UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated October 2022

SECTION TABLE OF CONTENTS

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

SECTION 23 33 56

SELF-ACTING BLAST VALVES

02/09

PART 1 GENERAL

1.1 SUMMARY
1.2 REFERENCES
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
1.5 DELIVERY, STORAGE, AND HANDLING
1.6 WARRANTY

PART 2 PRODUCTS

2.1 VALVE SYSTEMS DESCRIPTION
 2.1.1 Sustained Blast Overpressures
 2.1.2 Blast Overpressure Waveforms
 2.1.3 Performance Requirements
 2.1.3.1 Field Removable Valve Units
 2.1.3.2 Penetrations
 2.2 MATERIALS
 2.2.1 Iron Castings
 2.2.2 Steel Castings
 2.2.3 Corrosion Resistant Alloy Steel Castings
 2.2.4 Structural Steel
 2.2.5 Stainless Steel
 2.2.5.1 Plate, Sheet, and Strip
 2.2.5.2 Bars and Shapes
 2.2.5.3 Spring Wire
 2.2.6 Aluminum
 2.2.6.1 Castings
 2.2.6.2 Sheet and Plate
 2.2.6.3 Bars and Rods
 2.2.7 Anchors
 2.2.8 Primer
 2.3 COMPONENTS
 2.3.1 Blast Operation of Valves Mounted in Casing Supports
2.3.2 Blast Operation of Valves Mounted in Piping or Ducts
2.3.3 Pass Through Impulse
2.3.4 Minimum Operating Overpressure
2.3.5 Operating Temperatures
2.3.6 Air Flow Capacity
2.4 ACCESSORIES
2.5 STRUCTURAL SUPPORTS BY CONTRACTOR
 2.5.1 Design
 2.5.2 Design and Analysis Calculations
2.6 FABRICATION
 2.6.1 Valve Units
 2.6.2 Casing Supports
 2.6.3 Pipe Mountings
 2.6.4 Surface Preparations, Coatings, and Finishes
 2.6.4.1 Valve Unit Finishes
 2.6.4.2 Casing Support Finishes
2.7 TESTS, INSPECTIONS, AND VALIDATIONS
 2.7.1 Blast Tests on Prototype Valve Units
 2.7.2 Factory Air Flow Tests
 2.7.3 Verification Inspection of Welds

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Valve Units
 3.1.2 Casing Supports
3.2 FIELD QUALITY CONTROL
3.3 CLOSEOUT ACTIVITIES
 3.3.1 Systems Manual
 3.3.2 Manufacturer's Field Service

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for self-acting blast valves used for blast protection of supply and exhaust air systems.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This guide specification covers self-acting blast valves for facilities subjected to blast overpressures from accidental explosions, conventional weapons, explosion devices used by terrorists, and nuclear weapons.

This guide specification is intended for procurement of standard products that are readily available and have the required performance characteristics. This guide specification is not intended for procurement of blast valves having special performance characteristics such as actuation by delay paths and sensor actuation since they are not readily available as standard products and may require long
lead times for development.

1.1 SUMMARY

This section specifies self-acting blast valve systems consisting of blast valve units and mountings.

1.2 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AISC 360 (2016) Specification for Structural Steel Buildings

AMERICAN WELDING SOCIETY (AWS)

AWS A5.4/A5.4M (2012) Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding
AWS D1.1/D1.1M (2020; Errata 1 2021) Structural Welding Code - Steel
<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
<th>Year(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A36/A36M</td>
<td>Standard Specification for Carbon Structural Steel</td>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>ASTM A47/A47M</td>
<td>Standard Specification for Ferritic Malleable Iron Castings</td>
<td>1999; R 2018; E 2018</td>
<td></td>
</tr>
<tr>
<td>ASTM A108</td>
<td>Standard Specification for Steel Bar, Carbon and Alloy, Cold-Finished</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>ASTM A148/A148M</td>
<td>Steel Castings, High Strength, for Structural Purposes</td>
<td>2020; E 2020</td>
<td></td>
</tr>
<tr>
<td>ASTM A153/A153M</td>
<td>Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware</td>
<td>2016a</td>
<td></td>
</tr>
<tr>
<td>ASTM A159</td>
<td>Standard Specification for Automotive Gray Iron Castings</td>
<td>1983; R 2020</td>
<td></td>
</tr>
<tr>
<td>ASTM A220/A220M</td>
<td>Standard Specification for Pearlitic Malleable Iron</td>
<td>1999; R 2018; E 2018</td>
<td></td>
</tr>
<tr>
<td>ASTM A278/A278M</td>
<td>Standard Specification for Gray Iron Castings for Pressure-Containing Parts for Temperatures Up to 650 degrees F (350 degrees C)</td>
<td>2001; R 2020</td>
<td></td>
</tr>
</tbody>
</table>

