SECTION TABLE OF CONTENTS

DIVISION 31 - EARTHWORK

SECTION 31 21 00

PIPING; OFF-GAS

08/08

PART 1   GENERAL

1.1   UNIT PRICES
  1.1.1   Measurement
  1.1.2   Payment
1.2   REFERENCES
1.3   SYSTEM DESCRIPTION
  1.3.1   Design Requirements
  1.3.2   Performance Requirements
1.4   SUBMITTALS
1.5   QUALITY ASSURANCE
  1.5.1   Contractor Qualifications
  1.5.2   Single Source Supplier
  1.5.3   Welding
  1.5.4   Jointing Plastic and Fiberglass Reinforced Pipe
  1.5.5   Pre-Installation Meeting
1.6   DELIVERY, STORAGE, AND HANDLING
  1.6.1   Packaging
  1.6.2   Cleaners, Solvents and Glues
  1.6.3   Storage
1.7   SEQUENCING AND SCHEDULING
1.8   EXTRA MATERIALS
1.9   MAINTENANCE SERVICE

PART 2   PRODUCTS

2.1   MATERIALS AND EQUIPMENT
  2.1.1   Standard Products
  2.1.2   Identification
2.2   DESIGN STRENGTH
2.3   STEEL PIPE
  2.3.1   Carbon Steel Located Above Grade
  2.3.2   Silicone Coating
  2.3.3   Zinc Coating
  2.3.4   Thermoplastic Resin Coating System

SECTION 31 21 00 Page 1
2.3.5 Cathodic Protection

2.4 COPPER TUBING

2.5 POLYVINYL CHLORIDE (PVC) PIPING
   2.5.1 PVC Pipe
   2.5.2 PVC Joints
   2.5.3 PVC Fittings

2.6 POLYETHYLENE (PE) PIPING
   2.6.1 PE Pipe
   2.6.2 PE Joints and Fittings

2.7 REINFORCED EPOXY RESIN PIPING
   2.7.1 Epoxy Resin Pipe
   2.7.2 Epoxy Resin Joints and Fittings

2.8 DUCT SYSTEMS

2.9 FLANGED CONNECTIONS
   2.9.1 Flanges
   2.9.2 Gaskets
   2.9.3 Sealants

2.10 EQUIPMENT AND APPURTENANCES
   2.10.1 Manually Operated Valves
   2.10.2 Relief Valves
   2.10.3 Unloading Valves
   2.10.4 Vacuum Breakers
   2.10.5 Dielectric Fittings
   2.10.6 Meters
   2.10.7 Insulation
   2.10.8 Supports for Aboveground Piping
   2.10.9 Valve Boxes

2.11 FACTORY TESTS

PART 3 EXECUTION

3.1 EXAMINATION

3.2 MANUFACTURER'S REPRESENTATIVE

3.3 CONDENSATE CONTROL

3.4 PRESSURE REGULATOR AND METER INSTALLATION
   3.4.1 Pressure Regulators
   3.4.2 Meters
   3.4.3 Vents

3.5 INSTALLING PIPE UNDERGROUND
   3.5.1 Cathodic Protection
   3.5.2 Valve Boxes
   3.5.3 Magnetic Tape
   3.5.4 Pipe Coatings

3.6 INSTALLING PIPE ABOVEGROUND
   3.6.1 Hangers and Supports
   3.6.2 Insulation
   3.6.3 Coatings or Finishes

3.7 JOINTING PIPE
   3.7.1 O-Ring Joints
   3.7.2 Mechanical Joints
   3.7.3 Flanged Joints
   3.7.4 Expansion Couplings
   3.7.5 Destructive Joint Tests

3.8 CONNECTIONS
   3.8.1 Transitions Between Types of Pipe
   3.8.2 Connections to Off-Gas Source and Discharge Points
   3.8.3 Connection to Equipment
   3.8.4 Location of Existing Piping
   3.8.5 Removing Existing Pipelines from Service
3.9 PRESSURE AND LEAKAGE TESTS
   3.9.1 Bubble Tests
   3.9.2 Pressure Testing
   3.9.3 Leakage Testing
   3.9.4 Vacuum Testing
   3.9.5 Hanger Acceptance Testing
   3.9.6 Demonstration

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for pipe systems for the transmission of gases and vapors.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1   GENERAL

1.1   UNIT PRICES

NOTE: When it is determined that lump sum contract is advisable this paragraph will be deleted.

Measurement and payment will be based on completed work performed in accordance with the drawings, specifications, and the contract payment schedules. No payment will be made under this section for excavation, trenching, or backfilling. Payment for such work will be made under Section 31 00 00 EARTHWORK.
1.1.1 Measurement

The length of pipe lines to be paid for will be determined by measuring along the centerline of the various sizes of pipe furnished and installed. Pipe will be measured from center of fitting to center of fitting and from connection to connection to wells or treatment units. No deduction will be made for the space occupied by valves or fittings.

1.1.2 Payment

Payment will be made for off-gas piping at the contract unit price per linear meter or linear foot for the various types and sizes of piping, and will be full compensation for pipes, joints, specials, and fittings, complete in place. Payment for valves, valve boxes, and standard valve manholes will be made at the respective contract unit price each for such items complete in place. Payment will include the furnishing of testing, plant, labor, and material and incidentals necessary to complete the work, as specified and as shown.

1.2 REFERENCES

**********************************************************************************************************************************************

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**********************************************************************************************************************************************

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN GAS ASSOCIATION (AGA)

AGA ANSI B109.2 (2000) Diaphragm Type Gas Displacement Meters (500 cubic ft./hour Capacity and Over)

AGA XR0603 (2006; 8th Ed) AGA Plastic Pipe Manual for Gas Service

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

and Precautionary Labeling Preparation

AMERICAN PETROLEUM INSTITUTE (API)

API Spec 5L (2018; 46th Ed; ERTA 2018) Line Pipe

API Spec 6D (June 2018, 4th Ed; Errata 1 July 2018; Errata 2 August 2018) Specification for Pipeline and Piping Valves

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

ASME B1.20.1 (2013; R 2018) Pipe Threads, General Purpose (Inch)

ASME B1.20.2M (2006; R 2011) Pipe Threads, 60 Deg. General Purpose (Metric)


ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded

ASME B16.21 (2016) Nonmetallic Flat Gaskets for Pipe Flanges


ASME B31.8 (2018; Supplement 2018) Gas Transmission and Distribution Piping Systems

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C218 (2016) Liquid Coatings for Aboveground Steel Water Pipe and Fittings

ASTM INTERNATIONAL (ASTM)


