Lumber used for the tank support shall be pressure-treated or preserved sanded, two sided (S2S) construction-grade pine or fir without excess crown. The lumber shall be treated for preservation in accordance with AWPA P5.

2.4 DRAIN PIPE

The drain pipe from the urinal to the composting tank shall be at least 32 mm 1-1/4 inches inside diameter (ID) and sloped continuously toward the tank. The pipe shall be made of a corrosion-resistant material. The pipe outlet to the composting tank shall be located such that the urine flows onto or close to the center of the compost pile, to ensure that the urine flows through the pile and does not short-circuit down the tank walls.

2.5 STOOL, CHUTE, SEAT, AND LID

The toilet stool shall be constructed in two pieces, an exterior piece that shall be permanently connected to the floor of the user compartment and an interior piece that is mounted inside the exterior piece and conveys wastes into the toilet chute. The interior piece shall be constructed of high-density polyethylene, fiberglass, or stainless steel (Type 304). The exterior piece shall be constructed of [high-density polyethylene] [fiberglass] [oak] [stainless steel]. The top of the installed toilet stool shall be a minimum of 360 to a maximum of 460 mm 14 to a maximum of 18 inches above the user compartment floor. The minimum diameter of the interior piece opening into the chute shall be 300 mm 12 inches. The toilet chute shall be fabricated from stainless steel (0.4775 to 0.6350 mm 24 to 26 gauge), high-density polyethylene, or fiberglass, and may be fabricated in one piece or in several pieces that are assembled in the field. The chute shall be attached to the composting toilet with a chute/tank connector fabricated from the same material as the chute. The seat and lid shall be fabricated from high-density polyethylene, ABS plastic, hardwood, or stainless steel. The toilet, chute, chute/tank
connector, seat, and lid shall be provided by the composting toilet manufacturer and shall be certified by the manufacturer to be compatible with the manufacturer's composting toilet.

2.6 COMPOSTING VENTILATION SYSTEM

Install a ventilation system to draw air through the composting tank to provide a continuous supply of oxygen to the compost pile, ensuring that aerobic decomposition and dehydration occur. The ventilation system shall also draw off odors or gases generated by the pile. Provide a system with the following components:

2.6.1 Electrically Powered Exhaust Fan

An electrically powered exhaust fan, installed and sized to provide a minimum flow of 0.042 to 0.057 cubic meters/second 90 to 120 cfm of air. The fan shall be as high as possible in the building, but easily accessible for maintenance or replacement. The fan shall not be closer than 760 mm 30 inches to the roof and a maximum of 1.8 m 6 feet from a power disconnect.[If ac power is not available, a 12 volt direct current (dc) fan may be substituted and powered by a solar power generating system. Solar power generating array shall be roof mounted and consist of amorphous photovoltaic thin-film modules with a minimum power output required to operate the fan and recharge the battery at one sun. Array nominal voltage rating shall be 12 volts dc. Storage battery shall consist of sealed, liquid, lead-acid, deep-cycle batteries with absolute style plate technology. This configuration permits the fan to operate at night, and during overcast conditions. The battery storage area shall be secured and ventilated to prevent the buildup of explosive gases. The battery capacity shall provide a minimum of 18 hours continuous operation without recharging. Submit calculations which prove that the photovoltaic thin-film modules and batteries will provide power for the required period.]

2.6.2 Interior Vent Pipe

At least 150 mm 6 inches in diameter, extending from the composting tank to support box just under the exterior roof. If elbows are used, they shall have minimal bend and frequency of occurrence. Vent pipe shall be made of a corrosion-resistant material. Pipes shall be installed with the bell down to prevent the entry of water. Joints shall be taped using duct tape.

2.6.3 Exterior Pipe

An exterior pipe extending from the support box to the rain cap. The pipe shall be surrounded with insulation (fiberglass or equivalent R-1.23 (7) R-7). The exterior pipe shall extend at least 600 mm 2 feet above the peak or highest point of the roof. Pipes shall be installed with the bell down to prevent the entry of water. Elbows greater than 45 degrees shall not be used. Elbows shall be made of, or coated with, a corrosion-resistant material.

2.6.4 Vent Pipe Roof Sleeves

Made of, or coated with, a corrosion-resistant material.
2.6.5 Slip Joint

A slip joint installed above the fan for the easy removal of the fan. The sleeve of the slip joint shall be long enough to slide down and close the gap left by the fan when the fan is removed.

2.6.6 Support Box

A support box installed under the roof to connect the interior and exterior vent pipes. The support box shall be made of, or coated with, a corrosion-resistant material.

2.6.7 Roof Jack and Rain Collar

These components must be made of, or coated with, a corrosion-resistant material.

