SECTION TABLE OF CONTENTS

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

SECTION 23 07 00

THERMAL INSULATION FOR MECHANICAL SYSTEMS

02/13, CHG 7: 05/20

PART 1 GENERAL

1.1 REFERENCES
1.2 SYSTEM DESCRIPTION
1.2.1 General
1.3 SUBMITTALS
1.4 CERTIFICATIONS
1.4.1 Adhesives and Sealants
1.5 QUALITY ASSURANCE
1.5.1 Installer Qualification
1.6 DELIVERY, STORAGE, AND HANDLING

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS
2.1.1 Insulation System
2.1.2 Surface Burning Characteristics
2.2 MATERIALS
2.2.1 Adhesives
2.2.1.1 Acoustical Lining Insulation Adhesive
2.2.1.2 Mineral Fiber Insulation Cement
2.2.1.3 Lagging Adhesive
2.2.1.4 Contact Adhesive
2.2.2 Caulking
2.2.3 Corner Angles
2.2.4 Fittings
2.2.5 Finishing Cement
2.2.6 Fibrous Glass Cloth and Glass Tape
2.2.7 Staples
2.2.8 Jackets
2.2.8.1 Aluminum Jackets
2.2.8.2 Polyvinyl Chloride (PVC) Jackets
2.2.8.3 Vapor Barrier/Weatherproofing Jacket
2.2.8.4 Vapor Barrier/Vapor Retarder
2.2.9 Vapor Retarder Required

SECTION 23 07 00 Page 1
PART 2

2.2.9.1 White Vapor Retarder All Service Jacket (ASJ)
2.2.9.2 Vapor Retarder/Vapor Barrier Mastic Coatings
 2.2.9.2.1 Vapor Barrier
 2.2.9.2.2 Vapor Retarder
2.2.9.3 Laminated Film Vapor Retarder
2.2.9.4 Polyvinylidene Chloride (PVDC) Film Vapor Retarder
2.2.9.5 Polyvinylidene Chloride Vapor Retarder Adhesive Tape
2.2.9.6 Vapor Barrier/Weather Barrier
2.2.10 Vapor Retarder Not Required
2.2.11 Wire
2.2.12 Insulation Bands
2.2.13 Sealants

2.3 PIPE INSULATION SYSTEMS
2.3.1 Recycled Materials
2.3.2 Aboveground Cold Pipeline (-34 to 16 deg. C -30 to 60 deg. F)
 2.3.2.1 Cellular Glass
 2.3.2.2 Flexible Elastomeric Cellular Insulation
 2.3.2.3 Mineral Fiber Insulation with Integral Wicking Material (MFIWM)
 2.3.2.4 Polyisocyanurate Insulation
2.3.3 Aboveground Hot Pipeline (Above 16 deg. C 60 deg. F)
 2.3.3.1 Mineral Fiber
 2.3.3.2 Calcium Silicate
 2.3.3.3 Cellular Glass
 2.3.3.4 Flexible Elastomeric Cellular Insulation
 2.3.3.5 Phenolic Insulation
 2.3.3.6 Perlite Insulation
 2.3.3.7 Polyisocyanurate Insulation
2.3.4 Aboveground Dual Temperature Pipeline
2.3.5 Below-ground Pipeline Insulation

2.4 DUCT INSULATION SYSTEMS
2.4.1 Factory Applied Insulation
 2.4.1.1 Rigid Insulation
 2.4.1.2 Blanket Insulation
2.4.2 Kitchen Exhaust Ductwork Insulation
2.4.3 Acoustical Duct Lining
 2.4.3.1 General
 2.4.3.2 Duct Liner
2.4.4 Duct Insulation Jackets
 2.4.4.1 All-Purpose Jacket
 2.4.4.2 Metal Jackets
 2.4.4.2.1 Aluminum Jackets
 2.4.4.2.2 Stainless Steel Jackets
 2.4.4.3 Vapor Barrier/Weatherproofing Jacket
2.4.5 Weatherproof Duct Insulation

2.5 EQUIPMENT INSULATION SYSTEMS

PART 3 EXECUTION

3.1 APPLICATION - GENERAL
 3.1.1 Display Samples
 3.1.1.1 Pipe Insulation Display Sections
 3.1.1.2 Duct Insulation Display Sections
 3.1.2 Installation
 3.1.3 Firestopping
 3.1.4 Painting and Finishing
 3.1.5 Installation of Flexible Elastomeric Cellular Insulation
 3.1.5.1 Adhesive Application
 3.1.5.2 Adhesive Safety Precautions
3.1.6 Welding
3.1.7 Pipes/Ducts/Equipment That Require Insulation