<table>
<thead>
<tr>
<th>ASTM Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D1598</td>
<td>(2015a) Time-to-Failure of Plastic Pipe Under Constant Internal Pressure</td>
</tr>
<tr>
<td>ASTM Specification</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ASTM D2672</td>
<td>(2014) Joints for IPS PVC Pipe Using Solvent Cement</td>
</tr>
<tr>
<td>ASTM D2774</td>
<td>(2012) Underground Installation of Thermoplastic Pressure Piping</td>
</tr>
<tr>
<td>ASTM D2992</td>
<td>(2012) Obtaining Hydrostatic or Pressure Design Basis for &quot;Fiberglass&quot; (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings</td>
</tr>
<tr>
<td>ASTM D3035</td>
<td>(2015) Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter</td>
</tr>
<tr>
<td>ASTM D3915</td>
<td>(2006) Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds for Plastic Pipe and Fittings Used in Pressure Applications</td>
</tr>
<tr>
<td>ASTM E515</td>
<td>(2011) Leaks Using Bubble Emission Techniques</td>
</tr>
<tr>
<td>ASTM F402</td>
<td>(2005; R 2012) Safe Handling of Solvent Cements, Primers, and Cleaners Used for Joining Thermoplastic Pipe and Fittings</td>
</tr>
</tbody>
</table>

ASTM F1055 (2016a) Standard Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene and Crosslinked Polyethylene (PEX) Pipe and Tubing

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)


MSS SP-72 (2010a) Ball Valves with Flanged or Butt-Welding Ends for General Service

NACE INTERNATIONAL (NACE)


NACE SP0274 (1974; R 2011) High Voltage Electrical Inspection of Pipeline Coatings

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)


PLASTICS PIPE INSTITUTE (PPI)


SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 3-301-01 (2019) Structural Engineering

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

49 CFR 192 Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards
1.3 SYSTEM DESCRIPTION

The off-gas piping system shall consist of buried and above ground pipe, pipe supports, fittings, equipment and accessories. Submit Drawings containing graphical relationship of various components of the work, schematic diagrams of the systems, details of fabrication, layouts of particular elements, connections, clearance required for maintenance and operation, and other aspects of the work to demonstrate that the system has been coordinated and will properly function as a unit. Drawings to demonstrate that thermal expansion of plastic pipe exposed to ambient conditions as predicted by PPI TR-21 has been incorporated into the design. Submit a written certificate from the testing agency stating that the items have been tested and that they conform to the applicable requirements of the specifications. The certificate shall indicate the methods of testing used by the testing agency. In lieu of a certificate from a testing agency, published catalog specification data, accompanied by the manufacturer's certified statement that the items are in accordance with the applicable requirements of the specifications will be acceptable as evidence that the items conform with agency requirements.

1.3.1 Design Requirements

**************************************************************************
**NOTE:** Determine design wind speed from ASCE 7-16, and/or UFC 3-301-01 STRUCTURAL LOAD DATA. Use 161 km/h 100 miles per hour minimum. Use 1.2 kPa 25 psf snow load for most heavy snow climates; delete snow load where maximum snow is insignificant. In some cases, local climates and topography will dictate that a value greater than 197 Pa 25 psf be used for snow loading. This may be determined from ANSI A58.1, local codes, or by research and analysis of the effect of local climate and topography.

Provide seismic requirements, if a Government designer (either Corps office or A/E) is the Engineer of Record, and show on the drawings. Delete the bracketed phrase if seismic details are not included. Pertinent portions of UFC 3-301-01 and Sections 13 48 73 and 23 05 48.19, properly edited, must be included in the contract documents.
**************************************************************************

Provide piping in accordance with 49 CFR 192. Design for installation of plastic pipe above grade shall have provisions for movement due to thermal expansion and contraction documented to be in accordance with PPI TR-21. Seismic details shall be in accordance with UFC 3-301-01 and Sections 13 48 73 SEISMIC CONTROL FOR MECHANICAL EQUIPMENT and 23 05 48.19 [SEISMIC] BRACING FOR HVAC [as shown on the drawings].

a. Soil bearing capacity: [_____] MPa psf.

b. Seismic parameters: [_____].
1.3.2 Performance Requirements

**NOTE:** Enter names and concentrations of organic chemicals in the blank provided and additional lines or provide a reference to another section of the specification as necessary to provide complete information. Conditions encountered during construction frequently differ from the design conditions and/or worst conditions. Plume migration affects the concentrations that will be encountered during startup and testing. Design velocity range for vapors, gases, and smoke is between 5.1 and 10 m/sec 1,004 and 1,970 ft/min in NFPA 91 Exhaust Systems for Air Conveying of Materials. Consider the requirements of ASTM D543 in selection of pipe materials.

Identify pipe runs on the drawings and fill in the blanks with the maximum positive and negative anticipated gauge pressures.

Capacity and design of the piping and accessories shall be suitable for 24-hour full load service in an outdoor location. Expansion of plastic pipe exposed to ambient conditions shall be calculated using the procedures from PPI TR-21. Pipe materials shall be compatible with each of the following off-gas properties.

<table>
<thead>
<tr>
<th>Pipe segment</th>
<th>Pressure (gauge maximum)</th>
<th>Pressure (gauge minimum)</th>
<th>Flow rate (maximum)</th>
<th>Flow rate (minimum)</th>
<th>Ambient temperature (maximum)</th>
<th>Ambient temperature (minimum)</th>
<th>Off-gas temperature (maximum)</th>
<th>Off-gas temperature (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A-B] [B-C]</td>
<td>[_____] MPa psig</td>
<td>[_____] MPa psig</td>
<td>[_____] cubic m/s cubic ft/s</td>
<td>[_____] cubic m/s cubic ft/s</td>
<td>[_____] degrees C F</td>
<td>[_____] degrees C F</td>
<td>[_____] degrees C F</td>
<td>[_____] degrees C F</td>
</tr>
<tr>
<td>[C-D] [D-E]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Estimated chemical concentrations of [vapor] [off-gas]:

---

SECTION 31 21 00 Page 11
### 1.4 SUBMITTALS

**************************************************************************

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**************************************************************************

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal.
for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Off-Gas Piping System

SD-03 Product Data

Materials and Equipment
Safety Data Sheet
Statement of Satisfactory Installation

SD-06 Test Reports

Destructive Joint Tests
Bubble Tests
Pressure Testing
Leakage Testing
Vacuum Testing
Hanger Acceptance Testing

SD-07 Certificates

Off-gas Piping System
Manufacturer's Representative

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals; G[, [______]]

1.5 QUALITY ASSURANCE

1.5.1 Contractor Qualifications

Have a minimum of [2] [3] [5] [_____] years of experience in the construction of piping systems for sour gas, condensable gas, off-gas or vapor.

