UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated April 2022

SECTION TABLE OF CONTENTS

DIVISION 31 - EARTHWORK

SECTION 31 05 19.13

GEOTEXTILES FOR EARTHWORK

02/21

PART 1  GENERAL

1.1  UNIT PRICES
   1.1.1  Payment
   1.1.2  Measurement
   1.1.3  Unit of Measure
1.2  REFERENCES
1.3  SUBMITTALS
1.4  DELIVERY, STORAGE, AND HANDLING

PART 2  PRODUCTS

2.1  MATERIALS
   2.1.1  General
   2.1.2  Geotextile Fiber
   2.1.3  Seams
   2.1.4  Securing Pins
2.2  INSPECTIONS, VERIFICATIONS, AND TESTING
   2.2.1  Manufacturing and Sampling
      2.2.1.1  Conformance Testing
      2.2.1.2  Factory Sampling
      2.2.1.3  Needle Punched Geotextile
      2.2.1.4  Manufacturer Certification
   2.2.2  Site Verification and Testing

PART 3  EXECUTION

3.1  SURFACE PREPARATION
3.2  INSTALLATION OF THE GEOTEXTILE
   3.2.1  General
   3.2.2  Placement
3.3  PROTECTION
3.4  PLACEMENT OF CUSHIONING MATERIAL
3.5  OVERLAPPING AND SEAMING
3.5.1 Overlapping
3.5.2 Sewn Seams
3.6 [FIELD TESTING

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for furnishing, hauling, and placing the geotextile, complete, as specified and shown, and maintaining the geotextile until placement of the granular filter material, bedding material, and/or riprap cover is completed and accepted. This section was originally developed for USACE Civil Works projects.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This guide specification is to facilitate the preparation and review of specifications for procurement and installation of woven and nonwoven geotextiles as filter material. It is based on field performance and the laboratory testing of a limited number of geotextiles. Geotextiles possess greatly varying engineering properties and physical characteristics. Such variations require the designer to decide which testing method and what
test criteria are necessary for each application. The apparent opening size (AOS), percent open area (POA), geotextile permeability (Kg), and strength test described in the specifications that follow are physical property tests. While it is acceptable to specify minimum thickness value where it governs performance, it is inappropriate to use thickness to identify a geotextile. Result of these tests are used to judge the acceptability of a geotextile for a particular use. Prospective geotextile suppliers should furnish these test results before their geotextile will be considered for use, or before contract specifications are adjusted to permit the use of geotextiles whose properties are outside the limits imposed by this guide. For severe soil conditions and/or for a project using a large amount of geotextiles, the specifications should require that the applicable tests be run during construction, either at a specific frequency or upon demand of the Contracting Officer. For projects requiring small amounts of geotextiles under normal soil conditions the physical properties of the geotextile supported by written authentication from an authorized representative of the manufacturers may be accepted.

The actual life of geotextiles is not known, and their use in inaccessible areas must be considered carefully. Therefore geotextiles should not be used as filter material in toe drains, buried collector system, relief wells, or within any portions of embankments. Caution is advised in using geotextiles on the upstream face of earth dams or to wrap permanent piezometers.

Geotextiles are basically inert materials for typical civil engineering applications. However certain applications may expose the geotextile to chemical or biological activities that could drastically influence the filtration properties of the geotextile. Specific site conditions should be reviewed, and if such conditions exist, testing and specifications should be written to overcome it.

Geotextile strength requirements vary with intended use and construction procedures. Experience has shown that when a heavier non-woven geotextile is used, the bedding material can often be reduced in thickness or be completely eliminated. TABLE I in SI ENGLISH UNITS (1) presents the most important geotextile strength properties. It should be noted that the strength requirements listed are only a guideline to the minimum values required for survivability. Specific applications may require additional testing.

Filter design criteria for geotextiles are based on the apparent opening size (AOS, which is designated as EOS in the previous guide specification), percent
open area (POA, for woven only), geotextile permeability (Kg), and an appropriate percent passing size of the soil. For piping analysis computations, AOS must be expressed as an equivalent U.S. standard sieve opening in millimeters. To assure adequate resistance to reduction in permeability over time (clogging) and sufficient long term flow through the soil/woven geotextile system, POA criteria, as expressed in the next note, can be used.