3.2 PIPE INSULATION SYSTEMS INSTALLATION

3.2.1 Pipe Insulation
3.2.1.1 General
3.2.1.2 Pipes Passing Through Walls, Roofs, and Floors
 3.2.1.2.1 Penetrate Interior Walls
 3.2.1.2.2 Penetrating Floors
 3.2.1.2.3 Penetrating Waterproofed Floors
 3.2.1.2.4 Penetrating Exterior Walls
 3.2.1.2.5 Penetrating Roofs
 3.2.1.2.6 Hot Water Pipes Supplying Lavatories or Other Similar Heated Service
 3.2.1.2.7 Domestic Cold Water Pipes Supplying Lavatories or Other Similar Cooling Service
3.2.1.3 Pipes Passing Through Hangers
 3.2.1.3.1 Horizontal Pipes Larger Than 50 mm 2 Inches at 16 Degrees C 60 Degrees F and Above
 3.2.1.3.2 Horizontal Pipes Larger Than 50 mm 2 Inches and Below 16 Degrees C 60 Degrees F
 3.2.1.3.3 Vertical Pipes
 3.2.1.3.4 Inserts
3.2.1.4 Flexible Elastomeric Cellular Pipe Insulation
3.2.1.5 Pipes in high abuse areas.
3.2.1.6 Pipe Insulation Material and Thickness

3.2.2 Aboveground Cold Pipelines
3.2.2.1 Insulation Material and Thickness
3.2.2.2 Factory or Field applied Jacket
3.2.2.3 Installing Insulation for Straight Runs Hot and Cold Pipe
 3.2.2.3.1 Longitudinal Laps of the Jacket Material
 3.2.2.3.2 Laps and Butt Strips
 3.2.2.3.3 Factory Self-Sealing Lap Systems
 3.2.2.3.4 Staples
 3.2.2.3.5 Breaks and Punctures in the Jacket Material
 3.2.2.3.6 Penetrations Such as Thermometers
 3.2.2.3.7 Flexible Elastomeric Cellular Pipe Insulation
3.2.2.4 Insulation for Fittings and Accessories
3.2.2.5 Optional PVC Fitting Covers

3.2.3 Aboveground Hot Pipelines
3.2.3.1 General Requirements
3.2.3.2 Insulation for Fittings and Accessories
 3.2.3.2.1 Precut or Preformed
 3.2.3.2.2 Rigid Preformed
3.2.4 Piping Exposed to Weather
 3.2.4.1 Aluminum Jacket
 3.2.4.2 Insulation for Fittings
 3.2.4.3 PVC Jacket
 3.2.4.4 Stainless Steel Jackets
3.2.5 Below Ground Pipe Insulation
 3.2.5.1 Type of Insulation
 3.2.5.2 Installation of Below ground Pipe Insulation

3.3 DUCT INSULATION SYSTEMS INSTALLATION
3.3.1 Duct Insulation Minimum Thickness
3.3.2 Insulation and Vapor Retarder/Vapor Barrier for Cold Air Duct
 3.3.2.1 Installation on Concealed Duct
 3.3.2.2 Installation on Exposed Duct Work
3.3.3 Insulation for Warm Air Duct
 3.3.3.1 Installation on Concealed Duct
 3.3.3.2 Installation on Exposed Duct
3.3.4 Ducts Handling Air for Dual Purpose
3.3.5 Insulation for Evaporative Cooling Duct
3.3.6 Duct Test Holes
3.3.7 Duct Exposed to Weather
 3.3.7.1 Installation
 3.3.7.2 Round Duct
 3.3.7.3 Fittings
 3.3.7.4 Rectangular Ducts
3.3.8 Kitchen Exhaust Duct Insulation
3.4 EQUIPMENT INSULATION SYSTEMS INSTALLATION
 3.4.1 General
 3.4.2 Insulation for Cold Equipment
 3.4.2.1 Insulation Type
 3.4.2.2 Pump Insulation
 3.4.2.3 Other Equipment
 3.4.2.4 Vapor Retarder/Vapor Barrier
 3.4.3 Insulation for Hot Equipment
 3.4.3.1 Insulation
 3.4.3.2 Insulation of Boiler Stack and Diesel Engine Exhaust Pipe
 3.4.3.3 Insulation of Pumps
 3.4.3.4 Other Equipment
 3.4.4 Equipment Handling Dual Temperature Media
 3.4.5 Equipment Exposed to Weather
 3.4.5.1 Installation
 3.4.5.2 Optional Panels

-- End of Section Table of Contents --
UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated April 2021

SECTION 23 07 00

THERMAL INSULATION FOR MECHANICAL SYSTEMS

02/13, CHG 7: 05/20

NOTE: This guide specification covers the requirements for field applied thermal insulation on HVAC and plumbing systems located within, on, under, and adjacent to buildings; above and below ground.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: Show the following information on project drawings:

1. Areas where pipe insulation differs from the "Typical;"

2. Areas where ductwork is to be internally insulated;

3. Areas where metal jackets or 8-ply vapor barrier jacket are to be used on interior piping;

4. Pumps to be insulated and encased in 20 gauge
boxes; and

5. Heat exchange temperatures.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. At the discretion of the Government, the manufacturer of any material supplied will be required to furnish test reports pertaining to any of the tests necessary to assure compliance with the standard or standards referenced in this specification.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

ASTM C755 (2019b) Standard Practice for Selection of Water Vapor Retarders for Thermal Insulation
<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D882</td>
<td>(2012) Tensile Properties of Thin Plastic Sheeting</td>
</tr>
</tbody>
</table>