ASTM A666 (2015) Standard Specification for Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC Paint 25 (1997; E 2004) Zinc Oxide, Alkyd, Linseed Oil Primer for Use Over Hand Cleaned Steel, Type I and Type II
**NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list, and corresponding submittal items in the text, to reflect only the submittals required for the project. The Guide Specification technical editors have classified those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For Army projects, fill in the empty brackets following the "G" classification, with a code of up to three characters to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" classification indicates submittals required as proof of compliance for sustainability Guiding Principles Validation or Third Party Certification and as described in Section 01 33 00 SUBMITTAL PROCEDURES.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Structural Supports by Contractor; G[,] [_____]

Submit fabrication, erection, and installation drawings showing framing layouts, elevations, sections, enlarged details, casing locations with dimensions, connections, and material designations.

SD-03 Product Data

Valve Systems

When data shows several products, identify the actual products
proposed.

Manufacturer's Field Service

SD-05 Design Data

Structural Supports by Contractor

SD-06 Test Reports

Blast Tests on Prototype Valve Units

Factory Air Flow Tests

Field Tests

Include an analysis and interpretation of test results in the field test reports.

SD-07 Certificates

Valve Systems

Certify that the valves provided were manufactured using the same materials, dimensions and tolerances as blast tested prototype valve units and that air flow and pressure drop rating meet specification requirements. Each certificate must be signed by an official authorized to certify on behalf of the manufacturer and must identify the quantity and date of shipment or delivery to which the certificate applies.

SD-08 Manufacturer's Instructions

Valve Systems

Submit manufacturer's instructions for valve unit and casing installation and field testing.

SD-10 Operation and Maintenance Data

Systems Manual

Information bound in manual format; in both hard copy and electronic.

1.4 QUALITY ASSURANCE

Welders, welding operators, welding procedures, and weld inspectors must be qualified in accordance with AWS B2.1/B2.1M or AWS D1.1/D1.1M, as applicable.

1.5 DELIVERY, STORAGE, AND HANDLING

Protect valve units, casings, and accessories delivered and placed in storage from weather, excessive humidity and temperature variation, and dirt, dust, or other contaminants.
1.6 WARRANTY

Furnish manufacturer's written warranty covering valve units for 2 years after installation and acceptance by the Government. Provide for repair or replacement of the valve units in the event of malfunction due to defects in materials or workmanship except that finishes need only be warranted for 1 year and the warranty need not cover cleaning and other normal maintenance.

PART 2 PRODUCTS

2.1 VALVE SYSTEMS DESCRIPTION

Provide all valve units and valve mountings from one manufacturer. Submit valve unit data that shows complete dimensions and completely describe overpressure ratings, pass-through impulse leakage ratings, air flow rates, actuation mechanisms, and materials.

2.1.1 Sustained Blast Overpressures

**
NOTE: Delete this paragraph when only triangular overpressure waveforms are specified.

Blast overpressure waveforms may be specified or indicated as sustained (infinite duration) overpressures, triangular waveforms with peak overpressures and finite durations, or other pressure versus time histories. When the blast overpressures are low, a sustained overpressure can be specified or indicated conveniently without loss of economy. When the blast overpressures are high, specifying or indicating triangular waveforms will enhance economy and availability. The sustained overpressures shown in the text cover tested commercial products that are readily available. Some triangular waveform peak overpressures and durations for tested commercial products are shown below.

<table>
<thead>
<tr>
<th>Peak Overpressure MPa</th>
<th>Duration (milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.41 1800</td>
<td>0.64</td>
</tr>
<tr>
<td>3.31 480</td>
<td>3</td>
</tr>
<tr>
<td>2.59 375</td>
<td>5</td>
</tr>
<tr>
<td>2.41 350</td>
<td>15</td>
</tr>
</tbody>
</table>

Sustained or triangular blast overpressure waveforms may be either specified or indicated on blast valve schedules shown on the drawings. Other waveforms should be shown on the drawings using waveform diagrams.

**
Operate casing mounted [supply valve] [exhaust valve] [valve] units under a zero rise time, sustained (infinite duration) blast overpressure of [1.793] [1.103] [0.276] [_____] MPa [260] [160] [40] [_____] psi [, and operate casing mounted exhaust valve units under a zero rise time, sustained (infinite duration) blast overpressure of [1.793] [1.103] [0.276] [_____] MPa [260] [160] [40] [_____] psi.]

