SECTION TABLE OF CONTENTS

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

SECTION 23 76 00.00 20

EVAPORATIVE COOLING SYSTEM

07/06

PART 1 GENERAL

1.1 REFERENCES
1.2 GENERAL REQUIREMENTS
1.3 SUBMITTALS
1.4 CORROSION PROTECTION TESTS
 1.4.1 Corrosion Criteria
 1.4.2 Thickness of Coating
1.5 LABORATORY TEST

PART 2 PRODUCTS

2.1 SINGLE-STAGE EVAPORATIVE COOLERS
 2.1.1 Evaporative Media (Limited specie of wood)
 2.1.2 Water Reservoirs
 2.1.3 Automatic Flush (Electric Dump) Valves and Timers
2.2 TWO-STAGE (COMPOUND) EVAPORATIVE COOLERS
 2.2.1 Indirect Section
 2.2.1.1 Heat Exchanger
 2.2.1.2 Evaporative Media
 2.2.1.3 Recirculating Pump
 2.2.1.4 Secondary Air Exhaust Fan
 2.2.1.5 Filter Rack
 2.2.1.6 Component Casing
 2.2.2 Direct Section
 2.2.2.1 Evaporative Media
 2.2.2.2 Water Reservoirs
 2.2.2.3 Automatic Flush (Electric Dump) Valves and Timers
2.3 FAN PLENUMS
2.4 BIRD SCREENS, FRESH-AIR INTAKE HOODS, AND DUCTWORK
2.5 THERMOSTATS, AUTOMATIC DAMPERS, AND DAMPER ACTUATORS
2.6 ROOF CURBS
2.7 VIBRATION ISOLATORS
2.8 PLUMBING
2.9 MOTORS AND MOTOR STARTERS
2.10 WATER TREATMENT UNIT FOR THE EVAPORATIVE COOLING SYSTEM
2.11 Refined Cellulose Fibers' Requirements for evaporative media
2.12 Meters and Controls

PART 3 EXECUTION

3.1 INSTALLATION
3.2 FIELD TESTING AND BALANCING
 3.2.1 Evaporative Coolers Tests
 3.2.2 Control Sequences
3.3 SCHEDULE

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for evaporative coolers including roof curbs on which they are mounted.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: The coolers covered in this specification are intended for use in areas where climatic conditions generally provide dry-bulb temperatures in excess of 29 degrees C 85 degrees F and concurrent wet-bulb temperatures below 21 degrees C 70 degrees F. Moderate success can be expected with wet-bulb temperatures as high as 24 degrees C 76 degrees F; however, for general practice, use of the coolers with prevailing wet-bulb temperatures above 22 degrees C 72 degrees F is not recommended. Conform to DOD 4270.1-M for the selection of evaporative coolers.

NOTE: The following information must be shown on the project drawings:
1. Dry-bulb temperature entering and leaving the evaporator coolers.

2. Wet-bulb temperature entering the evaporator cooler.

3. Air quantity and static pressure.

5. Air outlet velocity in m/s or fpm.

**

PART 1 GENERAL

1.1 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2019) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM D374 (1999; R 2004) Thickness of Solid Electrical Insulation

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures

NEMA MG 1 (2018) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2019; TIA 19-1; TIA 19-2; TIA 19-3; TIA 19-4; ERTA 1 2019) National Electrical Code

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

TECHNICAL ASSOCIATION OF THE PULP AND PAPER INDUSTRY (TAPPI)

TAPPI T403 OM (2015) Bursting Strength of Paper

TAPPI T404 CM (1992) Tensile Breaking Strength and Elongation of Paper and Paperboard (Using Pendulum-Type Tester)

TAPPI T410 OM (2013) Grammage of Paper and Paperboard (Weight Per Unit Area)

TAPPI T456 OM (2010) Tensile Breaking Strength of Water-Saturated Paper and Paperboard ("Wet Tensile Strength")

1.2 GENERAL REQUIREMENTS

Section 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS, with the following additions and modifications. Provide water treatment and
positive water bleed-off for the evaporative cooling system. The color of finished coat, lubrication, and treatment for fungus resistance must be the manufacturer's standard. Provide solenoid valves in water supply lines. Furnish starting switch separated from coolers, integral with the thermostat control. [Provide manual reset control for motors rated greater than 3/4 kW one hp.] [Provide air filters for air inlets for rotary-type evaporator coolers.]