1.5.2 Single Source Supplier

Assign to a single supplier full responsibility for the furnishing of the off-gas piping system. The designated single supplier, however, need not manufacture the system but shall coordinate the selection, assembly, installation, and testing of the entire system as specified herein.

1.5.3 Welding

Qualifications of welding procedures, welders, and welding operators shall be in accordance with welding and nondestructive testing procedures for pressure piping specified in Section 40 05 13.96 WELDING PROCESS PIPING. Weld structural members in accordance with Section 05 05 23.16 STRUCTURAL WELDING.

1.5.4 Jointing Plastic and Fiberglass Reinforced Pipe

Use manufacturer's prequalified joining procedures. Joints shall be
inspected by an inspector qualified in the joining procedures being used and in accordance with AGA XR0603. Joiners and inspectors shall be qualified at the job site by a person who has been trained and certified by the manufacturer of the pipe, to train and qualify joiners and inspectors in each joining procedure to be used on the job. Training shall include use of equipment, explanation of the procedure, and successfully making joints which pass tests specified in AGA XR0603. Notify the Contracting Officer at least 24 hours in advance of the date to qualify joiners and inspectors.

1.5.5 Pre-Installation Meeting

******************************************************************************

NOTE: Remove this paragraph when conference is not required.
******************************************************************************

[Partnering] [Pre-installation] meeting will be required. Ensure that involved subcontractors, suppliers, and manufacturers are [notified] [represented]. The date and time of the conference shall be furnished to the Contracting Officer for approval.

1.6 DELIVERY, STORAGE, AND HANDLING

1.6.1 Packaging

Plastic pipe shall be packed, packaged and marked in accordance with ASTM D3892.

1.6.2 Cleaners, Solvents and Glues

A safety data sheet in conformance with ANSI Z400.1/Z129.1 must accompany each chemical delivered for solvents, solvent cements, or glues used in pipe connections or pipe installation. Handling must be in accordance with ASTM F402.

1.6.3 Storage

Classify and mark storage facilities in accordance with NFPA 704. Store materials with protection from puncture, dirt, grease, moisture, mechanical abrasions, excessive heat, ultraviolet (UV) damage, or other damage. Pipe and fittings shall be handled and stored in accordance with the manufacturer's recommendations. Piping bundles shall be stored on a prepared surface and should not be stacked more than two bundles high.

1.7 SEQUENCING AND SCHEDULING

******************************************************************************

NOTE: Coordinate with Section 26 42 14.00 10 CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE) or 26 42 17.00 10 CATHODIC PROTECTION SYSTEM (IMPRESSED CURRENT) if steel pipe is allowed. Blowers and control valves are specified in Section 43 11 00.10 OFF-GAS FANS, BLOWERS AND PUMPS.
******************************************************************************

Installation shall be as specified in Section 31 00 00 EARTHWORK, except as modified herein or required by ASTM D2774, ASTM D2855, ASTM D3839, or ASTM F402, as appropriate for the pipe material.
1.8 EXTRA MATERIALS

**************************************************************************
NOTE: This paragraph covers items to be furnished to the Government by the Contractor for future maintenance and repair. Insert text as required.
**************************************************************************

Extra material consisting of [_____] shall be provided. A special wrench for removal of locking covers shall be provided for each valve box and for each pressure regulator box.

1.9 MAINTENANCE SERVICE

**************************************************************************
NOTE: This paragraph covers provisions for maintenance service as applicable to critical systems, equipment, and landscaping. Insert text as required or omit.
**************************************************************************

Maintenance service shall include [____].

PART 2 PRODUCTS

**************************************************************************
NOTE: If thermoplastic pipe is specified for above ground use, verify that the referenced standards allow use of the specified materials for vapor transport or note the exceptions. Thermoplastic pipe is specified and installed above grade for vacuum applications. The ASME B31.3 advises that "special precautions should be observed" when using thermoplastic pipe to transport compressed gases above ground. Recommendation B of the Plastic Pipe Institute recommends against the use of thermoplastic pipe to transport air or other compressed gases in exposed above ground locations, e.g. in exposed plant piping." The industry standards for use of thermoplastic pipe for transmission of gas, ASTM D2513 and ASTM D3839, both recommend only underground use.

Combustible and explosive properties of the vapor, accumulation of static electrical charge and changes in strength characteristics due to elevated temperatures should be considered in material selection. Consideration should be given to compatibility of the construction materials with the condensate that will accumulate in the system. Select materials to avoid softening and loss of physical properties due to polymer degradation by depolymerization; stiffening or embrittlement due to loss of plasticizers resulting from repeated usage; deterioration of mechanical properties due to swelling; and failure of adhesive or heat fused joints due to interaction with condensate or leachate and physical stress.
See EM 1110-1-4008 Liquid Process Piping for chemical resistivity information.

Delete inapplicable materials or equipment. Options for other material, such as ductile iron in iron pipe sizes, may be added for noncorrosive gases.

**************************************************************************

2.1 MATERIALS AND EQUIPMENT

Provide materials and equipment that are new and unused, except for testing equipment. Components that serve the same function and are the same size shall be identical products of the same manufacturer. Piping material and appurtenances shall be as specified and as shown on the drawings, and shall be suitable for the service intended. Submit manufacturer's descriptive data and technical literature for each piping system, including design recommendations, pressure and temperature ratings, dimensions, type, grade and strength of pipe and fittings, thermal characteristics (coefficient of expansion and thermal conductivity) and chemical resistivity for each chemical constituent in the off-gas stream. Manufacturer's recommended installation procedures including materials preparation, and installations.

2.1.1 Standard Products

Provide material and equipment which are the standard products of a manufacturer regularly engaged in the manufacture of the products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Pipe, valves, fittings and appurtenances shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site.

2.1.2 Identification

Each piece of pipe shall bear the ASTM designation and the ASTM markings required for that designation. Each valve shall be marked in accordance with MSS SP-25 to identify the manufacturer, size, pressure rating, body disc and seat material. Securely attach a tag with the manufacturer's name, catalog number and valve identification.

2.2 DESIGN STRENGTH

Design strength of piping shall be suitable for the operating pressure and temperature ranges indicated and/or shown. With the exception of vacuum pipe segments [A-B] [B-C] [D-E] [____], thermoplastic pipe shall not be used to transport air or vapors in exposed above ground locations.

