SECTION TABLE OF CONTENTS

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

SECTION 23 82 16.00 40

AIR COILS

05/16

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY CONTROL

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Coil Pressure and Temperature Ratings
2.2 COMPONENTS
 2.2.1 Coil Casings
 2.2.2 Coil Headers
 2.2.3 Coil Tubing
 2.2.4 Coil Circuiting
 2.2.5 Drainable Coils
 2.2.6 Coil Types
 2.2.6.1 Steam Heating
 2.2.6.2 Hot-Water Heating
 2.2.6.3 Chilled-Water Cooling
 2.2.6.4 Volatile Refrigerant Cooling

PART 3 EXECUTION

3.1 INSTALLATION
3.2 FIELD QUALITY CONTROL
3.3 CLOSEOUT ACTIVITIES
 3.3.1 Operation and Maintenance
 3.3.2 Record Drawings

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for coils for cold water, hot water, steam, and refrigerant.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

Section 23 30 00 HVAC AIR DISTRIBUTION applies to work specified in this section.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard’s Check Reference feature when you add a Reference Identifier (RID) outside of
the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 410 (2001; Addendum 1 2002; Addendum 2 2005; Addendum 3 2011) Forced-Circulation Air-Cooling and Air-Heating Coils

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2020) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

1.2 SUBMITTALS

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list, and corresponding submittal items in the text, to reflect only the submittals required for the project. The Guide Specification technical editors have classified those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For Army projects, fill in the empty brackets following the "G" classification, with a code of up to three characters to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" classification indicates submittals required as proof of compliance for sustainability Guiding Principles Validation or Third Party
Certification and as described in Section 01 33 00 SUBMITTAL PROCEDURES.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**
Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals
 Record of Existing Conditions

SD-02 Shop Drawings
 Fabrication Drawings; G[, [___]]
 Connection Diagrams; G[, [___]]
 Controls Layout; G[, [___]]
 Internal Tubing and Wiring; G[, [___]]
 Installation Drawings; G[, [___]]

SD-03 Product Data
 Steam Heating; G[, [___]]
 Hot-Water Heating; G[, [___]]
 Chilled-Water Cooling; G[, [___]]
 Volatile Refrigerant Cooling; G[, [___]]

SD-05 Design Data
 Design Analysis and Calculations

SD-06 Test Reports
 Final Test Reports

SD-07 Certificates
 Certificates of Conformance

SD-10 Operation and Maintenance Data
 Operation and Maintenance Manuals

SD-11 Closeout Submittals
1.3 QUALITY CONTROL

Submit a record of existing conditions consisting of the results of a survey of work area conditions and features of existing structures and facilities within and adjacent to the jobsite.

Provide coils that bear the ARI certification seal indicating compliance with AHRI 410. Submit Certificates of Conformance for following items showing conformance with AHRI 410:

a. Coil
b. Coil casings
c. Coil headers
d. Coil tubing
e. Coil circuiting

Indicate the general physical controls layout, and internal tubing and wiring details on the drawings. Submit design analysis and calculations for coils.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Submit manufacturer's catalog data for the following coil types indicating, when applicable, coil pressure and temperature ratings, coil casings, headers, tubing, circuiting, and drainable coils.

a. Steam heating
b. Hot-water heating
c. Chilled-water cooling
d. Volatile refrigerant cooling

Submit fabrication drawings for coil units consisting of fabrication and assembly details to be performed in the factory. Include connection diagrams indicating the relations and connections of the following items:

a. Coil
b. Coil casings
c. Coil headers
d. Coil tubing
e. Coil circuiting

2.1.1 Coil Pressure and Temperature Ratings

**
SECTION 23 82 16.00 40 Page 5
Provide coils designed for the following fluid operating pressures and temperatures:

<table>
<thead>
<tr>
<th>Service</th>
<th>Pressure (kPa)</th>
<th>Temperature (Degrees C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam - low pressure</td>
<td>175</td>
<td>131</td>
</tr>
<tr>
<td>Steam - high pressure</td>
<td>1050</td>
<td>186</td>
</tr>
<tr>
<td>Steam - superheated</td>
<td>2400</td>
<td>260</td>
</tr>
<tr>
<td>Hot water</td>
<td>1400</td>
<td>121</td>
</tr>
<tr>
<td>Chilled water</td>
<td>1400</td>
<td>7</td>
</tr>
<tr>
<td>Volatile refrigerant</td>
<td>1400</td>
<td>149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service</th>
<th>Pressure (psi)</th>
<th>Temperature (Degrees F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam - low pressure</td>
<td>25</td>
<td>267</td>
</tr>
<tr>
<td>Steam - high pressure</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>Steam - superheated</td>
<td>350</td>
<td>500</td>
</tr>
<tr>
<td>Hot water</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Chilled water</td>
<td>200</td>
<td>45</td>
</tr>
<tr>
<td>Volatile refrigerant</td>
<td>200</td>
<td>300</td>
</tr>
</tbody>
</table>

Air-pressure test coils under water at the following minimum pressures:

<table>
<thead>
<tr>
<th>Service</th>
<th>Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam</td>
<td>1750</td>
</tr>
<tr>
<td>Hot water</td>
<td>1750</td>
</tr>
<tr>
<td>Chilled water</td>
<td>1750</td>
</tr>
<tr>
<td>Volatile refrigerant</td>
<td>2800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service</th>
<th>Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam</td>
<td>250</td>
</tr>
<tr>
<td>Hot water</td>
<td>250</td>
</tr>
<tr>
<td>Chilled water</td>
<td>250</td>
</tr>
<tr>
<td>Volatile refrigerant</td>
<td>400</td>
</tr>
</tbody>
</table>

2.2 COMPONENTS

2.2.1 Coil Casings

Provide coil casings that are mill-galvanized, **1.6 millimeter 16-gage**,
minimum. Ensure sheet metal has not less than 380 gram per square meter
1.25-ounces of zinc per square foot of two-sided metal surface conforming
to ASTM A653/A653M. Provide a casing flanged on four sides for bolted
assembly, except as otherwise specified.

Where coils are stacked, provide a double-bend construction casing.

Provide duct-mounted reheat coil casings not over 900 millimeter 36-inches
in length, fabricated from a minimum 1.0 millimeter 20-gage galvanized
steel conforming to above specified requirements. Provide casings that
are flanged or suitable for drive-slip assembly.

**
NOTE: Coordinate clearance with drawings.
**

Provide coil mounting within the housing that is either fixed or slide-out
type, except as otherwise specified. Provide slide-out type coils for
ceiling-suspended package units, and for other package units whose
capacity exceeds 7 cubic meter per second 15,000 cubic-feet per minute.

2.2.2 Coil Headers

**
NOTE: Where corrosive-condensate conditions exist, only copper headers are suitable.
**

Provide coil headers of [cast iron] [brass] [copper] [aluminum casting].
Provide direct expansion, volatile refrigerant coils that have copper or
brass headers with necessary control connections.

Fit steam and water coil headers with DN8 1/4-inch iron pipe size(ips)
spring-loaded plug drains and vent petcocks. Provide automatic vents
where indicated.

2.2.3 Coil Tubing

Install coils constructed of copper tubing with aluminum or copper fins.
Provide helical coil fins that are wound tight to the tubes and
solder-coated. Provide plate fins that have spacer collars in metallic
contact with the adjacent fin. Ensure fins are mechanically bonded to the
tube. Ensure bare tube surface is not visible within the finned portion
of the coil.

Provide solder-coated cooling coils of helical wound copper design.