1.3 SUBMITTALS

**

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.] [for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
1.4 CORROSION PROTECTION TESTS

Comply with [ASTM A123/A123M] [ASTM A653/A653M] or protect the equipment with a corrosion-inhibiting coating or paint system that has proved capable of satisfactorily withstanding corrosion in accordance with ASTM B117. Test 125 hours for equipment installed indoors and 500 hours for equipment installed outdoors or subjected to marine atmosphere. Each specimen must have a standard scratch as defined in ASTM D1654.

1.4.1 Corrosion Criteria

Upon completion of exposure, coating or paint must show no indication of deterioration or loss of adhesion, indication of rust, or corrosion extending further than 3 mm 1/8 inch on either side of original scratch.

1.4.2 Thickness of Coating

Thickness of coating or paint system on the equipment must be identical to that on the test specimens with respect to materials, conditions of application, and dry film thickness.

1.5 LABORATORY TEST

Conduct the test with entering air at 35 degrees C, dry-bulb, plus or minus 2.78 degrees C and a spread between wet-bulb and dry-bulb temperature of minus 4 degrees C plus or minus 3 degrees C. Show the capacity in liter per second (L/s) and efficiency. Meet the following requirements:
Evaporative Cooler	Minimum Efficiency, Percent
Single Stage | 80
Two Stage | Indirect Section, 60; Direct Section, 90

\[
\text{T1-T2 Efficiency} = \frac{\text{T1-Tw}}{\text{T1-Tw}} \times 100 \text{ percent}
\]

where:
- T1 is the entering dry-bulb temperature in degrees C.
- T2 is the leaving dry-bulb temperature in degrees C.
- Tw is the entering wet-bulb temperature in degrees C.

Conduct the test with entering air at 95 degrees F, dry-bulb, plus or minus 5 degrees F and a spread between wet-bulb and dry-bulb temperature of 25 degrees F plus or minus 5 degrees F. Show the capacity in cubic feet per minute (cfm) and efficiency. Meet the following requirements:

PART 2 PRODUCTS

2.1 SINGLE-STAGE EVAPORATIVE COOLERS

**
** NOTE: Efficient cooling equipment and components contribute to achieving sustainability requirements. **
**

**
** NOTE: Single-stage evaporative coolers are not recommended in areas where temperatures frequently exceed 38 degrees C 100 degrees F. **
**

[Drip-type with stationary wetted pad] [Rotary-type] with revolving drum or disk. [Washer (eliminator) type.] System must be 60 to 85 percent effective.

2.1.1 Evaporative Media (Limited specie of wood)

Refined cellulose fibers. [Impregnate fibers with copper 8-quino-linolate or other equivalent fungicides.] [Rotary filters with maximum 3 m/s 600
FPM and 2 1/2 percent by-pass water flow through the rotary assemblies and minimum 127 mm 5 inch depth of rotary sections. [Washer media consisting of self-cleaning centrifugal brass spray nozzles, brass flooding nozzles, [copper] [or] [galvanized steel] water piping, centrifugal water pump, strainers, and a minimum 24 gage [galvanized steel] [or] [aluminum] eliminator with minimum four surfaces and three bends in the airflow direction.]

2.1.2 Water Reservoirs

Fabricate tank from minimum 20 gage zinc-coated steel, bronze, or stainless steel, with a capacity of 19 liters 5 gallons water for each 472 L/s of air 1,000 cubic feet of air per minute passing through the cooler section. Coat the entire water reservoir surfaces with minimum 0.254 mm 10 mils bituminous coating after the fabrication.

2.1.3 Automatic Flush (Electric Dump) Valves and Timers

Provide cast bronze valves with neoprene-diaphragm solenoid and timer.