2.3 STEEL PIPE

**************************************************************************

NOTE: Verify that pipe wall thickness conforms to ASME B31.8 for larger sizes and high pressures.

For exposure potential to pressures less than 70 kPa 10 psig and temperatures less than 100 degrees C 212 degrees F and mild chemical exposure surface shall be blasted in accordance with SSPC SP 6/NACE No.3.
For exposure potential to pressures greater than 70 kPa 10 psig and temperatures greater than 100 degrees C 212 degrees F and mild chemical exposure intermediate options may be appropriate.

For severe chemical exposure, the baked phenolic system should be used.

Steel pipe shall be Schedule 40 conforming to [Grade A or B, Type E or S of ASTM A53/A53M,] [API Spec 5L,] [ASME B31.8,] [or] [NFPA 58]. Pipe threads shall conform to ASME B1.20.2MASME B1.20.1. Fittings for pipe 40 mm 1-1/2 inches and smaller shall conform to ASME B16.11. Buttweld fittings for pipe 40 mm 1-1/2 inches or less shall conform to ASME B16.9. Joint sealing compound shall conform to UL FLAMMABLE & COMBUSTIBLE, Class 20 or less. Polytetrafluoroethylene tape shall conform to ASTM D3308. Weld neck flanges shall be used. Connections shall conform to ASTM A181/A181M, Class 60, carbon steel. Carbon steel components shall be coated with corrosion resistant [materials.] [materials suitable for exposure to condensates.] Coatings and finishes shall be 100 percent holiday free.

2.3.1 Carbon Steel Located Above Grade

NOTE: Color must be specified only for the "-S" systems. The color is automatic (-A, Aluminum; -B, Black; -W, white) for the other systems.

Surfaces of aboveground carbon steel components shall be [_____] coated in accordance with AWWA C218 [three-coat alkyd system 1-91-A] [three-coat alkyd system 1-91-W] [three-coat alkyd system 2-91-A] [four-coat alkyd system 2-91-W] [four-coat alkyd system 2-91-S] [three-coat alkyd/silicone alkyd system 3-91-W] [three-coat alkyd/silicone alkyd system 3-91-S] [three-coat epoxy/urethane system 4-91-W] [three-coat epoxy/urethane system 4-91-S] [three-coat inorganic or organic zinc/epoxy/urethane system 5-91-W] [three-coat inorganic or organic zinc/epoxy/urethane system 5-91-S] [two- or three-coat epoxy/coal tar epoxy 6-91-B] [two or three-coat water reducible epoxy-polyamide 7-91-W] [two- or three-coat water reducible epoxy-polyamide 7-91-S] [three-coat water reducible acrylic or alkyl-modified acrylic emulsion 8-91-W] [three-coat water reducible acrylic or alkyl-modified acrylic emulsion 8-91-S] [two- or three-coat epoxy/high-build aliphatic polyurethane over existing coated substrates 9-95-W] [two- or three-coat epoxy/high-build aliphatic polyurethane over existing coated substrates 9-95-S].

2.3.2 Silicone Coating

Surfaces of carbon steel components shall be blasted in accordance with SSPC SP 6/NACE No.3. Surface shall have an alkyd primer 62.5 micrometers 2.5 mils dry film thickness followed by two alkyd modified silicone final coats.

2.3.3 Zinc Coating

Surfaces of carbon steel components shall be coated with zinc in accordance with ASTM A123/A123M or ASTM A153/A153M.
2.3.4 Thermoplastic Resin Coating System

[Surfaces of carbon steel components shall have a minimum of [4] [5] [6] coats of phenolic type coatings applied [40] [50] micrometers [1.6] [2] mils minimum dry film thickness per coat. Each coat shall be baked at 149 degrees C 300 degrees F for 10 minutes. Full coating system shall be cured in oven at [190] [232] degrees C [375] [450] degrees F for 30 minutes.] [Continuously extruded polyethylene and adhesive coating system materials shall conform to NACE SP0185 Type A.]

2.3.5 Cathodic Protection

Buried ferrous pipe systems shall have cathodic protection.

2.4 COPPER TUBING

Copper tubing shall conform to ASTM B837.

2.5 POLYVINYL CHLORIDE (PVC) PIPING

Design and fabrication of below grade components of the off-gas piping system shall be in accordance with ASTM D2513 except as modified herein.

2.5.1 PVC Pipe

**************************************************************************
NOTE: CPVC in accordance with ASTM F422 provides a heat protection factor that is important near blowers but is not generally necessary for buried piping.

ASTM D3915 should be used unless aggressive chemical conditions dictate that D 1784 be used.
**************************************************************************
Pipe shall be in accordance with ASTM F442/F442M, ASTM D2241, SDR [26] [21] [17] [_____. Materials shall conform to ASTM D3915, ASTM D1784, Type IV, Grade 1, rigid (23447-B). The maximum eccentricity of the inside and outside circumferences of the pipe walls shall be 12 percent. Pipe shall be provided which does not fail, balloon, burst, or weep as defined in ASTM D1598.

2.5.2 PVC Joints

Joints shall be pressure rated solvent cemented bell joints in accordance with ASTM D2672 except where flanged or threaded fittings are required at expansion joints, valves, flowmeter, equipment connections or otherwise shown. Flanges shall be joined to pipe by solvent cementing. Primer shall conform to ASTM F656. Solvent cement shall conform to ASTM D2564.

2.5.3 PVC Fittings

Fittings shall be in accordance with [ASTM D2466] [ASTM D2467].

2.6 POLYETHYLENE (PE) PIPING

Design and fabrication of below grade components of the off-gas piping system shall be in accordance with ASTM D2513 except as modified herein.
2.6.1 PE Pipe

Pipe shall be in accordance with ASTM D3035, Schedule [40] [80]. Wall thickness shall be SDR [11] [____]. Melt flow shall be less than 1.5 g/10 min. with method ASTM D1248, Condition F. Environmental stress crack resistance shall exceed 1000 hours, ASTM D1693, Condition C.

2.6.2 PE Joints and Fittings

Fittings shall be pressure rated electrofusion fittings in accordance with ASTM F1055, butt heat fusion fittings in accordance with ASTM D3261 or socket-type fittings in accordance with ASTM D2683 except where flanged connections are required at expansion joints, valves, flowmeter, equipment connections or otherwise shown. Flanges shall be joined to pipe by heat fusion in accordance with ASTM D2657.

2.7 REINFORCED EPOXY RESIN PIPING

Design and fabrication of below grade components of the off-gas piping system shall be in accordance with ASTM D2992 except as modified herein.

