SECTION TABLE OF CONTENTS

DIVISION 31 - EARTHWORK

SECTION 31 05 21

GEOGRID SOIL REINFORCEMENT

08/08

PART 1 GENERAL

1.1 MEASUREMENT AND PAYMENT
1.2 REFERENCES
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
1.5 DELIVERY, STORAGE, AND HANDLING
 1.5.1 Labeling
 1.5.2 Handling
 1.5.3 Storage

PART 2 PRODUCTS

2.1 GEOGRID REINFORCEMENT
 2.1.1 Geogrid Reinforcement Properties
 2.1.1.1 Allowable Strength
 2.1.1.2 Interface Friction Testing
 2.2 SPLICES

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Subgrade Preparation
 3.1.2 Anchor Trench
 3.1.3 Placement
 3.1.4 Overlaps and Fasteners
 3.1.5 Splines
 3.1.6 Penetrations
3.2 COVER SOIL PLACEMENT
3.3 OVERSIGHT
3.4 CONFORMANCE TESTING

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for geogrid reinforcement to enhance the veneer soil stability for landfill liners and covers.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: Geometric requirements such as slope length, and construction limits should be shown on the drawings.

1.1 MEASUREMENT AND PAYMENT

The unit of measurement for soil slope reinforcement will be square meters (SM) yards (SY). Overlaps for splices (if allowed) and for the Contractor's convenience will not be measured for payment. Payment will be made at the respective unit price listed on the bidding schedule. Payment will be full compensation for furnishing all material, labor, equipment, supplies and incidentals to complete the work.
1.2 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D4355/D4355M (2014) Deterioration of Geotextiles from Exposure to Light, Moisture and Heat in a Xenon-Arc Type Apparatus

1.3 SUBMITTALS

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Submit a summary of the manufacturer's qualifications and [_____] copies of the manufacturer's quality control (QC) manual a minimum of 7 days prior to delivery of geogrid to the site. The reinforcement manufacturer shall provide a qualified and experienced representative to be available on an as-needed basis during construction. The representative shall visit the site for consultation [at least once during construction] [as requested by the Contracting Officer].

1.5 DELIVERY, STORAGE, AND HANDLING

Check products upon delivery to ensure that the proper material has been received and is dry and undamaged. Protect the materials from damage and exposure following the guidelines presented in ASTM D4873/D4873M.

1.5.1 Labeling

Label each roll with the manufacturer's name, product identification, roll dimensions, lot number, and date manufactured.

1.5.2 Handling

Handle and unload geogrid rolls by hand, or with load carrying straps, a fork lift with a stinger bar, or an axial bar assembly. Geosynthetic rolls shall not be dragged, lifted by one end, lifted by cables or chains, or dropped to the ground.
1.5.3 Storage

Protect geogrid from deleterious materials, chemicals, sparks and flames, temperatures in excess of 70 degrees C 160 degrees F, and any other environmental condition that may degrade the physical properties. If stored outdoors, the rolls shall be elevated from the ground surface. Protect geogrids, except for extruded grids, with an opaque waterproof cover.

PART 2 PRODUCTS

2.1 GEOGRID REINFORCEMENT

**

NOTE: Polyester is susceptible to hydrolysis in alkaline conditions. A high molecular weight and low carboxyl end group number limit the hydrolysis. Normally, a mill certificate or certification of these properties is adequate. The molecular weight of polyester geosynthetics is determined from GSI GRI GG6, "Determination of the Number Average Molecular Weight of Polyethylene Terephthalate (PET) yarns Based on a Relative Viscosity Value", and ASTM D4603, "Determining Inherent Viscosity of Poly (Ethylene Terephthalate) (PET) by Glass Capillary Viscometer." The carboxyl end group number is determined from GSI GRI GG7, "Carboxyl End Group Content of Polyethylene Terephthalate (PET) Yarns."

The geogrid sample is intended to be for visual demonstration prior to product delivery. Conformance testing samples, if required, should be obtained from material actually delivered to the job. If testing is to be performed for prequalification, the minimum sample size should be 1 meter (36 inches) in length and the full roll width. Although 1 square meter (yard) will provide enough material for testing, the full roll width should be sampled since it provides a better selection of specimen locations, it clearly shows the machine and cross directions, and the difference in waste and shipping costs is negligible.