2.1.2 Blast Overpressure Waveforms

**

NOTE: Delete this paragraph when only sustained overpressures are specified. Coordinate with paragraph SUSTAINED BLAST OVERPRESSURES.
**

Operate casing mounted [supply valve] [exhaust valve] [valve] units under a triangular blast overpressure waveform having a zero rise time and a peak overpressure and duration of [_____] kPa psi and [_____] milliseconds [, and operate casing mounted exhaust valve units under a triangular blast overpressure waveform having a zero rise time and a peak overpressure and duration of [_____] kPa psi and [_____] milliseconds]. [Operate valve units mounted in [supply] [exhaust] [diesel engine exhaust] piping or ducts under a triangular blast overpressure waveform having a zero rise time and a peak overpressure and durations indicated.] [Operate valve units under the blast waveforms indicated.]

2.1.3 Performance Requirements

2.1.3.1 Field Removable Valve Units

Provide blast valve units that are completely removable from casings or other mountings.

2.1.3.2 Penetrations

Except for air flow openings, seal penetrations through the valve system against blast leakage through the penetration.

2.2 MATERIALS

2.2.1 Iron Castings

2.2.2 Steel Castings

Provide carbon and alloy steel castings conforming to ASTM A27/A27M Grades U-60-30, 65-35, 70-36 or 70-40, or ASTM A148/A148M.

2.2.3 Corrosion Resistant Alloy Steel Castings

Provide corrosion resistant alloy steel castings conforming to ASTM A297/A297M, ASTM A351/A351M, ASTM A447/A447M, or ASTM A560/A560M.
2.2.4 Structural Steel

Provide structural steel conforming to ASTM A36/A36M.

2.2.5 Stainless Steel

2.2.5.1 Plate, Sheet, and Strip

Provide stainless steel plate, sheet, and strip conforming to ASTM A167, ASTM A240/A240M, or ASTM A666.

2.2.5.2 Bars and Shapes

Provide stainless steel bars and shapes conforming to ASTM A276/A276M or ASTM A564/A564M.

2.2.5.3 Spring Wire

Provide stainless steel spring wire conforming to ASTM A313/A313M.

2.2.6 Aluminum

2.2.6.1 Castings

Provide aluminum-alloy castings conforming to ASTM B85/B85M or ASTM B108/B108M.

2.2.6.2 Sheet and Plate

Provide aluminum sheet and plate conforming to ASTM B209M ASTM B209.

2.2.6.3 Bars and Rods

Provide aluminum bars and rods conforming to ASTM B211/B211M ASTM B221.

2.2.7 Anchors

2.2.8 Primer

**

NOTE: Delete paragraph on primer when casing supports are galvanized and when valves are mounted in piping or ducts.

**

Provide primer conforming to SSPC Paint 25.

2.3 COMPONENTS

**

NOTE: Except for diesel exhaust piping, select single-acting nonlatching, double-acting nonlatching or latching type valves. Double-acting nonlatching valves are the least expensive.

**
Furnish valves that close under the positive blast overpressures specified or indicated and that are fully operational after the blast.

2.3.1 Blast Operation of Valves Mounted in Casing Supports

[Provide single-acting nonlatching [supply valves] [valves] that automatically return to the open position except that double-acting valves that close under both positive and negative overpressure may be substituted for single-acting valves.] [Provide double-acting nonlatching [supply valves] [valves] that close under both positive and negative blast pressure and automatically return to the open position.] [Provide latching [supply valves] [valves] that remain in the closed position until manually released.] [Provide single-acting nonlatching exhaust valves that automatically return to the open position except that double-acting valves that close under both positive and negative overpressure may be substituted for single-acting valves.] [Provide double-acting nonlatching exhaust valves that close under both positive and negative blast pressure and automatically return to the open position.] [Provide latching exhaust valves that remain in the closed position until manually released.]

2.3.2 Blast Operation of Valves Mounted in Piping or Ducts

[Mount single-acting nonlatching valves in diesel engine exhaust piping or ducts that return to the open position under the diesel exhaust pressure.] [Mount single-acting nonlatching [supply valves] [valves] in piping or ducts that automatically return to the open position except that double-acting valves that close under both positive and negative overpressure may be substituted for single-acting valves.] [Mount double-acting nonlatching [supply valves] [valves] in piping or ducts that close under both positive and negative blast pressure and automatically return to the open position.] [Mount latching [supply valves] [valves] in piping or ducts that remain in the closed position until manually released.] [Mount single-acting nonlatching exhaust valves that automatically return to the open position except that double-acting valves that close under both positive and negative overpressure may be substituted for single-acting valves.] [Mount double-acting nonlatching exhaust valves in piping or ducts that close under both positive and negative blast pressure and automatically return to the open position.] [Mount latching exhaust valves in piping or ducts that remain in the closed position until manually released.]