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH (CDPH)

CDPH SECTION 01350 (2010; Version 1.1) Standard Method for
the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers

FM GLOBAL (FM)

GREEN SEAL (GS)

GS-36 (2013) Adhesives for Commercial Use

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MIDWEST INSULATION CONTRACTORS ASSOCIATION (MICA)

MICA Insulation Stds (8th Ed) National Commercial & Industrial Insulation Standards

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 90A (2021) Standard for the Installation of Air Conditioning and Ventilating Systems

NFPA 90B (2021) Standard for the Installation of Warm Air Heating and Air Conditioning Systems

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS SCS Global Services (SCS) Indoor Advantage

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT (SCAQMD)

SCAQMD Rule 1168 (2017) Adhesive and Sealant Applications

TECHNICAL ASSOCIATION OF THE PULP AND PAPER INDUSTRY (TAPPI)

TAPPI T403 OM (2015) Bursting Strength of Paper

U.S. DEPARTMENT OF DEFENSE (DOD)

1.2 SYSTEM DESCRIPTION

**

NOTE: This guide specification is to be used for field applied insulation on mechanical systems; interior and exterior, above and below ground. Insulation for energy distribution systems covered by Sections 33 61 13 PRE-ENGINEERED UNDERGROUND HEAT DISTRIBUTION SYSTEM, 33 63 13.19 CONCRETE TRENCH HYDRONIC AND STEAM ENERGY DISTRIBUTION, 33 61 13.13 PREFABRICATED UNDERGROUND HYDRONIC ENERGY DISTRIBUTION, and 33 60 02 ABOVEGROUND HEAT DISTRIBUTION SYSTEM, are not within the scope of this guide specification. Heating, air conditioning, and evaporative cooling duct; equipment; and piping are included.

Pipe insulation covered in this specification is valid for between minus 34 and plus 204 degrees C minus 30 and plus 400 degrees F. Equipment insulation covered in this specification is valid for between minus 34 and plus 982 degrees C minus 30 and plus 1800 degrees F.

**

1.2.1 General

Provide field-applied insulation and accessories on mechanical systems as specified herein; factory-applied insulation is specified under the piping, duct or equipment to be insulated. Insulation of heat distribution systems and chilled water systems outside of buildings shall be as specified in Section 33 61 13 PRE-ENGINEERED UNDERGROUND HEAT DISTRIBUTION SYSTEM, Section 33 63 13.19 CONCRETE TRENCH HYDRONIC AND STEAM ENERGY DISTRIBUTION, Section 33 60 02 ABOVEGROUND HEAT DISTRIBUTION SYSTEM, and Section 33 61 13.13 PREFABRICATED UNDERGROUND HYDRONIC ENERGY
Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

Submit the three SD types, SD-02 Shop Drawings, SD-03 Product Data, and SD-08 Manufacturer's Instructions at the same time for each system.
1.4 CERTIFICATIONS

1.4.1 Adhesives and Sealants

Provide products certified to meet indoor air quality requirements by UL 2818 (Greenguard) Gold, SCS Global Services Indoor Advantage Gold or provide certification or validation by other third-party programs that products meet the requirements of this Section. Provide current product certification documentation from certification body. When product does not have certification, provide validation that product meets the indoor air quality product requirements cited herein.
1.5 QUALITY ASSURANCE

1.5.1 Installer Qualification

Qualified installers shall have successfully completed three or more similar type jobs within the last 5 years.

1.6 DELIVERY, STORAGE, AND HANDLING

Materials shall be delivered in the manufacturer's unopened containers. Materials delivered and placed in storage shall be provided with protection from weather, humidity, dirt, dust and other contaminants. The Contracting Officer may reject insulation material and supplies that become dirty, dusty, wet, or contaminated by some other means. Packages or standard containers of insulation, jacket material, cements, adhesives, and coatings delivered for use, and samples required for approval shall have manufacturer's stamp or label attached giving the name of the manufacturer and brand, and a description of the material, date codes, and approximate shelf life (if applicable). Insulation packages and containers shall be asbestos free.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide materials which are the standard products of manufacturers regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Submit a complete list of materials, including manufacturer's descriptive technical literature, performance data, catalog cuts, and installation instructions. The product number, k-value, thickness and furnished accessories including adhesives, sealants and jackets for each mechanical system requiring insulation shall be included. The product data must be copyrighted, have an identifying or publication number, and shall have been published prior to the issuance date of this solicitation. Materials furnished under this section shall be submitted together in a booklet and in conjunction with the MICA plates booklet (SD-02). Annotate the product data to indicate which MICA plate is applicable.

2.1.1 Insulation System

Provide insulation systems in accordance with the approved MICA National Insulation Standards plates as supplemented by this specification. Provide field-applied insulation for heating, ventilating, and cooling (HVAC) air distribution systems and piping systems that are located within, on, under, and adjacent to buildings; and for plumbing systems. Provide CFC and HCFC free insulation.