**

Submit one properly identified 600 by 600 mm 24 by 24 inches minimum size geogrid sample with the fasteners proposed for use. Provide a geogrid that is a geosynthetic manufactured for reinforcement applications and a regular network of integrally connected polymer tensile elements with aperture geometry sufficient to permit significant mechanical interlock with the surrounding soil, aggregate, or other fill materials.

a. Submit manufacturer's certified raw and roll material test reports including ultimate strength performed in accordance with ASTM D6637 or ASTM D4595 (modified). Test results not meeting the requirements in Table 1 or in the approved Manufacturer's Quality Control Manual will result in rejection of applicable rolls. Provide certified test reports a minimum of 7 days prior to delivery of geogrid to the site.

b. The geogrid structure shall be dimensionally stable and able to retain
its geometry under manufacture, transport and installation. The geogrid shall be manufactured with 100 percent virgin resin consisting of polyethylene, polypropylene, polyester, or other approved material and with a maximum of 5 percent in-plant regrind material. Polyester resin shall have a minimum molecular weight of 25,000 and a carboxyl end group number less than 30. Polyethylene and polypropylene shall be stabilized with long term antioxidants.

c. Submit Certificates of Compliance for the materials provided and results of conformance testing. Submit an affidavit certifying raw and roll material test results submitted are accurate and that the reinforcement meets the requirements of the project specifications. The affidavit shall be signed by an official authorized to certify on behalf of the manufacturer. [If the affidavit is dated after award of the contract and/or is not specific to the project, the supplier shall attach a statement certifying that the affidavit addressed to the wholesale company is representative of the material supplied.] The documents shall include a statement confirming that all purchased resin used to produce reinforcement is virgin resin. Provide affidavit a minimum of 7 days prior to delivery of geogrid to the site.

2.1.1 Geogrid Reinforcement Properties

The reinforcement shown on the contract drawings shall meet the property requirements listed in Table 1. Reinforcement strength requirements represent minimum average roll values in the machine direction.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Strength (Ta) at [5] [10] percent strain</td>
<td>[_____] kN/m lb/inch</td>
<td>GSI GRI GG4a or GSI GRI GG4b</td>
</tr>
<tr>
<td>UV Resistance</td>
<td>70 percent after 500 hours</td>
<td>ASTM D4355/D4355M</td>
</tr>
<tr>
<td>Coefficient of Interaction* for Pullout</td>
<td>0.85</td>
<td>ASTM D6706</td>
</tr>
<tr>
<td>Interface Friction at [Peak] [Residual], Degrees</td>
<td>[_____]</td>
<td>ASTM D5321/D5321M</td>
</tr>
</tbody>
</table>

*Submit the coefficient of interaction for pull-out resistance of the proposed geogrid in a soil of similar gradation and texture to the material that will be used for fill in the reinforced zone. Establish the coefficient of interaction in accordance with ASTM D6706. Provide certified test results a minimum of 7 days prior to delivery of geogrid to the site.

2.1.1.1 Allowable Strength

Submit Geogrid allowable strength calculated in accordance with GSI GRI GG4a or GSI GRI GG4b. The calculations shall itemize each reduction factor. Account for splice efficiency in the calculations. Provide calculations a minimum of 7 days prior to delivery of geogrid to the site. Allowable strength is based on reduction factors for installation damage, durability, and creep that are applicable to site specific conditions. Determine reduction factors in accordance with the
test procedures documented in GSI GRI GG4a or GSI GRI GG4b. The minimum reduction factor for durability shall be 1.1 for polyethylene and polypropylene geogrids and 1.15 for coated polyester geogrids. The minimum reduction factor for installation damage shall be 1.1 for all polymers. The reduction factor for creep shall be based on testing performed in accordance with ASTM D5262 at the strain specified in Table 1.