2.6.8 Rain Cap

Mounted on the top of the exterior vent pipe. The rain cap must be made of, or coated with, a corrosion-resistant material.

2.6.9 Braces

Braces installed on the exterior vent pipe if winds greater than 80 km/hour 50 mph or snow load greater than 900 mm 3 feet can be expected, or if the exterior pipe extends more than 1.2 m 4 feet above the peak of the roof.

2.7 URINALS

One trough urinal shall be installed for each composting unit. This trough shall be made of stainless steel or corrosion-resistant material. The trough shall be at least 660 mm 26 inches long and 200 mm 8 inches deep; the back shall extend at least 890 mm 35 inches above the bottom of the trough to protect the wall in back of the urinal. The urinal shall be mounted at a height of approximately 400 mm 16 inches.

2.8 COMPOST BAFFLES

There shall be two baffles, front and back, to form a compartment to contain the compost pile. The front baffle shall be attached securely; however, sealing is not required.

2.9 LIQUID BAFFLE, DRAIN PORTS, AND SCREENS

A liquid baffle with a screen shall be installed at the front of the compost tank to retain the compost, and permit the passage of water seeping from the compost pile. The screen openings shall be at least 6 mm 1/4 inch to minimize plugging. The screen shall be easily accessible so that it can be checked for plugging and can be cleaned. A drain port shall be provided in front of the liquid baffle to drain any seepage to a wastewater collection or treatment system. The drain port shall be as low as possible in front of the liquid baffle so that no water stands in the bottom of the tank. An overflow drain shall be provided to permit the drainage of water should the drain plug become clogged. The overflow port shall be just below the level of the top of the liquid baffle. The drain line shall be at least 32 mm 1-1/4 inches ID.
2.10 LIQUID DRAIN FITTINGS

Fittings shall be made of corrosion-resistant or impervious material such as polyvinyl chloride, polyethylene, or stainless steel.

2.11 AIR DUCTS

At least 2 air ducts shall be provided to carry air beneath the compost pile. The air ducts shall be constructed of a material impervious to corrosion and to biological decomposition.

2.12 AIR INTAKES

Air intakes shall be provided at the front of the compost tank. Intakes shall be at least 5800 square mm 9 square inches in cross section.

2.13 SIGNS

Signs shall be affixed to the major components of the composting toilet that identify those components. The names on the signs shall be consistent with the identifying names in the operating instructions. Other signs shall be placed securely in the user compartment telling users that trash, cigarettes and matches thrown into the toilet can interfere with the composting process or set the compost pile on fire.

2.14 FIRE EXTINGUISHER

If fire extinguishers are used, they shall be of a type that will not interfere with the composting process (ammonium phosphate type is acceptable).

2.15 COMPOST RAKE

A conventionally sized (approximately 1.5 m 5 foot long handle, 300 mm 12 inch side-toothed end), commercially available garden rake or cultivator (approximately 1.5 m 5 foot long handle, 150 mm 6 inch tined head) shall be supplied for raking the compost pile.

2.16 COMPOST HOLDING TANK

2.16.1 Design

The tank that shall receive and hold the human wastes during composting (the compost holding tank) shall be designed so that wastes enter from the top of the tank, and the composting material and excess liquid are removed from the bottom of the composting pile. The tank may be supplied in one, two, or three pieces; tanks supplied in more than one piece shall be bolted together in place. The tank shall be constructed of [plastic] [layered polyester fiberglass] [stainless steel] or an equivalent material that is impermeable to water and is corrosion-resistant. The inner surfaces of the tank shall be constructed of material that is not susceptible to chemical or biological decomposition and is impervious to the absorption of waste and chemical derivatives. The tank bottom shall slope towards the compost removal and liquid removal areas of the tank. The tank walls and floor shall be designed to resist forces equal to or greater than the hydrostatic forces that would occur if the tank were filled with water with a maximum deflection in the walls or floor of 13 mm 1/2 inch. The tank roof shall resist a 445 N 100 pound load, with a maximum deflection of 13 mm 1/2 inch. The tank shall be equipped with a
door that provides access to the bottom of the composting pile and an
inspection door opening into the area above the composting pile as
specified. The composting tank selected for installation shall be subject
to the approval of the Contracting Officer, and shall be based on the
detail drawings.

2.16.2 Polyethylene Tank

**
NOTE: When a polyethylene tank is specified, delete
paragraphs "Fiberglass Tank" and "Stainless Steel
Tank".
**

2.16.2.1 Alternative Standards I

ASTM D1248, Type 1, Class M, Grade 2, Category 3, with the following
additional requirements:

a. The resin shall contain [stabilizers] [pigmentation] to resist
ultraviolet degradation (for occasional exposure).

b. The [uncolored] [unfilled] resin density range shall be 0.938 to 0.942
grams per mL 0.938 to 0.942 grams per mL.

c. The resin shall have a maximum melt index of 5.