2.2 TWO-STAGE (COMPOUND) EVAPORATIVE COOLERS

**

NOTE: An indirect-section evaporative cooler is the first stage of cooling, which lowers both dry-bulb and wet-bulb temperatures of the incoming supply air. This supply air is then passed through a direct-section evaporative cooler which provides the second stage of cooling. The first stage of cooling is at constant humidity ratio, while the second stage is at constant wet-bulb temperature. An automatic reservoir purges and drains completely during off cycles to prevent biological growth. This type is suitable for hot-dry climates.

**

Self-contained, packaged, pre-wired, and factory-fabricated evaporative coolers with indirect and direct sections for two-stage cooling. System must be 100 to 115 percent effective.

2.2.1 Indirect Section

Indirect sensible cooler with a complete secondary evaporative cooling system. Include components of heat exchanger, evaporative media, recirculating pump with suction strainer, sump drain, overflow, automatic fill and level control, secondary air exhaust fan, and distribution head and internal piping. House all components in a common casing.

2.2.1.1 Heat Exchanger

**

NOTE: Shell-and-tube design generally achieves 55 to 60 percent efficiency; and the flat-plate, cross flow air-to-air design generally achieves 65 to 85 percent efficiency. Cooling tower coil design may be the most efficient method of all three choices, generally used in industrial areas where the outdoor wet bulb temperature is 7 degrees C 45 degrees F or below. This third design can maintain space
conditions similar to those achieved with mechanical refrigeration.

**

NOTE: UV-C emitters improve air quality and reduce energy consumption by removing and inhibiting germicidal growth. Cleaning maintenance costs are also reduced.

**

a. Shell-And-Tube Design: Fabricate tubes and tube sheets from [galvanized steel] [stainless steel] [aluminum] [polystyrene] [or] [copper]. Tube interiors must be bonded with an epoxy coated crystalline surface or equivalent. Protect tube sheets with a bituminous coating applied after fabrication. Provide the interior of heat exchanger enclosure with 25 mm one inch thick neoprene-coated fiberglass or equivalent insulation.

b. Flat Plate, Cross-Flow Air-To-Air, Design: Fabricate the heat exchanger of [aluminum] [stainless steel] [galvanized steel] [or] [copper] with a water absorbent coating applied to the secondary or wet air surface.

c. Cooling Tower Coil Design: Transport chilled water from the direct evaporative cooler, and circulate this chilled water through a cooling coil fabricated of copper tubing expanded into aluminum fins.

Ultraviolet light C band (UV-C) emitters must be incorporated downstream of heat exchangers and above drain pans to control airborne and surface microbial growth and transfer. Applied units must be specifically manufactured for this purpose. Safety features must be provided to limit hazard to operating staff. Units must not produce ozone. Power output shall be [_____] watts. Power intensity must be [_____] microwatts per square cm inch.

2.2.1.2 Evaporative Media

Self-cleaning evaporative media capable of withstanding a maximum air face velocity of 3.56 m/s 700 fpm without moisture carryover. Construct media of refined cellulose fibers impregnated with insoluble anti-rot salts and rigidifying saturants.

2.2.1.3 Recirculating Pump

Submersible pump with epoxy-coated cast-iron housing, corrosive resistant base and cover, non-clog impeller, screened intake, and permanently lubricated motor with thermal overload protection.

2.2.1.4 Secondary Air Exhaust Fan

**

NOTE: Propeller fan wheels usually have two or more single thickness blades in a single ring enclosure. Forward curved centrifugal fan wheels have small and curved forward blades in the direction of the wheel's rotation. The wheel type of such centrifugal fans is often called "squirrel cage wheel." Both fans run at a relatively low speed to
move a given amount of air. Use propeller fans without attached ductwork; use centrifugal fans with attached ductwork.