| TABLE I  
RECOMMENDED GEOTEXTILE STRENGTH REQUIREMENTS IN METRIC UNITS (1) |
<table>
<thead>
<tr>
<th>GEOTEXTILE USE</th>
<th>ASTM D4632 TENSILE (N) (lbs)</th>
<th>ASTM D4355/D4355M INTRAVIOLET DEGRADATION AT 500 HOURS (PERCENT)</th>
<th>ASTM D6241 PUNCTURE (N)</th>
<th>ASTM D4533/D4533M TEAR (N) (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIPRAP SLOPE PROTECTION FILTER WITH GREATER THAN 100 mm 4 INCHES BEDDING</td>
<td>515115</td>
<td>50</td>
<td>18040</td>
<td>18040</td>
</tr>
<tr>
<td>RIPRAP SLOPE PROTECTION WITHOUT BEDDING</td>
<td>900200</td>
<td>50</td>
<td>36080</td>
<td>18040</td>
</tr>
<tr>
<td>DRAINAGE TRENCH</td>
<td>515115</td>
<td>50</td>
<td>18040</td>
<td>11025</td>
</tr>
<tr>
<td>SLAB DRAIN</td>
<td>515115</td>
<td>50</td>
<td>18040</td>
<td>11025</td>
</tr>
<tr>
<td>ARTICULATED MATTRESS OR INTERLOCKING BLOCK SLOPE PROTECTION FILTER</td>
<td>515115</td>
<td>50</td>
<td>18040</td>
<td>18040</td>
</tr>
</tbody>
</table>

(1) Strength values are for the weaker principal direction.

The designer must specify geotextile properties which will allow retention of the soil being protected, permit sufficient flow through the textile, and prevent clogging. The designer should select the AOS, POA, and Kg, based on criteria in TABLE II. The AOS requirement should be specified as a range, to allow for manufacturing tolerance. It is preferable to specify a geotextile with opening as large as allowed by the design criteria. The smallest sieve opening size of the AOS range should not be smaller than the 0.125 mm sieve U.S. Standard sieve size No. 120.
# TABLE II GEOTEXTILE FILTER DESIGN CRITERIA

<table>
<thead>
<tr>
<th>PROTECTED SOIL (1)</th>
<th>SOIL PIPING (2)</th>
<th>WOVEN</th>
<th>NON-WOVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PERCENT PASSING 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>µm NO. 200 SIEVE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 5</td>
<td>$0_{95}/D_{85} &lt; 1$</td>
<td>POA 10 percent</td>
<td>Kg 5Ks</td>
</tr>
<tr>
<td>5 to 50</td>
<td>$0_{95}/D_{85} &lt; 1$</td>
<td>POA 4 percent</td>
<td>Kg 5Ks</td>
</tr>
<tr>
<td>50 to 85</td>
<td>$0_{95}/D_{85} &lt; 1$</td>
<td>POA 4 percent</td>
<td>Kg 5Ks</td>
</tr>
<tr>
<td></td>
<td>$0_{95} &lt; 0.212$ mm No. 70 U.S. sieve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0_{95} &lt; 0.125$ No. 120 U.S. sieve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0_{95}/D_{85} &lt; 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Recent experiences have indicated that $0_{95}$ (i.e. AOS) increased with increasing relative density, Dr, and it is higher for uniform soil than well graded soil of similar density and average particle size.

(2) If the protected soil contains appreciable quantities of material retained on the 4.75 mm No. 4 U.S. sieve use only the soil passing the 4.75 mm No. 4 U.S. sieve in selecting the $0_{95}$ of the geotextile.

(3) Kg is the permeability of the geotextile and Ks is the permeability of the protected soil.

Satisfactory geotextile performance is greatly dependent on the field preparation of the surface of the protected soil and the installation procedure.

The following information is related to TABLE 1. Geotextile calculations should be based on procedure from an accepted reference. Worst placement conditions should be considered since stresses generated during installation often exceed post construction stresses.

(1) The requirement of permittivity (as defined in ASTM D4491/D4491M) should be chosen in such a manner that the permeability of the geotextile should always be at least five times greater than the permeability of the adjacent soil during the life of the protected earth structure.

(2) The minimum seam strength listed in TABLE 1 is based on the tensile strength of the parent geotextile material. Seam strength can also be considered as not less than 90 percent of the unaged grab tensile strength of the geotextile in the applicable direction.

**NOTE: TO DOWNLOAD UFGS GRAPHICS**
Figures described below are available on-line for download. Go to http://www.wbdg.org/ffc/dod/unified-facilities-guide-specifications-ufgs/forms-graphics-tables

Figure 1. Correct geotextile placement for current acting parallel to bank or for wave attack on the bank.