2.3.3 Pass Through Impulse

**
NOTE: Specify low pass-through impulse when valves are in close proximity to filters and higher pass-through impulse when valves vent to expansion chambers or other open unoccupied areas.
**

2.3.4 Minimum Operating Overpressure

**
NOTE: Insert appropriate minimum blast overpressure.

**
Provide valves that completely close under a minimum blast overpressure of [4.1] [_____] kPa [0.6] [_____] psi.

2.3.5 Operating Temperatures

**
NOTE: Edit appropriate temperature requirements. Do not include temperature ranges in the specifications when operating temperatures are shown on a valve schedule.

Furnish valve units that are fully operational over [a temperature range from [minus 20 to plus 77] [[_____] to [_____] degrees C [-4 to 170] [[_____] to [_____] degrees F] [a temperature range from [minus 20 to plus 77] [[_____] to [_____] degrees C [-4 to 170] [[_____] to [_____] degrees F for supply valves and [minus 20 to plus 149] [[_____] to [_____] degrees C [-4 to 300] [[_____] to [_____] degrees F for exhaust valves] [the temperature ranges indicated] [except that the maximum operating temperature for valves mounted in diesel exhaust piping or ducts less than [454] [649] [_____] degrees C [850] [1200] [_____] degrees F is prohibited].

2.3.6 Air Flow Capacity

**
NOTE: Edit value of air flow pressure drop. Delete pressure drop in the specifications when pressure drops are shown on a valve schedule.

**
Provide valves meeting the air flow rates [and pressure drops] indicated on the valve schedules. [The total pressure drop across each casing mounted supply and exhaust valve must not exceed [254] [_____] Pa [1] [_____] inch of water gauge at the air flows indicated.] [The total pressure drop across each valve mounted in [diesel engine exhaust] [supply and exhaust] piping or ducts must not exceed [_____] Pa inch of water gauge at the flows indicated.]

2.4 ACCESSORIES

Furnish blast valve systems complete with valve units, casings, fasteners, anchors, and all other accessories required to provide a complete, operable installation.

2.5 STRUCTURAL SUPPORTS BY CONTRACTOR

**
NOTE: Delete reference to structural steel when valve casings are cast directly into concrete.

**
In lieu of the concrete openings and supports indicated, the Contractor may design openings and supports to accommodate the proposed valve system. Provide submittals when concrete opening and framing systems require changes to accommodate proposed valve casings. Use weld symbols
used conforming to AWS A2.4.

2.5.1 Design

Design openings and framing using loads computed from the blast overpressures specified or indicated. Determine structural steel mechanical properties, such as minimum yield stress, tensile strength and member section properties, based on the proposed framing system. Base dynamic increase factors on applicable strain rates and the concrete unconfined compressive strength, concrete reinforcement yield stress, and structural steel yield stress. Perform flexural analyses using equivalent single degree of freedom or other approved dynamic analysis methods. Select deformation limits so that ultimate deflections do not inhibit proper valve unit operation.

2.5.2 Design and Analysis Calculations

Submit design and analysis calculations showing concrete opening and framing systems requiring changes to accommodate the proposed valve casings. When applicable, include a narrative discussion of the analysis techniques used; sketches showing the design overpressure loadings, member cross-sections, layouts and dimensions; elastic and plastic section properties for all load-carrying members; minimum yield and tensile strengths for steel materials; plastic moment capacities for load-carrying members; resistance function sketches showing equivalent ultimate resistance and elastic deflections; and design deformation limits and response values for maximum deflections, ductility ratios, and support rotations. Provide design and analysis calculations stamped by a Registered Professional Engineer experienced in dynamic analysis and design methods.

2.6 FABRICATION

Provide factory fabricated valve units and mountings. Use approved bolts, nuts, and washers to connect valve units to mountings. Perform welding in accordance with AWS D1.1/D1.1M. Weld stainless steel using electrodes conforming to AWS A5.4/A5.4M.

2.6.1 Valve Units

Provide atmospheric corrosion resistant valve units. Fabricate valve bodies from iron, steel or aluminum-alloy castings except fabricate bodies for valves mounted in diesel engine exhaust piping or ducts from corrosion resistant alloy steel castings. Fabricate internal parts such as spindles and pressure disks from stainless steel or aluminum. Fabricate helical springs from stainless steel spring wire. Special iron, steel and aluminum-alloy castings used to fabricate valve bodies, and special stainless steels and aluminum-alloys used to fabricate internal parts will be permitted when the materials used in the valve units provided are the same as those used in blast tested prototype valve units. Machine or fit valve surfaces that contact to prevent blast leakage with approved neoprene gaskets to ensure a tight fit.