For coil tubes in water or volatile refrigerant service, provide tubes
that are parallel. Ensure coil tubes have sufficient intermediate full
coil depth supports to prevent sagging of unsupported span due to:
working fluid pressures, temperatures, and summer and winter coil-ambient
conditions. Sagging is unacceptable if tube centerline is displaced by
more than 5 millimeter 3/16-inch from centerline of tube connection at
outlet header when coils are more than two rows deep and when installed in
accordance with the manufacturer's instructions. Make adequate provision
for expansion and contraction that precludes sagging and distortion under
thermal loads applied in indicated or specified service. Slope tubes to
be free draining.
Provide maximum heating-coil face tube spacing of 75 millimeter 3-inches on center for DN25 1-inch outside-diameter (od) tubes, 50 millimeter 2-inches for DN20 3/4-inch od tubes, and 38 millimeter for DN18 1-1/2-inches for 5/8-inch od tubes.

Provide coil face tube spacing for cooling coils and for helically wound heating coils immediately followed by water-cooling coils that do not exceed 38 millimeter 1-1/2-inches on center.

Ensure tubes are straight, with turns made through headers or return U-bends, with brazed connections and joints, except as otherwise specified.

NOTE: Select the following paragraph for standard hot and chilled water and saturated steam conditions.

Ensure coil tube material is seamless deoxidized copper.

Ensure coil tube material is seamless 90-10 copper-nickel with 0.89 millimeter 0.035-inch wall thickness for superheated-steam service to 2500 kilopascal 350-pounds per square inch (psi) at 260 degrees C 500 degrees F.

NOTE: Select the following paragraph for low cost installation for steam, hot and chilled water, and DX coils, with the expectation of a long coil life.

Provide raw coil tube stock wall with a minimum thickness of 0.64 millimeter 0.025-inch.

NOTE: Select the following paragraph for general construction for steam, hot and chilled water and DX coils. Standard copper heavy duty coils with 1.24 millimeter 0.049-inch walls are available.

Provide raw coil tube stock wall with a minimum thickness of 0.89 millimeter 0.035-inch.

Where mechanical insert devices are used to increase liquid turbulence within tubes, increase the wall thickness of these tubes by 0.25 millimeter 0.010-inch over the minimum raw coil tube stock specified for the service.

Provide minimum tube outside diameter of DN15 1/2-inch.

2.2.4 Coil Circuiting

[Provide standard or full-circuited water coils that have as many full-length tubes in each circuit as the number of tubes in the depth of the coil face.] [Provide double-circuit water coils that have twice as many tubes as standard coils.] [Provide half-circuit water coils that have half as many tubes as standard coils and to the next larger whole number where odd numbers are involved.]

Provide counterflow type coils when more than two rows deep, except that
in the case of double- or half-circuit coils, reasonable deviation from counterflow arrangement is permitted, provided the pressure drop and capacity requirements are met.

2.2.5 Drainable Coils

Provide drainable coils that are capable of being purged free of water with compressed air.

Provide self-draining coils with a drain point at the end of every tube and sloped to that point. Provide drain provisions that include: drained headers, U-bends with integral plugs; or nonferrous plugs in cast-iron headers. Provide tubes that drain substantially dry by gravity alone when drains and vents are open.

Where necessary, fill the coil with water to the end of the manufacturer's header connections and check drainage volume against the manufacturer's data.

2.2.6 Coil Types

2.2.6.1 Steam Heating

For Type SA, provide steam distributing, tube-in-tube with multiple-orifice distributors. Provide a tube with a minimum outside-diameter of \(\text{DN25 1-inch} \) wherever coil is exposed to airstream at freezing temperatures. For all other applications, provide a minimum outside-diameter of \(\text{DN18 5/8-inch} \). Provide tubes that are sloped 3.1 millimeter in 300 millimeter 1/8-inch per foot, and coil casing that is level. Provide coil with inlet and outlet connections on the same side.

For Type SB, provide tube-in-tube type, for reheat service, with modulating control. When located in ductwork over 1800 millimeter 6-feet in total width, provide either two separate coils or one coil with supply to both ends and a single return. Provide coil with inlet and outlet connections on the same end and on opposite sides of the two-coil assembly.

For Type SC, provide single row, single circuit, for reheat service with two-position control.