2.16.2.2 Alternative Standards II

Alternatively, the following standards apply.

a. Unless otherwise indicated, the plastics technology used shall be in
accordance with the definitions given in **ASTM D883**.

b. The molding resin shall not contain any fillers. All plastics shall
contain a minimum of 0.25 percent ultraviolet stabilizer and a maximum
of 0.50 percent. Pigments may be added but shall not exceed 1.0
percent of the weight of the molded compost shell.

c. The minimum mechanical properties of the materials are as follows
based on molded parts:

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>ASTM D1505</td>
<td>0.935 - 0.940 gm/cc 59 lb/cu ft</td>
</tr>
<tr>
<td>ESCR spec. thickness 125</td>
<td>ASTM D1593</td>
<td>900-1000 hr</td>
</tr>
<tr>
<td>mils F50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile strength ultimate 2</td>
<td>ASTM D638</td>
<td>17,925 kPa2600 psi</td>
</tr>
<tr>
<td>in./min.</td>
<td>Type IV Spec.</td>
<td></td>
</tr>
<tr>
<td>Elongation at break 2</td>
<td>ASTM D638</td>
<td>400 percent</td>
</tr>
<tr>
<td>in./min.</td>
<td>Type IV Spec.</td>
<td></td>
</tr>
<tr>
<td>Vicat softening temp.</td>
<td>ASTM D1525</td>
<td>116 degrees C240 degrees F</td>
</tr>
<tr>
<td>Brittleness temp.</td>
<td>ASTM D746</td>
<td>minus 118 degrees C minus 180 degrees F</td>
</tr>
<tr>
<td>Property</td>
<td>ASTM</td>
<td>Value</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>ASTM D790</td>
<td>690.5–758.4 MN/square meter 100,000–110,000 psi</td>
</tr>
</tbody>
</table>

d. The finished surface of the molded part shall be as free as possible through commercial processing from visual defects such as foreign inclusions, air bubbles, pinholes, and craters. Cut edges shall be trimmed and smooth.

e. Composting tank shells shall be molded to a nominal 10 mm 3/8 inch thickness. Physical dimensions shall be taken externally and shall fall within plus or minus 1 percent of the required dimensions.

2.16.3 Fiberglass Tank

**
NOTE: When a fiberglass tank is specified, delete paragraphs "Polyethylene Tank" and paragraph "Stainless Steel Tank."
**

Fiberglass construction shall follow appropriate industrial standards. The gel coating must be a minimum of 2 mm 1/16 inch thick, impervious to corrosion and microbial degradation. The next layers are 12 to 25 mm 0.5 to 1.0 inch of high-density polyurethane insulation. Saturate the mats with isothalic resin.

2.16.4 Stainless Steel Tank

**
NOTE: When a stainless steel tank is specified, delete paragraphs "Polyethylene Tank" and paragraph "Fiberglass Tank." In general, stainless steel is not recommended due to its corrosivity.
**

Stainless steel tank shall be constructed in accordance with ASM 06118G.

2.17 COMPOST ACCESS DOOR

**
NOTE: Metal hinges are permissible, but it is recommended that an appropriate plastic hinge be substituted because plastic is corrosion-resistant.
**

2.17.1 Design and Construction

The compost holding tank shall be equipped with a door mounted above the finished compost holding area to remove compost and to detect and remove excess liquid. The minimum door opening shall be 0.339 square meters 525 square inches. The door shall be constructed of material that is impermeable to water, corrosion-resistant, and not susceptible to attack by composting organisms. The door shall support a minimum of 1.33 kN 300 pounds with a maximum deflection of 13 mm 1/2 inch. The door opening shall be positioned such that personnel can see all of the finished compost and liquid storage excess liquid without requiring their heads or...
torsos to enter the composting tank. The door shall be attached to the compost holding tank with stainless steel hinges meeting the standards of ANSI/BHMA A156.1, or a full-length stainless steel piano hinge, or with plastic hinges. The door shall stay in any open position, when required, without braces or other external support or restraint. Normally, the door shall remain closed, and shall be equipped with a stainless steel latch that is easily operated by personnel but that prevents animals from entering the composting chamber.