2.1.2 Surface Burning Characteristics

Unless otherwise specified, insulation must have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flame spread, and smoke developed indexes, shall be determined by ASTM E84 or UL 723. Test insulation in the same density and installed thickness as the material to be used in the actual construction. Prepare and mount test specimens according to ASTM E2231.
2.2 MATERIALS

**
NOTE: Tables 1, 2, 3, 4, and 5 are not inclusive of systems requiring insulation. Edit, modify, and add to the information contained in tables as required for your project requiring insulation. These tables shall become a part of project specification.

For cryogenic equipment handling media between minus 34 and minus 18 degrees C minus30 and minus one degree F, use elastomeric closed cell or cellular glass.

Table 7 is primarily used for personnel safety where stacks or pipes are within reach, or if stacks or pipes run through conditioned spaces where heat losses may increase building energy usage.

ASHRAE 90.2 is for low-rise residential building.
ASHRAE 90.1 is for all buildings except low-rise residential buildings. Low-rise building has one or two stories without elevators. High-rise building has multistory with elevators.

**

Provide insulation that meets or exceed the requirements of [ASHRAE 90.1 - SI][ASHRAE 90.2]. Insulation exterior shall be cleanable, grease resistant, non-flaking and non-peeling. Materials shall be compatible and shall not contribute to corrosion, soften, or otherwise attack surfaces to which applied in either wet or dry state. Materials to be used on stainless steel surfaces shall meet ASTM C795 requirements. Calcium silicate shall not be used on chilled or cold water systems. Materials shall be asbestos free. Provide product recognized under UL 94 (if containing plastic) and listed in FM APP GUIDE.

2.2.1 Adhesives

Provide non-aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) that meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1168 (HVAC duct sealants must meet limit requirements of "Other" category within SCAQMD Rule 1168 sealants table). Provide aerosol adhesives used on the interior of the building that meet either emissions requirements of CDPH SECTION 01350 (use the office or classroom requirements, regardless of space type) or VOC content requirements of GS-36. Provide certification or validation of indoor air quality for adhesives.

2.2.1.1 Acoustical Lining Insulation Adhesive

Adhesive shall be a nonflammable, fire-resistant adhesive conforming to ASTM C916, Type I.

2.2.1.2 Mineral Fiber Insulation Cement

Cement shall be in accordance with ASTM C195.
2.2.1.3 Lagging Adhesive

Lagging is the material used for thermal insulation, especially around a cylindrical object. This may include the insulation as well as the cloth/material covering the insulation. [To resist mold/mildew, lagging adhesive shall meet ASTM D5590 with 0 growth rating.]Lagging adhesives shall be nonflammable and fire-resistant and shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Adhesive shall be MIL-A-3316, Class 1, pigmented [white] [red] and be suitable for bonding fibrous glass cloth to faced and unfaced fibrous glass insulation board; for bonding cotton brattice cloth to faced and unfaced fibrous glass insulation board; for sealing edges of and bonding glass tape to joints of fibrous glass board; for bonding lagging cloth to thermal insulation; or Class 2 for attaching fibrous glass insulation to metal surfaces. Lagging adhesives shall be applied in strict accordance with the manufacturer's recommendations for pipe and duct insulation.

2.2.1.4 Contact Adhesive

Adhesives may be any of, but not limited to, the neoprene based, rubber based, or elastomeric type that have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. The adhesive shall not adversely affect, initially or in service, the insulation to which it is applied, nor shall it cause any corrosive effect on metal to which it is applied. Any solvent dispersing medium or volatile component of the adhesive shall have no objectionable odor and shall not contain any benzene or carbon tetrachloride. The dried adhesive shall not emit nauseous, irritating, or toxic volatile matters or aerosols when the adhesive is heated to any temperature up to 100 degrees C 212 degrees F. The dried adhesive shall be nonflammable and fire resistant. Flexible Elastomeric Adhesive: Comply with MIL-A-24179, Type II, Class I. Provide product listed in FM APP GUIDE.

2.2.2 Caulking

ASTM C920, Type S, Grade NS, Class 25, Use A.

2.2.3 Corner Angles

Nominal 0.406 mm 0.016 inch aluminum 25 by 25 mm 1 by 1 inch with factory applied kraft backing. Aluminum shall be ASTM B209M ASTM B209, Alloy 3003, 3105, or 5005.

2.2.4 Fittings

Fabricated Fittings are the prefabricated fittings for flexible elastomeric pipe insulation systems in accordance with ASTM C1710. Together with the flexible elastomeric tubes, they provide complete system integrity for retarding heat gain and controlling condensation drip from chilled-water and refrigeration systems. Flexible elastomeric, fabricated fittings provide thermal protection (0.25 k) and condensation resistance (0.05 Water Vapor Transmission factor). For satisfactory performance, properly installed protective vapor retarder/barriers and vapor stops shall be used on high relative humidity and below ambient temperature applications to reduce movement of moisture through or around the insulation to the colder interior surface.
2.2.5 Finishing Cement

ASTM C450: Mineral fiber hydraulic-setting thermal insulating and finishing cement. All cements that may come in contact with Austenitic stainless steel must comply with ASTM C795.