2.7.1 Epoxy Resin Pipe

Pipe shall be in accordance with ASTM D2517. Resin shall be chemically resistant to condensates as determined by ASTM C581.

2.7.2 Epoxy Resin Joints and Fittings

Joints and fittings shall be in accordance with ASTM D2517.

2.8 DUCT SYSTEMS

******************************************************************************
NOTE: Consult Sheet Metal and Air Conditioning Contractors' National Association (SMACNA) for metal and PVC duct design and construction recommendations. Consult Thermal Insulation Manufacturers' Association (TIMA) for design and construction standards for fiberglass ducts.
******************************************************************************

Ductwork shall comply with Section 23 82 01.00 10 WARM AIR HEATING SYSTEMS.

2.9 FLANGED CONNECTIONS

2.9.1 Flanges

Flanges shall be Class [150] [____], socket weld, flat face in accordance with ASME B16.5. Drilling and dimensions of flanges, bolts, nuts, and bolt patterns shall be in accordance with ASME B16.5, Class [150] [____]. Bolts and nuts shall [conform to ASTM A307] [be 304 stainless steel].

2.9.2 Gaskets

******************************************************************************
NOTE: Use gasket materials compatible with condensates. High temperature gaskets for above 160
******************************************************************************
degrees C 320 degrees F should be aramid fibers bonded with nitrile butadiene rubber (NBR) or glass fibers bonded with polytetrafluoroethylene. EPDM is suitable for 100 degrees C 212 degrees F or less. Chloroprene rubber is suitable for 80 degrees C 176 degrees F or less. Florin rubber (i.e. Viton) and nitrile are suitable for 160 degrees C 320 degrees F or less.

Gaskets shall be full face, non-asbestos compressed material compatible with the expected condensates in accordance with ASME B16.21, [3] [1.6] mm [1/8] [1/16] inch minimum thickness, full face or self-centering flat ring type. Gaskets shall be aramid fibers bonded with nitrile butadiene rubber (NBR) or glass fibers bonded with polytetrafluoroethylene suitable for [315] [_____] degrees C [600] [_____] degrees F service and meeting applicable requirements of [ASME B31.8] [NFPA 58]. [High temperature gaskets shall be suitable for above 160 degrees C 320 degrees F.]

[Chloroprene rubber shall be suitable for [80] [100] degrees C [176] [212] degrees F service.] [EPDM shall be suitable for 100 degrees C 212 degrees F service.] [Florin rubber (i.e. Viton) or nitrile rubber shall be suitable for 160 degrees C 320 degrees F service.]

2.9.3 Sealants

Sealants shall conform to ASTM C920.

2.10 EQUIPMENT AND APPURTENANCES

2.10.1 Manually Operated Valves

Ball valves shall be in accordance with MSS SP-72. Gate, plug, ball, and check valves shall be in accordance with API Spec 6D. Thermoplastic gas shutoffs and valves shall be in accordance with ASME B16.40.

2.10.2 Relief Valves

Relief valve with manually adjustable pressure differential shall be provided for each blower or vacuum pump. Relief valve shall be [weighted] [spring] [pilot-operated diaphragm type] with a [_____] percent accumulation. Relief valve diameter shall be line sized or as otherwise indicated and shall be rated to relieve [_____] cubic meters/s cubic feet per minute at a set pressure of [_____] kPa psig or a vacuum of [_____] kPa inches Hg. Materials shall be [aluminum] [bronze] [cast iron] [stainless steel] [_____] body, [bronze] [316 stainless steel] [_____] trim, and [Buna-N] [EPR] [nitrile] [Viton] [Teflon] [_____] elastomers. Maximum operating temperature and pressure shall be [_____] degrees C F and [_____] kPa psi.

2.10.3 Unloading Valves

Unloading valves shall be included to minimize pump/motor overloading during start and stop operations. Unloading valves shall be [pilot-operated diaphragm type with auxiliary solenoid operator] [actuated butterfly valve control by blower system controls]. Unloading valve shall be rated to relieve [_____] cubic meters/s cubic feet/minute at a set pressure of [_____] kPa psi or a vacuum of [_____] mm Hg inches Hg. Materials shall be [aluminum] [bronze] [stainless steel] body, [bronze] [316 stainless steel] trim, and [Buna-N] [EPR] [Viton] [Teflon]
elastomers. Maximum operating temperature and pressure shall be [_____] degrees C and [_____] kPa psig respectively.

2.10.4 Vacuum Breakers

Vacuum breakers shall be provided to protect blowers and vacuum pumps from damage due to excessive vacuum surges. Vacuum Breakers shall be [pilot-operated diaphragm type with auxiliary solenoid operator] [actuated butterfly valve control by blower system controls]. Valve shall be rated to relieve [_____] cubic m/s cfm at a set pressure of [_____] kPa psi or a vacuum of [_____] kPa inches Hg. Materials shall be [aluminum] [bronze] [stainless steel] body, [bronze] [316 stainless steel] trim, and [Buna-N] [EPR] [Viton] [Teflon] elastomers. Maximum operating temperature and pressure shall be [_____] degrees C and [_____] kPa psi.

2.10.5 Dielectric Fittings

Dielectric fittings shall be installed between threaded ferrous and nonferrous metallic pipe, fittings and valves, except where corporation stops join mains. Dielectric fittings shall prevent metal-to-metal contact of dissimilar metallic piping elements and shall be suitable for the required working pressure.

2.10.6 Meters

Gas meters conforming to AGA ANSI B109.2.

2.10.7 Insulation

Provide insulation of above grade exterior pipe, fittings and valves as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.10.8 Supports for Aboveground Piping

**************************************************************************
NOTE: Pipe materials differ greatly in their respective changes in size as temperature changes. The thermal expansion coefficient of PE is three times that of PVC pipe. In a buried environment, where the temperature fluctuations should be minimal and the pipe is supported on all sides by soil, thermal expansion is of less concern. However, in systems where the collector pipes are above ground, thermal expansion and contraction must be considered.
**************************************************************************

Furnish pipe hangers and supports complete with necessary inserts, bolts, nuts, rods, washers, and accessories. Design and construction shall be in accordance with MSS SP-58. Specific application shall be in accordance with MSS SP-58. Hanger and supports shall be capable of adjustment after placement of piping. Hangers and supports shall be the product of one manufacturer. Hangers, supports and accessories shall be hot dip galvanized in accordance with ASTM A123/A123M unless copper or plastic coated. Restrained joints and thrust protection shall be provided. Concrete and metal cradles, collars, floor stands, supports, kickers, and block shall be provided as recommended by manufacturer. Pipe cradle cushion material shall be elastomer sheet strapped to pipe to prevent chafing at pipe support. Elastomer sheet shall be utilized around top of pipe to prevent chafing of pipe strap.
2.10.9 Valve Boxes

Valve boxes shall be adjustable extension type with screw or slide-type adjustments constructed of cast iron not less than 5 mm (3/16 inch) thick. Valve boxes shall be provided with locking covers that require a special wrench for removal and the word "gas" cast in the box cover.