**

a. Propeller Fan: Direct-drive propeller fan with all welded frame and statically-dynamically balanced aluminum blades. The exterior and interior of the fan must be epoxy primed prior to the application of a baked enamel finish. The fan motor must be totally enclosed with permanently lubricated ball bearings.

b. Centrifugal Fan: Belt-drive or direct-drive centrifugal fan with forward curved blades. Construct scrolls, wheels, and inlet cones of [steel] [or] [aluminum] with corrosion resistant finish. Attach the fan to a welded steel frame designed to support the entire fan and motor assembly. Select V-belt sheaves based on a minimum of 1.3 times the motor nameplate power. Provide these sheaves to have critical speed at least 20 percent higher than the maximum operating speed.

2.2.1.5 Filter Rack

Water resistant permanent frame with 50 mm 2 inch thick disposable fiberglass or equivalent medium.

2.2.1.6 Component Casing

Construct casing of minimum 14 gage galvanized steel panels secured to a welded steel angle frame. Exterior panels must be removable to permit access to any interior component. Coat with epoxy on frame members, sump drains, entire casing bottom and interior wet surfaces. Exterior steel surfaces must be primed with epoxy and finished with baked enamel. Terminate all exterior wiring in a weathertight junction box located outside of the casing. Provide hoisting lug for installation.

2.2.2 Direct Section

**

NOTE: For two-stage evaporative cooling systems, major manufacturers often use direct evaporative coolers.

**

Except as modified, direct evaporative cooler [Drip-type with stationary wetted pad] [Rotary-type] with revolving drum or disk. [Washer (eliminator type)].

2.2.2.1 Evaporative Media

Refined cellulose fibers. [Impregnate fibers with copper 8-quino linolate.] [Rotary filters with maximum 3 m/s 600 fpm and 2 1/2 percent by-pass water flow through the rotary assemblies and minimum 127 mm 5 inch depth of rotary sections.] [Washer media consisting of self-cleaning, centrifugal brass spray nozzles, brass flooding nozzles, [copper] [or] [galvanized steel] water piping, centrifugal water pump, strainers, and a minimum 24 gage [galvanized steel] [or] [aluminum] eliminator with minimum four surfaces and three bends in the airflow direction.]
2.2.2.2 Water Reservoirs

Fabricate tank from minimum 20 gage zinc-coated steel, bronze, or stainless steel, with a capacity of 19 liters 5 gallons water for each 472 L/s of air 1,000 cubic feet of air per minute passing through the cooler section. Coat the entire reservoir surfaces with minimum 0.254 mm 10 mils bituminous coating applied after fabrication.

2.2.2.3 Automatic Flush (Electric Dump) Valves and Timers

Provide cast bronze valves with neoprene-diaphragm solenoid and timer.

2.3 FAN PLENUMS

Provide gaskets for plenum covers on all edges which contact sides of sheet-metal plenum with continuous 3 mm 1/8 inch thick butyl-rubber gasket with pressure sensitive backing. Insulate plenum interior, including covers with duct liner. Provide fresh-air intake hoods with bird screens. Install automatic dampers in the fresh-air intake hoods.

2.4 BIRD SCREENS, FRESH-AIR INTAKE HOODS, AND DUCTWORK

Section 23 30 00 HVAC AIR DISTRIBUTION.

2.5 THERMOSTATS, AUTOMATIC DAMPERS, AND DAMPER ACTUATORS

Section 23 09 53.00 20 SPACE TEMPERATURE CONTROL SYSTEMS.

2.6 ROOF CURBS

Provide factory-fabricated sheet-steel structural members. The curbs must have high load-bearing capacities attained by a system of internal bulkheads, welded into position at logical intervals along the length of rails. Provide minimum 100 mm 4 inch cants, 50 by 150 mm 2 by 6 inch factory-installed wood nailers, and fully mitered end sections. Use welded 18 gage galvanized steel shell, base plate, and counterflashing.

2.7 VIBRATION ISOLATORS

[Factory-fabricated, high static and double deflection type. Mold metal parts in oil-resistant neoprene, with color codes by type and size for identification of capacity. Provide bottom steel plates with bolt holes for bolting to equipment bases to prevent movement of equipment.] [Section 22 05 48.00 20 MECHANICAL SOUND VIBRATION AND SEISMIC CONTROL.]