Figure 2. Placement of geotextile on bank subject to streamflow action. Revetment materials have not yet been placed on the geotextile.

Figure 3. Geotextile on bank subject to wave attack showing placement of vertical-wall key trench at toe and top bank. Revetment materials have not yet been placed on geotextile.

Figure 4. Key trench design used when soil conditions do not permit construction of vertical walls.

The Designer must comply with the requirements of the following Regulatory Requirements:


U.S. DEPARTMENT OF INTERIOR, BUREAU OF RECLAMATION:


**************************************************************************

1.1 UNIT PRICES

**************************************************************************

NOTE: If Section 01 20 00 PRICE AND PAYMENT PROCEDURES is included in the project specifications, this paragraph title (UNIT PRICES) should be deleted from this section and the remaining appropriately edited subparagraphs below should be inserted into Section 01 20 00.

**************************************************************************

1.1.1 Payment

Payment will be made at the contract unit price and will constitute full compensation to the Contractor for providing all plant, labor, material, and equipment and performing all operations necessary for the complete and satisfactory installation of the geotextile. The following items are included in the contract unit price for Geotextiles and will not be counted a second time in the process of determining the extent of geotextile placed: Material and associated equipment and operation used
in laps, seams, or extra length; securing pins and associated material, equipment, and operations; and material and associated equipment and operations used to provide cushioning layer of sand or gravel or both to permit increase in allowable drop height of stone. No payment will be made for geotextiles replaced because of waste, contamination, damage, repair, or due to Contractor fault or negligence.

1.1.2 Measurement

Installed geotextiles will be measured for payment in place to the nearest [_____] square meter feet of protected area as delineated in the drawings.

1.1.3 Unit of Measure

Unit of measure: [_____] square meter feet.

1.2 REFERENCES

******************************************************************************

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

******************************************************************************

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)


ASTM D4354 (2012; R 2020) Sampling of Geosynthetics for Testing

ASTM D4355/D4355M (2014) Deterioration of Geotextiles from Exposure to Light, Moisture and Heat in a Xenon-Arc Type Apparatus


Tearing Strength of Geotextiles

ASTM D4632/D4632M (2015a) Grab Breaking Load and Elongation of Geotextiles


ASTM D4884/D4884M (2014a) Strength of Sewn or Thermally Bonded Seams of Geotextiles


U.S. ARMY CORPS OF ENGINEERS (USACE)


1.3 SUBMITTALS

**************************************************************************
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list, and corresponding submittal items in the text, to reflect only the submittals required for the project. The Guide Specification technical editors have classified those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For Army projects, fill in the empty brackets following the "G" classification, with a code of up to three characters to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" classification indicates submittals required as proof of compliance for sustainability Guiding Principles Validation or Third Party Certification and as described in Section 01 33 00 SUBMITTAL
PROCEDURES.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-04 Samples
Geotextiles

Minimum of [_____] [60] days prior to the beginning of installation of the same textile

SD-06 Test Reports
Geotextiles
Site Verification

SD-07 Certificates
Geotextiles
Needle Punched Geotextile

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver only approved geotextile [rolls][, panels, ][____] to the project site. All geotextile shall be labeled, shipped, stored, and handled in accordance with ASTM D4873/D4873M. No hooks, tongs, or other sharp instruments shall be used for handling geotextile.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 General

**************************************************************************
NOTE: Nonwoven geotextiles are suitable for filtering fine-grained soils whereas woven or nonwoven are suitable for well graded granular soils.
**************************************************************************

Provide geotextile that is a [woven][non-woven] pervious sheet of plastic yarn as defined by ASTM D123 matching or exceeding the minimum average roll values listed in TABLE 1. Strength values indicated in the table are for the weaker principal direction.