2.11 FACTORY TESTS

Test steel piping by the manufacturer or a nationally recognized testing agency in compliance with NACE SP0274.

PART 3 EXECUTION

******************************************************************************

NOTE: Operations required to accomplish construction of plastic piping systems will conform to the requirements of ASTM F402.

******************************************************************************

3.1 EXAMINATION

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 MANUFACTURER'S REPRESENTATIVE

Provide the services of a manufacturer's field service representative who is experienced in the installation of the materials and equipment furnished and who has complete knowledge of the proper operation and maintenance of the system. Submit the name and qualifications of the manufacturer's representative and written certification from the manufacturer that the representative is technically qualified.

3.3 CONDENSATE CONTROL

Slope off-gas piping uniformly between control elevations to enhance the removal of liquids. Make provisions to collect and drain liquids from condensation in each pipe run. Liquid removal sumps and traps shall be located in the piping systems.

3.4 PRESSURE REGULATOR AND METER INSTALLATION

Install a valve on each side of each meter or regulator for isolating the regulator for calibration, maintenance, and removal. An insulating joint constructed to prevent flow of electrical current shall be installed between metallic pipe and the meter or regulator.

3.4.1 Pressure Regulators

******************************************************************************

NOTE: Delete inapplicable requirements. Remove reference to by-passes around pressure regulators unless continuity is imperative and the bypass is regulated to prevent possible over pressure of downstream lines.

******************************************************************************
Install pressure regulators [450 mm 18 inches above the ground on the riser] [where shown]. Provide a 10 mm 3/8 inch tapped fitting equipped with a plug on both sides of the regulator for installation of pressure gauges for adjusting the regulator. Regulators and valves shall be installed in rectangular reinforced concrete boxes. Boxes shall be large enough so that required equipment can be properly installed, operated, and maintained. Extend sidewalls above ground line. The boxes shall be provided with [steel door] [cast iron manhole] covers with locking provisions and 100 mm 4 inch diameter vents.

3.4.2 Meters

Install meters in accordance with ASME B31.8.

3.4.3 Vents

Locate discharge stacks, vents, or outlet ports of devices where gas can be discharged into the atmosphere without undue hazard. Vents shall terminate in the outside air in rain and insect resistant fittings. [Locate the open end of the vent where gas can escape freely into the atmosphere, away from any openings into the building and above areas subject to flooding.] [Stacks and vents shall be provided with fittings to preclude entry of water.]

3.5 INSTALLING PIPE UNDERGROUND

NOTE: Coordinate Section 31 00 00 EARTHWORK and details on the drawings to assure that pipe bedding materials are appropriate for the allowed pipe.

Installation shall be as specified in Section 31 00 00 EARTHWORK, except as modified herein; and as required by ASTM F402 and ASTM D2855 for using solvents and cleaners, ASTM D2774 for polyvinyl chloride and polyethylene pipe, and ASTM D3839 for fiberglass pipe.

3.5.1 Cathodic Protection

NOTE: Cathodic protection is mandatory for underground ferrous pipelines. The type and design of cathodic protection will be in accordance with UFC 3-570-02A. Stations will be provided for testing the cathodic protection system.

Provide cathodic protection for ferrous piping installed underground as specified in [Section 26 42 14.00 10 CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE)] [Section 26 42 17.00 10 CATHODIC PROTECTION SYSTEM (IMPRESSED CURRENT)].

3.5.2 Valve Boxes

Install valve boxes at each underground valve except where concrete or other type of housing is indicated. When the valve is located in a roadway, protect the valve box by a suitable concrete slab at least 1
square meter 3 square feet. When in a sidewalk, the top of the box shall be in a concrete slab 600 mm 2 feet square and set flush with the sidewalk. Valve boxes shall be separately supported, not resting on the pipe, so that traffic loads cannot be transmitted to the pipe.

3.5.3 Magnetic Tape

When non-metallic piping is installed underground, place foil backed magnetic tape above the pipe to permit locating with a magnetic detector.

3.5.4 Pipe Coatings

Repair any damage to the protective covering during transit and handling before installation.

3.6 INSTALLING PIPE ABOVEGROUND

With the exception of vacuum pipe segments [A-B] [B-C] [D-E] [_____] as indicated and/or shown, thermoplastic pipe shall not be installed aboveground. Install vertical pipe plumb in all directions. Perpendicular piping shall be installed parallel to building walls. Piping at angles and 45 degree runs across corners will not be accepted unless specifically shown. Install small diameter piping generally as shown when specific locations and elevations are not indicated. Piping shall be located to avoid ducts, equipment, and beams. Piping shall be installed to avoid obstructing corridors, walkways, work areas, and like spaces. Provide a minimum headroom clearance of 2.2 m 7 feet under piping, unless otherwise indicated. Temporary caps or plugs shall be provided at pipe openings at the end of each day's work. Run piping in groups where practicable. Minimum clearance shall be 25 mm 1 inch between pipe and other work.

3.6.1 Hangers and Supports

Install pipe hangers and supports in accordance with MSS SP-58 at locations where pipe changes direction. Hanger rods shall be installed straight and vertical. Chain, wire, strap or perforated bar hangers will not be permitted. Hangers shall not be suspended from piping. Where proper hanger or support spacing does not correspond with joist or rib spacing, suspend pipe from structural steel channels attached to joists or ribs. Contact between dissimilar metals shall be prevented when supporting copper tubing, by use of copper plated, rubber or vinyl coated, or stainless steel hangers or supports. Isolate thin walled stainless steel piping from carbon steel by use of plastic coated hangers or supports or by taping at points of contact with PVC or vinyl. Use galvanized or stainless steel hangers and supports in basins or submerged locations. Maximum support spacing, unless otherwise shown or approved for standard weight steel pipe, shall be as follows:

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 50 mm</td>
<td>2 m 6 feet</td>
</tr>
<tr>
<td>50 to 75 mm</td>
<td>3 m 10 feet</td>
</tr>
<tr>
<td>Greater than 75</td>
<td>4 m 12 feet</td>
</tr>
</tbody>
</table>

SECTION 31 21 00  Page 24
Maximum support spacing for pipe other than standard weight steel shall be two-thirds of the corresponding spacing for steel pipe unless otherwise shown or approved.