2.8 PLUMBING

Section 22 00 00 PLUMBING, GENERAL PURPOSE.

2.9 MOTORS AND MOTOR STARTERS

**
NOTE: The motor control requirements should be coordinated with the Electrical Section and will depend on field conditions. The following types of motor starters should be used as a guide only. When electrical equipment is connected to heavily loaded, power circuits the starting current may cause excessive voltage drop.

**
<table>
<thead>
<tr>
<th>Motor kW</th>
<th>Voltage</th>
<th>Type Starter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1/4</td>
<td>120</td>
<td>Manual or automatic</td>
</tr>
<tr>
<td>1/4 to 5 1/2</td>
<td>208-230</td>
<td>Across-the-line magnetic</td>
</tr>
<tr>
<td>5 1/2 to 11</td>
<td>208-230</td>
<td>Across-the-line magnetic, part winding or wye-delta</td>
</tr>
<tr>
<td>11 to 22</td>
<td>460</td>
<td>Across-the-line magnetic, part winding or wye-delta</td>
</tr>
<tr>
<td>Above 11</td>
<td>208-230</td>
<td>Part winding or wye-delta</td>
</tr>
<tr>
<td>Above 22</td>
<td>460</td>
<td>Part winding or wye-delta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor hp</th>
<th>Voltage</th>
<th>Type Starter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1/4</td>
<td>120</td>
<td>Manual or automatic</td>
</tr>
<tr>
<td>1/3 to 7 1/2</td>
<td>208-230</td>
<td>Across-the-line magnetic</td>
</tr>
<tr>
<td>7 1/2 to 15</td>
<td>208-230</td>
<td>Across-the-line magnetic, part winding or wye-delta</td>
</tr>
<tr>
<td>15 to 30</td>
<td>460</td>
<td>Across-the-line magnetic, part winding or wye-delta</td>
</tr>
<tr>
<td>Above 15</td>
<td>208-230</td>
<td>Part winding or wye-delta</td>
</tr>
<tr>
<td>Above 30</td>
<td>460</td>
<td>Part winding or wye-delta</td>
</tr>
</tbody>
</table>

**

NEMA MG 1 and NEMA ICS 2 and NEMA ICS 6 with electrical characteristics as indicated. Motors less than 3/4 kW 1 hp must meet NEMA High Efficiency requirements. Motors 3/4 kW 1 hp and larger must meet NEMA Premium Efficiency requirements. Motor must be [variable speed] [open] [dripproof] [totally-enclosed, [non-ventilated] [or] [fan-cooled]] [explosion-proof]. Motor starters must be [[manual] [magnetic-across-the-line] [reduced-voltage] [part-winding] [wye-delta] type with [general-purpose] [weather resistant] [watertight] [explosion-proof] enclosure] [manufacturer's standard].

2.10 **WATER TREATMENT UNIT FOR THE EVAPORATIVE COOLING SYSTEM**

Provide complete and ready for operation, factory packaged water treatment unit for [chemical][ozone] treatment of water, as recommended by the manufacturer of evaporative coolers.
2.11 Refined Cellulose Fibers' Requirements for Evaporative Media