2.2.6 Fibrous Glass Cloth and Glass Tape

Fibrous glass cloth, with 20X20 maximum mesh size, and glass tape shall have maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Tape shall be 100 mm 4 inch wide rolls. Class 3 tape shall be 0.15 kg/square m 4.5 ounces/square yard. Elastomeric Foam Tape: Black vapor-retarder foam tape with acrylic adhesive containing an anti-microbial additive.

2.2.7 Staples

**
NOTE: For cold applications (cold water, chilled water, and brine systems), staples and/or tacks are not permitted to be installed on vapor retarder/barrier jackets or fitting covers.

Monel is a nickel rich alloy that has high strength, high ductility, and excellent resistance to corrosion.
**

Outward clinching type [monel] [ASTM A167, Type 304 or 316 stainless steel].

2.2.8 Jackets

**
NOTE: The purpose of jacketing insulated pipes and vessels is to protect the vapor retarder system and the insulation. Protective jacketing is designed to be installed over the vapor retarder/vapor barrier and insulation to prevent weather and abrasion damage. The protective jacketing must be installed independently and in addition to any factory or field applied vapor retarder.

VAPOR BARRIER/VAPOR RETARDER. To determine which system is required, the following criteria shall be applied: On ducts, piping and equipment operating below [select a temperature that is at least equal to the dry bulb temperature's median of extreme highs from the region's weather data] or located outside shall be equipped with a vapor barrier. Whereas ducts, pipes and equipment that are located inside and that always operate above [use the same temperature selected earlier in this paragraph which is based on the region's median of extreme highs dry bulb temperature] shall be installed with a vapor retarder where required as stated in "Vapor Retarder Required."

A vapor barrier should be installed where there is a
possibility of condensation. Therefore, the designer shall require a vapor barrier where the temperature in the system may be below the ambient temperature. If the application operates at times above the selected temperature and other times below the selected temperature, the application shall be equipped with a vapor barrier.

2.2.8.1 Aluminum Jackets

Aluminum jackets shall be corrugated, embossed or smooth sheet, 0.406 mm 0.016 inch nominal thickness; ASTM B209M ASTM B209, Temper H14, Temper H16, Alloy 3003, 5005, or 3105. Corrugated aluminum jacket shall not be used outdoors. Aluminum jacket securing bands shall be Type 304 stainless steel, 0.396 mm 0.015 inch thick, 13 mm 1/2 inch wide for pipe under 300 mm 12 inch diameter and 19 mm 3/4 inch wide for pipe over 300 mm 12 inch and larger diameter. Aluminum jacket circumferential seam bands shall be 50.8 by 0.406 mm 2 by 0.016 inch aluminum matching jacket material. Bands for insulation below ground shall be 19 by 0.508 mm 3/4 by 0.020 inch thick stainless steel, or fiberglass reinforced tape. The jacket may, at the option of the Contractor, be provided with a factory fabricated Pittsburgh or "Z" type longitudinal joint. When the "Z" joint is used, the bands at the circumferential joints shall be designed by the manufacturer to seal the joints and hold the jacket in place.

2.2.8.2 Polyvinyl Chloride (PVC) Jackets

Polyvinyl chloride (PVC) jacket and fitting covers shall have high impact strength, ultraviolet (UV) resistant rating or treatment and moderate chemical resistance with minimum thickness 0.762 mm 0.030 inch.

2.2.8.3 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive, greater than 3 plies standard grade, silver, white, black and embossed or greater than 8 ply (minimum 0.072 mm 2.9 mils adhesive); with 0.0000 permeability when tested in accordance with ASTM E96/E96M, using the water transmission rate test method; heavy duty, white or natural; and UV resistant. Flexible Elastomeric exterior foam with factory applied, UV Jacket made with a cold weather acrylic adhesive. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and excellent Water Vapor Transmission (WVT) rate.

2.2.8.4 Vapor Barrier/Vapor Retarder

NOTE: Where there is a possibility of condensation install a vapor barrier. Therefore, the designer shall require a vapor barrier where the temperature in the system may be below the ambient temperature. If the application operates at times above the selected temperature and other times below the
selected temperature, the application shall be equipped with a vapor barrier.

Apply the following criteria to determine which system is required.

**

NOTE: Fill in the brackets a temperature that is at least equal to the dry bulb temperature’s median of extreme highs from the region’s weather data

**

a. On ducts, piping and equipment operating below [____] degrees C degrees F or located outside shall be equipped with a vapor barrier.

**

NOTE: Use the same temperature selected earlier in this paragraph which is based on the region’s median of extreme highs dry bulb temperature

**

b. Ducts, pipes and equipment that are located inside and that always operate above [____] degrees C degrees F shall be installed with a vapor retarder where required as stated in paragraph VAPOR RETARDER REQUIRED.