3.6.2 Insulation

Insulation shall be furnished and installed in accordance with Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.6.3 Coatings or Finishes

******************************************************************************
NOTE: Where the using service has specific requirements for color coding differing from the color specified, this paragraph will be modified accordingly and coordinated with paragraph, Identification and UFGS 09 97 02 PAINTING: HYDRAULIC STRUCTURES. Off-gases from landfills often consist of large quantities of Methane (CH4), Hydrogen Sulfide (H2S) and Carbon Dioxide (CO2) with a lesser amount of other organic compounds present. Phenolic or epoxy type coatings are generally recommended for this type of service.
******************************************************************************

Coatings and finishes shall be in accordance with Section 09 97 02 PAINTING: HYDRAULIC STRUCTURES. Repair damage to the factory covering during transit and handling before installation. Painting is not required where piping is insulated, stainless steel, galvanized steel or nonferrous. Factory painted items requiring touching-up in the field shall be cleaned of foreign material and shall be primed and top coated with the manufacturer's standard factory finish. Paint exposed ferrous surfaces with two coats of enamel paint. Factory primed surfaces shall be solvent cleaned before painting. Prepare and prime surfaces that have not been factory primed in accordance with the enamel paint manufacturer's recommendations.

3.7 JOINTING PIPE

Join non-metallic piping by performance qualified joiners using qualified procedures in accordance with AGA XR0603. Joints shall be inspected by an inspector qualified in the joining procedures being used and in accordance with AGA XR0603.

3.7.1 O-Ring Joints

Clean jointing surfaces and adjacent areas before making joint. Gaskets and "O"-rings shall be lubricated and adjusted in accordance with manufacturer's recommendations. Check each gasket for proper position around full circumference of the joint after "O"-rings are compressed and before pipe is brought fully home. Jointing pipe shall be done in accordance with ASTM D3139 and manufacturer's recommendations.

3.7.2 Mechanical Joints

The plain end shall be centered and pushed into the bell. The gasket shall be firmly pressed evenly into the bell. The gland shall be slipped to the bell for bolting. The bolt threads shall be oiled. Bolts shall be tightened alternately 180 degrees opposite to each other to seat the
gasket evenly. Apply bituminous coating to ferrous bolts and nuts before assembly. The maximum torque on bolts shall be as follows:

<table>
<thead>
<tr>
<th>Bolt Size (mm/inch)</th>
<th>Applied Torque (Nm/ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16(\frac{5}{8})</td>
<td>6580</td>
</tr>
<tr>
<td>19(\frac{3}{4})</td>
<td>10580</td>
</tr>
<tr>
<td>25(\frac{1}{4})</td>
<td>12290</td>
</tr>
<tr>
<td>32(\frac{1}{4})</td>
<td>149110</td>
</tr>
</tbody>
</table>

3.7.3 Flanged Joints

Use hexagon head nuts and bolts. Bolt projection through the end of the nut shall be limited to \([6] \[_____] \text{mm} [1/4] \[_____] \text{inch}\) maximum. Manufacturer's rating and instructions for specified service shall be followed.

3.7.4 Expansion Couplings

Provide expansion couplings in tension to facilitate their removal. Stretcher bolts shall be set for maximum allowable elongation of expansion coupling as recommended by the manufacturer. Expansion couplings shall be provided as shown and as recommended by the manufacturer.

3.7.5 Destructive Joint Tests

NOTE: Destructive tests are provided as a designer option. Destructive tests are considered useful in assuring that good joints will be made. Delete the paragraph if this option is not exercised.

Each day, prior to making [heat fusion] [adhesive] [or] [solvent welded] joints, a joint of each size and type to be installed that day shall be made by each person assembling these joints that day and shall be destructively tested. Cut at least 3 longitudinal straps from each joint. Each strap shall be visually examined, shall not contain voids or discontinuities on the cut surfaces of the joint area, and shall be deformed by bending, torque, or impact, and if failure occurs, it must not initiate in the joint area. If a joint fails the visual or deformation test, the qualified joiner who made that joint shall not make further field joints in plastic pipe on this job until that person has been retrained and requalified. The results of the destructive tests shall be recorded to include the date and time of the tests, size and type of the joints, ambient conditions, fusion iron temperature and names of inspectors and joiners.

3.8 CONNECTIONS

3.8.1 Transitions Between Types of Pipe

Provide necessary adapters, specials and connector pieces when connecting different types and sizes of pipe or pipe furnished by different
manufacturers. Underground connecting joints shall be encased with 150 [_____] mm [6] [_____] inches minimum, Class B concrete unless otherwise shown, or recommended by manufacturer. Connections between piping and equipment, where required, shall be made using [approved] [proper] fittings to suit the actual conditions.

3.8.2 Connections to Off-Gas Source and Discharge Points

Connect the off-gas pipelines to the source and discharge locations. Notify the Contracting Officer, in writing, 10 days before final connections and activation of the system.

3.8.3 Connection to Equipment

**************************************************************************
NOTE: Coordinate the drawings and specifications for blowers and treatment equipment.
**************************************************************************

Provide connections to the equipment in accordance with approved procedures. Isolation of equipment shall only be done [immediately on each side of the equipment] [at the valve location shown on the drawings].

3.8.4 Location of Existing Piping

Locations of existing piping shown should be considered approximate. Contractor is responsible for determining exact location of existing piping which may be affected by the work during earth moving operations.

3.8.5 Removing Existing Pipelines from Service

Pipelines shall not be removed from service unless specifically listed or approved by Contracting Officer. Notify the Contracting Officer at least [48] [_____] hours prior to removing each pipeline from service.

3.9 PRESSURE AND LEAKAGE TESTS

Perform tests on [pipe segments as shown] [the system as a whole] [sections that can be isolated]. Joints shall be tested in sections prior to backfilling when trenches have to be backfilled before the completion of other pipeline sections. Labor, materials and equipment for conducting the tests shall be furnished by the Contractor and shall be subject to inspection during the tests. The Contractor shall be responsible for the cost of repair, replacement, and retesting required because of failure to meet testing requirements. Prior to testing the system, the interior shall be blown out, cleaned and cleared of foreign materials. Meters, regulators, and controls shall be removed before blowing out and cleaning and reinstalled after clearing of foreign materials. Maintain safety precautions for pressure testing during the tests. Notify Contracting Officer [_____] [48] hours in advance of pressure, leakage and/or vacuum testing. Conduct tests in the presence of the Contracting Officer unless otherwise directed. During the test, the entire system shall be completely isolated from compressors and other sources of pressure. Perform testing with due regard for the safety of employees and the public during the test. Persons not working on the test operations shall be kept out of the testing area while testing is proceeding. Leakage test shall be conducted only after satisfactory completion of pressure test.
3.9.1 Bubble Tests

Test each joint in accordance with ASTM E515 prior to backfilling or concealing any work.