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis weight 24 by 36, 500 sheets</td>
<td>21.34 kg plus or minus 0.5 kg</td>
<td>TAPPI T410 OM</td>
</tr>
<tr>
<td>Mullen</td>
<td>42 minutes</td>
<td>TAPPI T403 OM</td>
</tr>
<tr>
<td>Caliper</td>
<td>0.14 to 0.15 mm</td>
<td>ASTM D374M, Method A</td>
</tr>
<tr>
<td>Tensile, dry</td>
<td>18 minutes</td>
<td>TAPPI T404 CM</td>
</tr>
<tr>
<td>Tensile, wet</td>
<td>25 percent of dry after 1 minute age at 110 degrees C</td>
<td>TAPPI T456 OM</td>
</tr>
<tr>
<td>Absorption</td>
<td>19 mm to 28 mm</td>
<td>ASTM D202</td>
</tr>
<tr>
<td>Fungus resistance</td>
<td>Satisfactory at 2 weeks incubation</td>
<td>TAPPI T487 PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirements</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis weight 24 by 36, 500 sheets</td>
<td>47 lb. plus or minus 1 lb.</td>
<td>TAPPI T410 OM</td>
</tr>
<tr>
<td>Mullen</td>
<td>42 minutes</td>
<td>TAPPI T403 OM</td>
</tr>
<tr>
<td>Caliper</td>
<td>0.0054 to 0.0058-inch</td>
<td>ASTM D374, Method A</td>
</tr>
<tr>
<td>Tensile, dry</td>
<td>18 minutes</td>
<td>TAPPI T404 CM</td>
</tr>
<tr>
<td>Tensile, wet</td>
<td>25 percent of dry after 1 minute age at 230 degrees F</td>
<td>TAPPI T456 OM</td>
</tr>
<tr>
<td>Absorption</td>
<td>12/16 inch to 18/16 inch</td>
<td>ASTM D202</td>
</tr>
<tr>
<td>Fungus resistance</td>
<td>Satisfactory at 2 weeks incubation</td>
<td>TAPPI T487 PM</td>
</tr>
</tbody>
</table>

2.12 Meters and Controls

**
NOTE: Evaporative coolers with makeup water flow greater than 0.6 GPM must be equipped with makeup and blowdown meters, conductivity controllers, and overflow alarms.
**

Evaporative cooler must be provided with makeup and blowdown meters, conductivity controller, and overflow alarm.
PART 3 EXECUTION

3.1 INSTALLATION

Installation of evaporative coolers must conform with NFPA 90A, SMACNA 1966, recommendations and printed instructions of the manufacturer, and details and notes indicated. Provide mounting and supporting of thermostats, ducts, piping, roof curbs, equipment, accessories, and appurtenances, including but not limited to structural supports, hangers, vibration isolators, stands, clamp and brackets, and access doors. Electric isolation must be provided between dissimilar metals for the purpose of minimizing galvanic corrosion. Electrical work must conform with NFPA 70 and Division 16, Electrical. Equip electric motor-driven equipment with motor starters, fused-disconnect switches, and controls. Provide manual or automatic control, protective devices, and control wiring for operations as indicated.

3.2 FIELD TESTING AND BALANCING

Verify equipment is properly installed, connected, and adjusted. Adjust evaporative coolers to produce air quantities at the conditions indicated. Use Pitot or electronic instrument to measure air quantities. Set control devices to control at the points indicated. Lubricate bearings and check the speed and direction of rotation of each fan. Check the running current of each motor. Furnish water analysis and sufficient chemicals to initially place the evaporative system in service. [Provide same chemicals used at station's cooling towers.]

3.2.1 Evaporative Coolers Tests

Perform minimum 4-hour cooler efficiency tests of each cooler. Record test data in typed tabulation form, no less than 2 days before the final tests of entire systems indicating the following:

a. Time, date, and duration of test
b. Dry-bulb temperature entering and leaving the evaporizer coolers
c. Wet-bulb temperature entering the evaporizer cooler
d. Air quantity and static pressure
e. Motor rpm - voltmeter and ammeter readings
f. Air outlet velocity m/s fpm
g. Evaporative cooler-make, model and size

3.2.2 Control Sequences

[As indicated] [Section 23 09 53.00 20 SPACE TEMPERATURE CONTROL SYSTEMS].

3.3 SCHEDULE

Some metric measurements in this section are based on mathematical
conversion of inch-pound measurements, and not on metric measurements commonly agreed on by the manufacturers or other parties. The inch-pound and metric measurements shown are as follows:

<table>
<thead>
<tr>
<th>Products</th>
<th>Inch-Pound</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. [_____]</td>
<td>[_____]</td>
<td>[_____]</td>
</tr>
</tbody>
</table>

-- End of Section --