2.17.2 Surrounding Area

The area around the compost access door shall be designed so that maintenance personnel can remove compost while in a standing position. A dry, stable work platform shall be provided with adequate area for personnel movement and placement of the buckets or bags receiving the removed compost or liquids. Stairs or ramps to the compost removal area shall be designed to allow easy access to the area and safe transportation of compost and liquid containers from the area.

2.18 INSPECTION DOOR

**
NOTE: Metal hinges are permissible, but it is recommended that an appropriate plastic hinge be substituted because plastic is corrosion-resistant.
**

2.18.1 Design and Construction

The compost holding tank shall be equipped with a door near the top of the tank which shall be used to remove debris, to rake the top of the compost pile, to observe the pile surface, to add water, and to perform other necessary operation and maintenance activities on the pile surface. The minimum door opening shall be 0.186 square meters 288 square inches. The door opening shall be constructed of material that is impermeable to water, corrosion-resistant, and not susceptible to attack by composting organisms. The door opening shall be positioned so that personnel can see all of the pile surface from outside the tank and can reach all of the pile surface without requiring their head or torsos to enter the composting tank. The door shall be attached to the compost holding tank with aluminum or stainless steel piano hinge, or with plastic hinges. The door shall be designed to stay in an open position when required, without braces or other external support or restraint. Normally, the door shall remain closed, and shall be equipped with a stainless steel latch that is easily operated by personnel but that prevents animals from entering the composting chamber.

2.18.2 Maintenance Provisions

The area in front of the inspection door shall be designed so that maintenance personnel shall have a stable, level platform to stand upon while inspecting the top of the compost pile. The platform surface shall be constructed at an elevation that shall put the center of the inspection door at eye level of maintenance personnel using the platform. An area in front of the inspection door shall be kept clear of obstructions that would interfere with inserting a 1.8 m 6 foot long rake through the inspection door.
2.19 SOURCE QUALITY CONTROL

2.19.1 Molded Unit Inspection

Each molded unit shall be visually inspected to ensure that it is as free as possible from defects. In addition, test samples shall be taken from a "cut-away" section of the compost tank shell and the following tests performed:

2.19.1.1 Impact Test

ASTM D746 shall be used for this test. Sample shall not shatter at 162.7 J (120 foot pounds) at minus 29 degrees C (minimum).

2.19.1.2 Degree of Cross-Linking Test

Using ASTM D2765, a minimum gel of 70 percent must be reported on the inside half of the sample.

2.19.2 Factory Testing

Submit factory test results attesting to manufacturing quality control of the proposed system, at least [_____] days before the Contracting Officer approves or disapproves the composting toilet proposed for installation. Document [_____] installations of composting toilets, essentially identical to the composting toilet installed under this specification, and that those installations have at least [_____] consecutive years of operating experience. Include available operating data for each of the [_____] installations, along with the names, addresses, and telephone numbers of personnel at the [_____] installations that will furnish information upon request regarding questions of interest to the Contracting Officer.

PART 3 EXECUTION

3.1 INSTALLATION

Submit drawings showing proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work, including clearances for maintenance and operation. Install toilet in accordance with the manufacturer's installation instructions and in accordance with the approved submittals. The toilet shall be installed using craftsmen and laborers with demonstrable experience and, where appropriate, certification or license in the required skills. Ensure that composting toilet is in working order.

3.2 CLEANING

The installed composting toilet, enclosure, and appurtenances shall be thoroughly cleaned.

3.3 FRAMED INSTRUCTIONS

Framed operating instructions, under glass or in laminated plastic, including wiring and control diagrams showing the complete layout of the entire system, shall be posted where directed. Condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for normal, safe operation, and procedures for
starting and maintaining the system safely shall be prepared in typed form, framed as specified for the wiring and control instructions and posted beside the diagrams. Submit proposed diagrams, instructions and other sheets for framed instructions.

3.4 CLOSEOUT ACTIVITIES

3.4.1 Spare Parts

Submit spare parts data, including a complete list of parts and supplies, with current unit prices and source of supply, and a list of the parts recommended by the manufacturer to be replaced after [1][and][3] years of service, after approval of the detail drawing and not later than [_____] months prior to the date of beneficial occupancy.

3.4.2 Operation and Maintenance Manuals

Submit operation manual outlining step-by-step procedures required for system operation. Include with the instructions the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Maintenance manual listing routine maintenance procedures, possible breakdowns and repairs. Include with the manual diagrams for the system as installed.

3.4.3 Training Course

Conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total of [_____] hours of normal working time, and shall start after the system is functionally completed but prior to final acceptance tests. The field instructions shall cover all of the items contained in the operating and maintenance instructions, as well as demonstrations of routine maintenance operations. Notify the Contracting Officer at least 14 days in advance of proposed beginning of the training course.

-- End of Section --