3.9.2 Pressure Testing

**************************************************************************

NOTE: Thermoplastic piping should not be pressure tested with air. Specify test pressure (including Class Location) to be used in accordance with ASME B31.8. Test pressure will not be less than 1.5 times the design pressure, but not exceeding 1.5 times the maximum rated pressure of the lowest-rated component in the system. Test pressures should recognize the weakest component of each segment tested for the design pressure and the maximum allowable operating pressure.

**************************************************************************

Backfill shall be placed and compacted to at least the pipe centerline before testing. Allow concrete for blocking to reach design strength and shall be backfilled and compacted to assure restraint by harnessed joints before testing. Section to be tested shall be slowly filled with [air.] [water, and air shall be expelled. Corporation cocks shall be installed as necessary to remove air.] Test pressure shall be applied for one hour and gauge pressure shall be observed. Leaks shall be continuously checked while test pressure is being maintained. The off-gas piping system shall be tested after construction and before being placed in service using [water] [air] as the test medium. The pressure test shall continue for at least [24] [36] [48] hours from the time of the initial readings to the final readings of pressure and temperature. The initial test readings of the instrument shall not be made for at least 1 hour after the pipe has been subjected to the full test pressure, and neither the initial nor final readings shall be made at times of rapid changes in atmospheric conditions. The temperatures shall be representative of the actual trench conditions. There shall be no indication of reduction of the test pressure, [_____] kPa psig, applied at the lowest elevation of the pipeline section, during the test after corrections have been made for changes in atmospheric conditions in conformity with the relationship \( T(1)P(2) = T(2)P(1) \), in which \( T \) and \( P \) denote absolute temperature and pressure, respectively, and the numbers denote initial and final readings. Lines which fail to hold specified test pressure or which exceed the allowable leakage rate shall be repaired and retested.

3.9.3 Leakage Testing

Allow pipe to stand full of water at least 12 hours prior to starting leakage test. Exposed pipe, joints, fittings and valves shall be examined. Visible leakage shall be stopped, and the defective pipe, fitting or valve shall be replaced. The line under test shall be refilled to reach the required test pressure. The amount of water permitted as leakage shall be placed in a container attached to the supply side of the test pump. Container shall be sealed. No other source of supply to the pump or line under test shall be attached. Water shall be pumped into the line with the test pump to hold [_____] kPa psig for [2] [4] [8] hours. Water remaining in the container and the amount used during the test shall be measured and recorded on the test report. Test shall be considered as failed upon exhaustion of supply and/or inability to maintain the required
pressure.

3.9.4 Vacuum Testing

Test shall be performed on [the entire system] [individual sections] as approved by the Contracting Officer. Openings shall be sealed in system or section to be tested. Vacuum [_____] kPa psig shall be pulled for one hour (isolating system from vacuum by closing valves). System shall be allowed to normalize and then the initial vacuum readings shall be recorded. The vacuum shall be recorded at intervals of [15 minutes] [1 hour] [_____] for the duration of the [8] [_____] hour test. Measurable leakage (loss of vacuum) after corrections have been made for changes in atmospheric conditions in conformity with the relationship \( T(1)P(2)=T(2)P(1) \), in which \( T \) and \( P \) denote absolute temperature and total pressure, respectively, and the numbers denote initial and final readings, shall be repaired and retested.

3.9.5 Hanger Acceptance Testing

Bring pipe systems up to operating pressures and temperatures. Recycle systems to duplicate operating conditions. Submit reports of all inspections or tests, including analysis and interpretation of test results. Identify each report and test methods used, and record test results.

3.9.6 Demonstration

Upon completion of the work and before final acceptance, submit a Statement of Satisfactory Installation signed by the principal officer of the contracting firm stating that: the installation is satisfactory and in accordance with the contract plans and specifications; the manufacturer's prescribed procedures and techniques have been followed; and at a time designated by the Contracting Officer. The services of a qualified engineer shall be provided for a period of not less than [8] [_____] hours to instruct a representative of the Government in the contents of the operation and maintenance manuals for the equipment furnished under this Section. Submit [6] [_____] copies, in indexed booklet form, of site specific operation and maintenance manual for the piping system including system operation, system maintenance, equipment operation, and equipment maintenance manuals described below. If operation and maintenance manuals are provided in a common volume, they shall be clearly differentiated and separately indexed. The field instructions shall cover the items contained in the bound instructions.

a. The System Operation Manual shall include but not be limited to the following:

(1) Maps showing piping layout and locations of system valves and line markers.

(2) Step-by-step procedures required for system startup, operation, and shutdown. System components and equipment shall be indexed to the maps.

(3) Isolation procedures and valve operations to shut down or isolate each section of the system. Valves and other system components shall be indexed to the maps.

(4) Descriptions of Site Specific Standard Operation Procedures
including permanent and temporary pipe repair procedures, system
restart and test procedures for placing repaired lines back in
service, and procedures for abandoning piping and system
components.

(5) Descriptions of Emergency Procedures including: isolation
procedures including required valve operations with valve
locations indexed to the map, recommended emergency equipment, and
checklist for major emergencies.

b. The Equipment Operation Manual shall include but not be limited to
detail drawings, equipment data, and manufacturer supplied operation
manuals for equipment, valves and system components.

c. The System Maintenance Manuals shall include but not be limited to:

(1) Maintenance check list for entire system.

(2) Descriptions of site specific standard maintenance procedures.

(3) Maintenance procedures for installed cathodic protection systems.

(4) Piping layout, equipment layout, and control diagrams of the
systems as installed.

(5) Identification of pipe materials and manufacturer by location,
pipe repair procedures, and jointing procedures at transitions to
other piping materials or piping from different manufacturer.

d. The Equipment Maintenance Manuals shall include but not be limited to
the following:

(1) Identification of valves and other equipment by materials,
manufacturer, vendor identification and location.

(2) Maintenance procedures and recommended maintenance tool kits for
valves and equipment.

(3) Recommended repair methods, either field repair, factory repair,
or whole-item replacement for each valve component or piece of
equipment or component item.

(4) Routine maintenance procedures, possible breakdowns and repairs,
and troubleshooting guide.

-- End of Section --