| TABLE 1 |
| MINIMUM PHYSICAL REQUIREMENTS FOR DRAINAGE GEOTEXTILE |

SECTION 31 05 19.13  Page 10
### PROPERTY

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>UNITS</th>
<th>ACCEPTABLE VALUES</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAB STRENGTH</td>
<td>N lb</td>
<td>[_____]</td>
<td>ASTM D4632/D4632M</td>
</tr>
<tr>
<td>SEAM STRENGTH</td>
<td>N lb</td>
<td>[_____]</td>
<td>ASTM D4632/D4632M</td>
</tr>
<tr>
<td>PUNCTURE</td>
<td>N lb</td>
<td>[_____]</td>
<td>ASTM D6241</td>
</tr>
<tr>
<td>TRAPEZOID TEAR</td>
<td>N lb</td>
<td>[_____]</td>
<td>ASTM D4533/D4533M</td>
</tr>
<tr>
<td>PERMEABILITY</td>
<td>cm/sec</td>
<td>[_____]</td>
<td>ASTM D4491/D4491M</td>
</tr>
<tr>
<td>APPARENT OPENING SIZE</td>
<td>U.S. SIEVE</td>
<td>[_____]</td>
<td>ASTM D4751</td>
</tr>
<tr>
<td>PERMITTIVITY</td>
<td>sec⁻¹</td>
<td>[_____]</td>
<td>ASTM D4491/D4491M</td>
</tr>
<tr>
<td>ULTRAVIOLET DEGRADATION</td>
<td>Percent</td>
<td>50 at 500 Hrs</td>
<td>ASTM D4355/D4355M</td>
</tr>
</tbody>
</table>

#### 2.1.2 Geotextile Fiber

Fibers used in the manufacturing of the geotextile shall consist of a long-chain synthetic polymer composed of at least 85 percent by weight of polyolefins, polyesters, or polyamides. Add stabilizers and/or inhibitors to the base polymer, if necessary, to make the filaments resistant to deterioration caused by ultraviolet light and heat exposure. Reclaimed or recycled fibers or polymer shall not be added to the formulation. Geotextile shall be formed into a network such that the filaments or yarns retain dimensional stability relative to each other, including the edges. Finish the edges of the geotextile to prevent the outer fiber from pulling away from the geotextile.

#### 2.1.3 Seams

****************************

**NOTE:** Most geotextiles are manufactured in widths of 1.8 to 5.5 m 6 to 18 feet, but to reduce the number of overlaps, wider sections may be produced by attaching narrow sections together. Pre-assembled sections of 11-m 36-foot widths or more are preferred to keep the number of overlaps to a minimum.

****************************

Sew the seams of the geotextile with thread of a material meeting the chemical requirements given above for geotextile yarn or bond the seams by cementing or by heat. Attach the sheets of geotextile at the factory or another approved location, if necessary, to form sections not less than [_____] meter [_____] feet wide. Test seams in accordance with method ASTM D4884/D4884M. The strength of the seam shall be not less than 90 percent of the required grab tensile strength of the unaged geotextile in any principal direction.

#### 2.1.4 Securing Pins

****************************

**NOTE:** The use of security pins should be restricted.
as much as possible since holes in geotextile allow pin boils to form and remove material from beneath geotextile and cause failure of system.

Secure the geotextile to the embankment or foundation soil by pins to prevent movement prior to placement of revetment materials. Other appropriate means to prevent movement such as staples, sand bags, and stone could also be used. Insert securing pins through both strips of overlapped geotextile along the line passing through midpoints of the overlap. Remove securing pins as placement of revetment materials are placed to prevent tearing of geotextile or enlarging holes. Maximum spacing between securing pins depends on the steepness of the embankment slope. The maximum pins spacing shall be equal to or less than the values listed in TABLE 2. When windy conditions prevail at the construction site, increase the number of pins upon the demand of the Contracting Officer. Anchor terminal ends of the geotextile with key trench or apron at crest, toe of the slope and upstream and downstream limits of installation.

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>MAXIMUM SPACING FOR SECURING PINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBANKMENT</td>
<td>SPACING, meter feet</td>
</tr>
<tr>
<td>STEEPER THAN 1V ON 3H</td>
<td>0.62</td>
</tr>
<tr>
<td>1V ON 3H TO 1V ON 4H</td>
<td>1.03</td>
</tr>
<tr>
<td>FLATTER THAN 1V ON 4H</td>
<td>1.55</td>
</tr>
</tbody>
</table>

2.2 INSPECTIONS, VERIFICATIONS, AND TESTING

2.2.1 Manufacturing and Sampling

Geotextiles and factory seams shall meet the requirements specified in TABLE 1.

2.2.1.1 Conformance Testing

Perform conformance testing in accordance with the manufacturers approved quality control manual. Submit manufacturer's quality control conformance test results.

2.2.1.2 Factory Sampling

Randomly sample geotextiles in accordance with ASTM D4354 (Procedure Method A). Sample factory seams at the frequency specified in ASTM D4884/D4884M. Provide all samples from the same production lot as will be supplied for the contract, of the full manufactured width of the geotextile by at least 3 m 10 feet long, except that samples for seam strength may be a full width sample folded over and the edges stitched for a length of at least 1.5 m 5 feet. Samples submitted for testing shall be identified by manufacturers lot designation.