2.1.1.2 Interface Friction Testing

**
NOTE: If the geogrid will not be placed in an anchor trench, interface friction testing should be conducted to determine the runout length for the geogrid. All potential slip interfaces beneath the geogrid need to be tested in computing the required runout length. Normal stresses specified should be representative of anticipated field conditions. Selection of peak versus residual values should be based on anticipated interface displacements.
**

Submit certified laboratory interface friction test results including description of equipment and test method, a minimum of 7 days prior to delivery of geogrid to the site. Conduct laboratory interface friction tests on the following interfaces: [______]. The frequency of testing for each interface shall be at a rate of [1] [_____] per project. Conduct tests in accordance with ASTM D5321/D5321M. Use normal stresses of [______], [______], and [______] kPa [______], [______], and [______] psi along with a displacement rate of [5.0] [_____] mm [0.2] [_____] inches per minute. Orient geosynthetics such that the shear force is parallel to the down slope orientation of these components in the field.

2.2 SPLICES

Splices shall consist of a standard method or device recommended by the manufacturer of the geogrid. Splices will not be allowed unless identified on the approved layout drawings. Splices shall be at least 75 percent efficient. Demonstrate the splice efficiency through tests performed in accordance with GSI GRI GG4a or GSI GRI GG4b. Splicing may consist of overlaps, fusion wedge welding, sewing, or bodkin connections. Splicing methods that are dependent on installer experience and skill level, such as hot air and torch-applied open flame, are not acceptable. Construct overlap splices by placing a minimum of 50 mm 2 inches of soil between the layers of geogrid.

PART 3 EXECUTION

3.1 INSTALLATION

Submit Geogrid layout plan along with anchorage and joint details, sequencing and construction procedures, a minimum of 7 days prior to geogrid placement.

3.1.1 Subgrade Preparation

**
NOTE: For landfill slope reinforcement applications, geogrids are typically placed directly on the underlying geosynthetic surface.
**
Immediately prior to placement of the geogrid, the surface on which the geogrid will be placed shall be free of rock and other material that could damage the geogrid or the underlying geosynthetics.

3.1.2 Anchor Trench

NOTE: Delete this paragraph if an anchor trench is not required. Anchor trench dimensions need to be determined on a site specific basis.

Anchor trench dimensions must be computed based on the pull-out resistance of the geogrid. However, pull-out resistance tests (ASTM D6706) are typically not performed due to the cost and complexity of this test procedure. Data bases of interaction coefficients for different geogrids, soils, and loading conditions are kept by geogrid manufacturers. Information from these data bases should be used to design the anchorage system.

Place the anchor trench a minimum of \(610 \ [__] \text{ mm} \ [24 \ [__] \text{ inches}\) back from the edge of the slope to be covered. The anchor trench shall be a minimum of \(610 \ [__] \text{ mm} \ [24 \ [__] \text{ inches}\) deep and \(610 \ [__] \text{ mm} \ [24 \ [__] \text{ inches}\) wide. Remove ponded water from the anchor trench while the trench is open. Trench corners shall be rounded to avoid sharp bends in the geogrid. Remove loose soil, rocks larger than \(51 \ [__] \text{ mm} \ [2 \ [__] \text{ inches}\) in diameter, and any other material which could reduce the effectiveness of the geogrid from the surfaces of the trench. Extend the geogrid down the front wall and across the bottom of the anchor trench. Perform backfilling and compaction of the anchor trench in accordance with Section 31 00 00 EARTHWORK.

3.1.3 Placement

Install the geogrid in accordance with the Manufacturer's recommendations. Unroll the geogrid in the direction of reinforcement. After a layer of geogrid has been placed, use suitable means, that do not damage the underlying geosynthetics, to hold the geogrid flat and in place until cover soil can be placed. Geogrid damaged during placement and covering shall be removed and replaced at no additional cost to the Government.

3.1.4 Overlaps and Fasteners

NOTE: Adjacent rolls of uniaxial geogrid should not be overlapped. The plastic-to-plastic contact has reduced frictional resistance.