2.2.9 Vapor Retarder Required

**

NOTE: The functions of a vapor retarder/vapor barrier are to keep out water, water vapor, and to prevent water vapor infiltration, in order to keep the insulation dry. Type I is a vapor barrier for use over insulation on pipes, ducts, or equipment operating at temperatures below ambient at least part of the time or wherever a vapor barrier is required. Type II vapor retarder is water vapor permeable and for use over pipes, ducts, or equipment operating above ambient temperatures or wherever a vapor barrier is not required.

**

ASTM C921, Type I, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where a minimum puncture resistance of 25 Beach units is acceptable. Minimum tensile strength, 6.1 N/mm 35 pounds/inch width. ASTM C921, Type II, minimum puncture resistance 25 Beach units, tensile strength minimum 3.5 N/mm 20 pounds/inch width. Jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. Based on the application, insulation materials that require manufacturer or fabricator applied pipe insulation jackets are cellular glass, when all joints are sealed with a vapor barrier mastic, and mineral fiber. All non-metallic jackets shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible elastomerics require (in addition to vapor barrier skin) vapor retarder jacketing for high relative humidity and below ambient temperature applications.
2.2.9.1 White Vapor Retarder All Service Jacket (ASJ)

ASJ is for use on hot/cold pipes, ducts, or equipment indoors or outdoors if covered by a suitable protective jacket. The product shall meet all physical property and performance requirements of ASTM C1136, Type I, except the burst strength shall be a minimum of 585 kPa 85 psi. ASTM D2863 Limited Oxygen Index (LOI) shall be a minimum of 31.

In addition, neither the outer exposed surface nor the inner-most surface contacting the insulation shall be paper or other moisture-sensitive material. The outer exposed surface shall be white and have an emittance of not less than 0.80. The outer exposed surface shall be paintable.

2.2.9.2 Vapor Retarder/Vapor Barrier Mastic Coatings

2.2.9.2.1 Vapor Barrier

The vapor barrier shall be self adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) greater than 3 plies standard grade, silver, white, black and embossed white jacket for use on hot/cold pipes. Permeability shall be less than 0.02 when tested in accordance with ASTM E96/E96M. Products shall meet UL 723 or ASTM E84 flame and smoke requirements and shall be UV resistant.

2.2.9.2.2 Vapor Retarder

The vapor retarder coating shall be fire and water resistant and appropriately selected for either outdoor or indoor service. Color shall be white. The water vapor permeance of the compound shall be in accordance with ASTM C755, Section 7.2.2, Table 2, for insulation type and service conditions. The coating shall be nonflammable, fire resistant type. [To resist mold/mildew, coating shall meet ASTM D5590 with 0 growth rating.] Coating shall meet MIL-PRF-19565 Type II (if selected for indoor service) and be Qualified Products Database listed. All other application and service properties shall be determined pursuant to ASTM C647.

2.2.9.3 Laminated Film Vapor Retarder

ASTM C1136, Type I, maximum moisture vapor transmission 0.02 perms, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork; where Type II, maximum moisture vapor transmission 0.02 perms, a minimum puncture resistance of 25 Beach units is acceptable. Vapor retarder shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible Elastomeric exterior foam with factory applied UV Jacket. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and an excellent WVT rate.

2.2.9.4 Polyvinylidene Chloride (PVDC) Film Vapor Retarder

The PVDC film vapor retarder shall have a maximum moisture vapor transmission of 0.02 perms, minimum puncture resistance of 150 Beach units, a minimum tensile strength in any direction of 5.3 kN/m 30 lb/inch when tested in accordance with ASTM D882, and a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.
2.2.9.5 Polyvinylidene Chloride Vapor Retarder Adhesive Tape

Requirements must meet the same as specified for Laminated Film Vapor Retarder above.

2.2.9.6 Vapor Barrier/Weather Barrier

The vapor barrier shall be greater than 3 ply self adhesive laminate white vapor barrier jacket – superior performance (less than 0.0000 permeability when tested in accordance with ASTM E96/E96M). Vapor barrier shall meet UL 723 or ASTM E84 25 flame and 50 smoke requirements; and UV resistant. Minimum burst strength 1.3 MPa 185 psi in accordance with [TAPPI T403 OM] [ISO 2758]. Tensile strength 0.12 kg/m 68 lb/inch width (PSTC-1000). Tape shall be as specified for laminated film vapor barrier above.

2.2.10 Vapor Retarder Not Required

ASTM C921, Type II, Class D, minimum puncture resistance 50 Beach units on all surfaces except ductwork, where Type IV, maximum moisture vapor transmission 0.10, a minimum puncture resistance of 25 Beach units is acceptable. Jacket shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.2.11 Wire

Soft annealed ASTM A580/A580M Type 302, 304 or 316 stainless steel, 16 or 18 gauge.

2.2.12 Insulation Bands

Insulation bands shall be 13 mm 1/2 inch wide; 26 gauge stainless steel.