For Type SD, provide integral damper face and bypass type. Provide coil that includes finned elements with headers. Ensure return bends are pitched within the casing; and bypasses with interlocked dampers are controlled by a damper motor and airstream thermostats.

Provide a maximum fin spacing of 10 per 25 millimeter linear inch. Provide tubes that are connected to supply and return headers by mechanical joints and are secured against vibration by a channel that permits expansion and contraction. Provide 1.6 millimeter 16-gage cold-rolled steel damper blades. Provide graphite-impregnated nylon damper rod bearings. Provide oil-impregnated bronze linkage bearings. Proportion air such that the average temperature at any point in a plane parallel to the coil face, 900 millimeter 3-feet downstream of the leaving side, does not vary more than 3 degrees C 5 degrees F from the thermostat setting. Vary pressure-drop of air passing through the coil no more than plus or minus 5 percent, regardless of the position of the internal dampers.
2.2.6.2 Hot-Water Heating

[For Type HA, provide continuous circuit type, limited to two rows depth.]

[For Type HB, provide drainable counterflow type, with more than two rows.]

2.2.6.3 Chilled-Water Cooling

[For Type CA, provide continuous circuit, drainable type, limited to two rows depth.]

[For Type CB, provide self-draining, counterflow type.]

[For Type CC, provide self-draining, cleanable, counterflow type. Provide straight-through type tubes, rolled or brazed into steel tube sheets. Enclose headers with gasketed and bolted removable cover plates to provide access to tube internals from either one end or both ends of coil.]

2.2.6.4 Volatile Refrigerant Cooling

[For Type DX, provide counterflow type, designed for use with refrigerant specified, with equal length circuiting arrangement. Provide the number of distributors that suit indicated refrigerant and that eliminate trapping of refrigerant and oil. Obtain coil capacity with an expansion valve set for not less than 5 degrees C 8 degrees F of superheat. Provide a refrigerant distributor that is furnished and installed by the coil manufacturer. Provide a tube outside diameter that is either DN18 5/8-inch or DN20 3/4-inch.]

[Provide refrigerant distributor that is suitable for the thermostatic expansion valve recommended by the manufacturer for the service and capacity specified or indicated. Ensure arrangement is capable of stable operation down to 40 percent or less of design capacity.]

[Provide refrigerant distributor suitable for use with a balanced, double-ported thermostatic expansion valve or with a pilot-operated valve where indicated. Ensure arrangement is capable of stable operation down to 15 percent of design capacity.]

PART 3 EXECUTION

3.1 INSTALLATION

Install coils in accordance with the manufacturer's recommendations.

Submit installation drawings for coil systems. Indicate overall physical features, dimensions, ratings, service requirements, equipment weights and layout and arrangement details of equipment room on drawings.

3.2 FIELD QUALITY CONTROL

**
NOTE: Conduct inspection of the installation by the Systems Engineer/Condition Monitoring Office/Predictive Testing Group during acceptance testing using advanced monitoring technologies such as Infrared Imaging or Ultrasonic Listening. These technologies can identify plugged or restricted tubing and system/pressure/vacuum leaks.
For drainable coils:

a. Field check coil pitch and leveling for drainability in the presence of the Contracting Officer.

b. Perform pressure tests and dehydrate coils.

c. Perform vacuum tests, purge with inert gas, and seal coils.

Provide final test reports to the Contracting Officer. Provide reports with a cover letter/sheet clearly marked with the System name, Date, and the words "Final Test Reports - Forward to the Systems Engineer/Condition Monitoring Office/Predictive Testing Group for inclusion in the Maintenance Database."

3.3 CLOSEOUT ACTIVITIES

3.3.1 Operation and Maintenance

Submit [6] copies of the operation and maintenance manuals 30 calendar days prior to testing the coil systems. Update and resubmit data for final approval no later than 30 calendar days prior to contract completion.

3.3.2 Record Drawings

Submit record drawings for coil systems providing current factual information including deviations from, and amendments to, the drawings and concealed and visible changes in the work.

-- End of Section --