2.2.1.3 Needle Punched Geotextile

For needle punched geotextile, provide manufacturer certification that the
geotextile has been inspected using permanent on-line metal detectors and
does not contain any needles.

2.2.1.4 Manufacturer Certification

[Upon delivery of the geotextile, submit duplicate copies of the written
certificate of compliance signed by a legally authorized official of the
manufacturer. The certificate shall state that the geotextile shipped to
the site meets the chemical requirements and exceeds the minimum average
roll value listed in TABLE 1.] [All brands of geotextile and all seams to
be used will be accepted on the basis of mill certificates or affidavits.
Submit duplicate copies of the mill certificate or affidavit signed by a
legally authorized official from the company manufacturing the
ggeotextile. The mill certificate or affidavit shall attest that the
ggeotextile meets the chemical, physical and manufacturing requirements
stated in this specification.]

2.2.2 Site Verification and Testing

**************************************************************************
NOTE: The need for, and amount of, site
verification testing should be based on the severity
of site conditions and the amount of textile being
placed.
**************************************************************************

Collect samples at approved locations upon delivery to the site [at the
request of the Contracting Officer][in accordance with ASTM D4354
(Procedure Method B)][at a frequency of once per 9290 square meters
100,000 square feet]. Test samples to verify that the geotextile meets
the requirements specified in TABLE 1. Identify samples by manufacturers
name, type of geotextile, lot number, roll number, and machine direction.
Perform testing at an approved laboratory. Submit test results from the
lot under review for approval prior to deployment of that lot of
ggeotextile. Rolls which are sampled shall be immediately rewrapped in
their protective covering.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Prepare surface, on which the geotextile will be placed, to a relatively
smooth surface condition in accordance with the applicable portion of this
specification and shall be free from obstruction, debris, depressions,
erosion feature, or vegetation. Remove any irregularities so as to ensure
continuous, intimate contact of the geotextile with all the surface. Any
loose material, soft or low density pockets of material, shall be removed;
erosion features such as rills, gullies etc. shall be graded out of the
surface before geotextile placement.

3.2 INSTALLATION OF THE GEOTEXTILE

**************************************************************************
NOTE: This paragraph describes installation in an
open area and on generally planar surfaces. For
installation of geotextiles in drainage systems or
about collector pipes, additional specification
requirements may need to be added. The use of
ggeotextiles to wrap collector pipes should be
avoided whenever possible.

Minimum overlaps should be specified at 300 to 450 mm 
12 to 18 inches depending on the specified 
orientation of the overlap to the direction of wave 
attack, velocity, or seepage. For under-water 
placement, minimum overlap should be 900 mm 3 feet.

Geotextiles will bridge small surface features in 
the slope and allow erosion to occur beneath the 
geotextile. Surface drainage should be directed 
away from the top of slope to prevent erosion under 
the geotextile. Surface flow should be brought 
downslope at controlled points such as lined ditches.

**************************************************************************

3.2.1 General

Place the geotextile in the manner and at the locations shown. At the 
time of installation, reject the geotextile if it has defects, rips, 
holes, flaws, deterioration or damage incurred during manufacture, 
transportation or storage.

3.2.2 Placement

**************************************************************************

NOTE: The placement of the geotextile relative to 
this paragraph may follow the following general 
procedures. (FIGURES referenced in this note are 
available on-line, see the note above).

(1) For current acting parallel to the bank the 
geotextile will be placed with the long dimension 
parallel to the current (Fig. 1a). Geotextile 
placement must be started from the bottom up with 
upper strips overlapping lower strips, and the 
upstream strips must overlap the downstream strips. 
The overlaps at the end of strips will be staggered 
at least 1.5 m 5 feet. Revetment and geotextile 
materials should be extended at least below the mean 
low water to minimize erosion at the toe (Fig. 2). 
If construction schedule permits, a period of low 
streamflow should be selected for the geotextile 
installation.

(2) When revetment material and geotextile filter 
are selected to protect against wave attack, the 
geotextile strips must be placed vertical to the 
slope of the bank with the upper strips overlapping 
the lower strips (Fig. 1b). The geotextile must be 
keyed at the toe to prevent uplift or undermining 
(Fig. 3). The key trench should be located below 
the mean low water to prevent erosion of the soil 
adjacent to the trench. When it is not possible to 
maintain vertical trench walls, the geotextile must 
be keyed to an excavated trench with stable slopes 
(Fig. 4). A key at the top of the bank will be 
installed where there is an overbank drainage 
problem.
Allowing the geotextile to drape or be free of high tensile stress during placement will require larger quantities of geotextiles than the actual slope length.