2.2.13 Sealants

Sealants shall be chosen from the butyl polymer type, the styrene-butadiene rubber type, or the butyl type of sealants. Sealants shall have a maximum permeance of 0.02 perms based on Procedure B for ASTM E96/E96M, and a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.3 PIPE INSULATION SYSTEMS

**

NOTE: Where the temperature of cold water entering a building is below the average dew point of the indoor ambient air, and where condensate drip will cause damage or create a hazard, the piping should be insulated to limit or minimize condensation and a vapor barrier added per manufacturer's recommendations, if needed, whether piping is above or below ceilings. Insulation that may absorb moisture will see a reduction in effectiveness even with a slight amount of infiltration. Moisture on the interior of certain metal jackets may lead to corrosion and pitting.

Flexible elastomeric and cellular glass are very suitable for chilled water applications. Minimum
thickness recommended for cellular glass insulation is 40 mm 1.5 inches. The reason is that the breakage rate during shipment of 25 mm 1 inch thick cellular insulation is too high to be economical. Design the insulation thickness based on worst case ambient conditions, such as a humid environment. Vapor Barrier Jacket for elastomeric and cellular glass are very suitable for chilled water.

For NAVFAC LANT projects, delete the option of 13 mm 1/2 inch from line 4 of the following paragraph.

ASHRAE 90.2 is for low-rise residential building. ASHRAE 90.1 is for all buildings except low-rise residential buildings. Low-rise building has one or two stories without elevators. High-rise building has multistory with elevators.

Conform insulation materials to Table 1 and minimum insulation thickness as listed in Table 2 and meet or exceed the requirements of [ASHRAE 90.1 - SI][ASHRAE 90.2]. Limit pipe insulation materials to those listed herein and meeting the following requirements:

2.3.1 Recycled Materials

Provide insulation materials containing the following minimum percentage of recycled material content by weight:

- Rock Wool: 75 percent slag of weight
- Fiberglass: 20 percent glass cullet
- Rigid Foam: 9 percent recovered material
- Phenolic Rigid Foam: 9 percent recovered material

Provide data identifying percentage of recycled content for insulation materials.

2.3.2 Aboveground Cold Pipeline (-34 to 16 deg. C -30 to 60 deg. F)

NOTE: When it is necessary to insulate existing cold water systems or systems that must remain in operation, the Designer may consider using a mineral fiber insulation that meets ASTM C547, with an integral wicking material designed to remove condensed water. The Designer should not consider using a mineral fiber integral wicking material when ambient conditions at the pipe location can be expected to be exposed to any high humidity conditions. Follow manufacturer's recommendations for installation.

Insulation for outdoor, indoor, exposed or concealed applications, shall be as follows:

2.3.2.1 Cellular Glass

ASHRAE C552, Type II, and Type III. Supply the insulation from the...
fabricator (paragraph WHITE VAPOR RETARDER ALL SERVICE JACKET (ASJ)).
ASJ vapor retarder and installed with all longitudinal overlaps sealed and
all circumferential joints ASJ taped or supply the insulation unfaced from
the fabricator and install with all longitudinal and circumferential
joints sealed with vapor barrier mastic.

2.3.2.2 Flexible Elastomeric Cellular Insulation

Closed-cell, foam- or expanded-rubber materials containing anti-microbial
additive, complying with ASTM C534/C534M, Grade 1, Type I or II. Type I,
Grade 1 for tubular materials. Type II, Grade 1, for sheet materials.
Type I and II shall have vapor retarder/vapor barrier skin on one or both
sides of the insulation, and require an additional exterior vapor retarder
covering for high relative humidity and below ambient temperature
applications.

2.3.2.3 Mineral Fiber Insulation with Integral Wicking Material (MFIWM)

ASTM C547. Install in accordance with manufacturer's instructions. Do
not use in applications exposed to outdoor ambient conditions in climatic
zones 1 through 4.

2.3.2.4 Polyisocyanurate Insulation

ASTM C591, Type I. Supply the insulation with a factory applied vapor
retarder/barrier that complies with Section 23 07 00 THERMAL INSULATION
FOR MECHANICAL SYSTEMS. The insulation and all covering must pass the
flame spread index of 25 and the smoke developed index of 50 when tested
in accordance with ASTM E84.

2.3.3 Aboveground Hot Pipeline (Above 16 deg. C 60 deg. F)

Insulation for outdoor, indoor, exposed or concealed applications shall
meet the following requirements. Supply the insulation with
manufacturer's recommended factory-applied jacket/vapor barrier.

2.3.3.1 Mineral Fiber

ASTM C547, Types I, II or III, supply the insulation with manufacturer's
recommended factory-applied jacket.

2.3.3.2 Calcium Silicate

ASTM C533, Type I indoor only, or outdoors above 121 degrees C 250 degrees
F pipe temperature. Supply insulation with the manufacturer's recommended
factory-applied jacket/vapor barrier.

2.3.3.3 Cellular Glass

ASTM C552, Type II and Type III. Supply the insulation with
manufacturer's recommended factory-applied jacket.