2.6.2 Casing Supports

**
NOTE: Specify ground smooth welds when appearance is important.
**
Furnish valve casing supports consisting of structural steel fabricated in accordance with either AISC 360 or AISC 325. Use groove welds consisting of complete penetration welds with complete joint fusion to splice face plates. In order to reduce distortion and residual stresses, use a welding sequence. Stress relieve all welds, and post weld straighten welded casings. Furnish fabricated steel that is well-formed to shape and size, with sharp lines and angles. Cope or miter intermediate and corner joints. Ground smooth exposed welds other than fillet welds.

2.6.3 Pipe Mountings

Flange connect valves indicated for installation in piping systems. Provide flange dimension compatible with the piping specified or indicated or provide companion flanges and weld to the adjacent piping.

2.6.4 Surface Preparations, Coatings, and Finishes

Use coatings and finishes that are suitable for preventing atmospheric corrosion and resistant to heat damage under the operating temperatures specified.

2.6.4.1 Valve Unit Finishes

Ferrous metal surfaces other than stainless steel must be prepared and factory coated and finished using the manufacturer's standard process.

2.6.4.2 Casing Support Finishes

**

NOTE: Edit option for galvanizing or priming and painting. Priming and painting is recommended for most applications.
**

[Provide galvanized valve support casings in accordance with ASTM A123/A123M except that surfaces that will be embedded in concrete need not be galvanized. Exposed portions of concrete anchors, fasteners that connect casing parts, and fasteners that connect valve units to casings must be galvanized in accordance with ASTM A153/A153M.] [Prepare valve support casings for priming in accordance with either AISC 360 or AISC 325 and factory prime and finish paint. Do not prime and finish paint surfaces that will be embedded in concrete. Use manufacturer's standard finish paint.]

2.7 TESTS, INSPECTIONS, AND VALIDATIONS

2.7.1 Blast Tests on Prototype Valve Units

Validate valve performance under blast by performing blast tests on prototype valve units. Validate that the specified pass-through impulse leakage is not exceeded and that the valve unit is fully operational after blast loading. When finite duration overpressure waveforms are specified, the overpressure waveforms used in the prototype test must exceed the specified waveforms in both overpressure and impulse.

2.7.2 Factory Air Flow Tests

**
NOTE: Edit air flow test requirements.
**
Factory air flow test valve units to ensure that assembled valve units meet the air flow rates and pressure drops specified or indicated. Product sampling and air flow testing methods and procedures must be the manufacturer's standard except that at least [5] [_____] percent of the total number of each valve type must be tested.

2.7.3 Verification Inspection of Welds

Perform verification inspection of welds in accordance with AWS D1.1/D1.1M.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Valve Units

Install valve units in accordance with the valve manufacturer's written instructions.

3.1.2 Casing Supports

Erect structural steel casing supports in accordance with the manufacturer's instructions, AISC 303 and either AISC 360 or AISC 325.

3.2 FIELD QUALITY CONTROL

Perform field tests on valve units in accordance with the valve manufacturer's written instructions and the testing requirements specified in other specification sections. Submit certified blast and air flow test reports for valve units, including the name and location of the testing agency or laboratory, the date of the tests, a description of the valve units tested, the overpressure waveforms, and the testing apparatus. Document the pass-through impulse leakage, the ability of the valve units to resist the specified loads, and the air flow rate versus pressure loss characteristics over the operating pressures.

3.3 CLOSEOUT ACTIVITIES

3.3.1 Systems Manual

Provide a manual consisting of manufacturer's safety precautions, preventative maintenance and schedules, troubleshooting procedures, special tools, parts list, and spare parts data. Edit all data to cover only the valves furnished.

3.3.2 Manufacturer's Field Service

**
NOTE: Specify field service for large valve installations. Edit instruction period duration and instruction videotape requirements.
**

Upon completion of the work, and at a time designated by the Contracting Officer, provide the services of one engineer and other technical personnel, as required, for a period of not less than [4] [_____] hours to
instruct Government personnel in the operation and maintenance of the blast valves and all other items furnished under this specification section. Submit information describing training to be provided, training aids to be used, and a description of the training. Also include use of the systems manual and videotapes plus an instruction outline and procedure approved prior to scheduling the instruction.

-- End of Section --