Place the geotextile with the long dimension [parallel] [perpendicular] to the [centerline of the channel] [shoreline] [trench] and laid smooth and free of tension, stress, folds, wrinkles, or creases. Place the strips to provide a minimum width of [_____] mm inches of overlap for each joint. The placement procedure requires that the length of the geotextile be approximately [_____] percent greater than the slope length. Adjust the actual length of the geotextile used based on initial installation experience. Temporary pinning of the geotextile to help hold it in place until the [bedding layer] [riprap] is placed will be allowed. Remove the temporary pins as the [bedding] [granular material] [riprap] is placed to relieve high tensile stress which may occur during placement of material on the geotextile. Design protection of riprap in compliance with EM 1110-2-1601. Perform trimming in such a manner that the geotextile is not damaged in any way.

3.3 PROTECTION

NOTE: All geotextiles can be damaged if stone is dropped on it from a height greater than 900 mm 3 feet. Some geotextiles can be damaged with lesser drop heights. When stone is heavy and angular it may cause punctures in the geotextile even if dropped from a height of 300 mm 1 foot. Tension in the geotextile must be minimized to prevent puncture.

Protect the geotextile at all times during construction from contamination by surface runoff; remove any geotextile so contaminated and replaced with uncontaminated geotextile. Replace any geotextile damaged during its installation or during placement of [granular filter materials] [bedding materials] [riprap] at no cost to the Government. Schedule the work so that the covering of the geotextile with a layer of the specified material is accomplished within [_____] [7] calendar days after placement of the geotextile. Failure to comply shall require replacement of geotextile. Protect the geotextile from damage prior to and during the placement of riprap or other materials. [This may be accomplished by limiting the height of drop to less than 300 mm 1 foot, by placing a cushioning layer of sand or gravel on top of the geotextile before placing the material, or other methods deemed necessary. Care should be taken to ensure that the utilized cushioning materials will not impede the flow of water.] Before placement of riprap or other materials, demonstrate that the placement technique will not cause damage to the geotextile. In no case shall any type of equipment be allowed on the unprotected geotextile.

3.4 PLACEMENT OF CUSHIONING MATERIAL

Perform placing of cushioning material in a manner to ensure intimate contact of the geotextile with the prepared surface and with the cushioning material. The placement shall also be performed in a manner that will not damage the geotextile including tear, puncture, or abrasion. On sloping surfaces place the cushioning material from the
bottom of the slopes upward. During placement, the height of the drop of
riprap material shall not be greater than 300 mm 12 inches. Uncover any
geotextile damaged beneath the cushioning material, as necessary, and
replaced at no cost to the Government.

3.5  OVERLAPPING AND SEAMING

3.5.1  Overlapping

**************************************************************************
NOTE: In general, overlapping is sufficient where
the primary purpose is to hold the material in place
during installation. However, where the design
requires the geotextile to resist tensile stresses,
seams should be sewn. A 300-mm 12-inch overlap
specified in this section is considered minimum for
all cases. The Contractor has the option of field
sewing instead of overlapping.
**************************************************************************

The overlap of geotextile [rolls] [panels] [_____] shall be [300][600]
[900][_____] mm [12][24][36][_____] inches. Appropriate measures will be
taken to ensure required overlap exists after cushion placement.

3.5.2  Sewn Seams

**************************************************************************
NOTE: The Designer must specify appropriate seam
test requirements. ASTM D1683, the previously used
test standard, has been discontinued with no
replacement designated.
**************************************************************************

High strength thread should be used so that seam test conforms to
ASTM D4884/D4884M. The thread shall meet the chemical, ultraviolet, and
physical requirements of the geotextile, and the color shall be different
from that of the geotextile. The seam strength shall be equal to the
strength required for the geotextile in the direction across the seam.
Overlapping J-type seams are preferable over prayer-type seams as the
overlapping geotextile reduces the chance of openings to occur at the
seam. Use double sewing, specially for field seams, to provide a safety
factor against undetected missed stitches.

3.6  [FIELD TESTING]

**************************************************************************
NOTE: The need for field testing should be based on
the size and importance of the project. Field
testing should be performed if the geotextile will
be in tension.
**************************************************************************

Field test geotextile[ in tension].]

-- End of Section --