Adjacent rolls of geogrid shall be positioned edge-to-edge and loosely fastened to maintain alignment during fill placement. Adjacent rolls shall not be overlapped. Use fastener type and spacing as recommended by the manufacturer and approved by the Contracting Officer. Metallic fasteners will not be allowed.
3.1.5 **Splices**

Submit test data showing splice efficiency. Provide certified test results a minimum of 7 days prior to delivery of geogrid to the site. Locate splices, if allowed, within the bottom one-third of the slope. Limit splicing to only one splice per reinforcing strip and no two consecutive reinforcing strips shall include a splice. Individual reinforcing lengths less than 3 meters 10 feet shall not be used. Splices in geogrid reinforcement shall be pulled and held taut during cover soil placement.

3.1.6 **Penetrations**

For small penetrations through geogrids, only transverse members of the geogrid shall be cut. The load-carrying longitudinal (machine direction) members shall be spread around the penetration. For larger penetrations, additional geogrid shall be placed on each side of the penetration and spliced to the adjacent geogrid to compensate for any longitudinal tensile members that must be cut.

3.2 **COVER SOIL PLACEMENT**

**

NOTE: The maximum acceptable particle size of cover soil is a function of the minimum aperture size of the geogrid and the acceptable maximum particle size against the underlying geosynthetic layer. The book titled "Designing with Geosynthetics" by Dr. Robert Koerner provides guidance on computing the acceptable maximum particle size of cover soil material based on the appertature size of the geogrid.

**

Cover geogrid with soil within [5] [_____] calendar days of acceptance. Keep the geogrid smooth and taut during placement of cover materials. Cover soil shall not be dropped onto the geogrid from a height greater than 1 m 3 feet. The soil shall be pushed out over the geogrid in an upward tumbling motion. Place soil from the bottom of the slope upward. The initial loose soil lift thickness shall be [350] [_____] mm [12] [_____] inches. Use equipment with ground pressures less than 50 kPa 7 psi to place the first lift over the geogrid. A minimum of [460] [610] [915] [_____] mm [18] [24] [36] [_____] inches of soil shall be maintained between construction equipment with ground pressures greater than 50 kPa 7 psi and the geogrid. Equipment placing cover soil shall not stop abruptly, make sharp turns, spin their wheels, or travel at speeds exceeding [2.2] [_____] m/s [5] [_____] mph. Additional cover soil material and placement requirements are described in Section 31 00 00 EARTHWORK.

3.3 **OVERSIGHT**

Keep a QA Representative present at all times during geogrid installation.

3.4 **CONFORMANCE TESTING**

**

NOTE: Conformance testing is performed to verify quality control test results submitted by the
manufacturer, to detect degradation during shipping and storage, and to verify the correct product is supplied. Verification of quality control by the manufacturer and detecting degradation during shipping and storage is not economically justified for small jobs. Unlike reinforcing steel for concrete, geosynthetics are difficult to identify in the field, and even experienced personnel can sometimes mistake the product identity of unlabeled material. Testing after delivery to verify the correct product was supplied may be advisable for critical structures. The strength is usually the most critical property to verify.

**
Submit results of conformance testing. Conformance testing expenses are the responsibility of the Contractor. Perform testing using a commercial testing laboratory selected by the Contractor and approved by the Contracting Officer. The laboratory shall be accredited via the Geosynthetic Accreditation Institute's Laboratory Accreditation Program (GAI-LAP) for the tests the laboratory will be required to perform. The Contracting Officer reserves the right to direct the location and select the material for samples. Conformance test results shall equal or exceed results reported on the Manufacturer's certified roll material test reports.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST DESIGNATION</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide Width Strip Tensile</td>
<td>[ASTM D4595 (mod)] or</td>
<td>[____]</td>
</tr>
<tr>
<td>Strength</td>
<td>[ASTM D6637]</td>
<td></td>
</tr>
</tbody>
</table>

Modify ASTM D4595 for geogrids considering recommendations in GSI GRI GG6. Express the tensile strength on a unit length basis by substituting n*a for Ws, where:

Ws = specimen width, (mm inches)

n = number of ribs in the sample (must be a whole number)

a = nominal rib spacing for the product tested, (mm inches)

-- End of Section --