2.3.3.4 Flexible Elastomeric Cellular Insulation

Closed-cell, foam- or expanded-rubber materials containing anti-microbial
additive, complying with ASTM C534/C534M, Grade 1, Type I or II to 105
degrees C 220 degrees F service. Type I for tubular materials. Type II
for sheet materials.
2.3.3.5 Phenolic Insulation

ASTM C1126 Type III to 121 degrees C 250 degrees F service shall comply with ASTM C795. Supply the insulation with manufacturer's recommended factory-applied jacket/vapor barrier.

2.3.3.6 Perlite Insulation

ASTM C610

2.3.3.7 Polyisocyanurate Insulation

ASTM C591, Type I. Supply the insulation with a factory applied vapor retarder/barrier that complies with Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. The insulation and all covering must pass the flame spread index of 25 and the smoke developed index of 50 when tested in accordance with ASTM E84.

2.3.4 Aboveground Dual Temperature Pipeline

**

NOTE: The use of multiple layered systems, i.e., a flexible form of insulation, surrounded by a rigid form and sealed with mastics, sealants and vapor retarders/vapor barrier, may provide the most advantageous form of insulation system for this piping configuration. This is due to the pipe expansion and contraction associated with the change from hot to cold temperatures.

**

Selection of insulation for use over a dual temperature pipeline system (Outdoor, Indoor - Exposed or Concealed) shall be in accordance with the most limiting/restrictive case. Find an allowable material from paragraph PIPE INSULATION MATERIALS and determine the required thickness from the most restrictive case. Use the thickness listed in paragraphs INSULATION THICKNESS for cold & hot pipe applications.

2.3.5 Below-ground Pipeline Insulation

For below-ground pipeline insulation, use cellular glass, ASTM C552, type II.

2.4 DUCT INSULATION SYSTEMS

**

NOTE: For NAVFAC ML projects, delete option of the following paragraph.

**

2.4.1 Factory Applied Insulation

Provide factory-applied [ASTM C552, cellular glass thermal] [ASTM C534/C534M Grade 1, Type II, flexible elastomeric closed cell] insulation according to manufacturer's recommendations for insulation with insulation manufacturer's standard reinforced fire-retardant vapor barrier[, with identification of installed thermal resistance (R) value and out-of-package R value].
2.4.1.1 Rigid Insulation

**
NOTE: ASHRAE 90.2 is for low-rise residential building. ASHRAE 90.1 is for all buildings except low-rise residential buildings. Low-rise building has one or two stories without elevators. High-rise building has multistory with elevators.
**

Calculate the minimum thickness in accordance with [ASHRAE 90.2][ASHRAE 90.1 - SI].

2.4.1.2 Blanket Insulation

**
NOTE: For NAVFAC ML, delete this paragraph.
ASHRAE 90.2 is for low-rise residential building. ASHRAE 90.1 is for all buildings except low-rise residential buildings. Low-rise building has one or two stories without elevators. High-rise building has multistory with elevators.
**

Calculate minimum thickness in accordance with [ASHRAE 90.2][ASHRAE 90.1 - SI][ASTM C553].

2.4.2 Kitchen Exhaust Ductwork Insulation

**
NOTE: If kitchen exhaust hood has outside air connection to cold outdoor, provide vapor barrier for outside air connection to prevent dissolution of calcium silicate.
**

Insulation thickness shall be a minimum of 50 mm 2 inches, blocks or boards, either mineral fiber conforming to ASTM C612, Class 5, 320 kg/m3 20 pcf average [or calcium silicate conforming to ASTM C533, Type II. Provide vapor barrier for outside air connection to kitchen exhaust hood]. The enclosure materials and the grease duct enclosure systems shall meet testing requirements of ASTM E2336 for noncombustibility, fire resistance, durability, internal fire, and fire-engulfment with a through-penetration fire stop.

2.4.3 Acoustical Duct Lining

2.4.3.1 General

For ductwork indicated or specified in Section 23 30 00 HVAC AIR DISTRIBUTION to be acoustically lined, provide external insulation in accordance with this specification section and in addition to the acoustical duct lining. Do not use acoustical lining in place of duct wrap or rigid board insulation (insulation on the exterior of the duct).

2.4.3.2 Duct Liner

Flexible Elastomeric Acoustical and Conformable Duct Liner Materials:
Flexible Elastomeric Thermal, Acoustical and Conformable Insulation
Compliance with ASTM C534/C534M Grade 1, Type II; and NFPA 90A or NFPA 90B
as applicable.

2.4.4 Duct Insulation Jackets

2.4.4.1 All-Purpose Jacket

Provide insulation with insulation manufacturer's standard reinforced fire-retardant jacket with or without integral vapor barrier as required by the service. In exposed locations, provide jacket with a white surface suitable for field painting.

2.4.4.2 Metal Jackets

2.4.4.2.1 Aluminum Jackets

ASTM B209M ASTM B209, Temper H14, minimum thickness of 27 gauge (0.41 mm 0.016 inch), with factory-applied polyethylene and kraft paper moisture barrier on inside surface. Provide smooth surface jackets for jacket outside dimension 200 mm 8 inches and larger. Provide corrugated surface jackets for jacket outside dimension 200 mm 8 inches and larger. Provide stainless steel bands, minimum width of 13 mm 1/2 inch.

2.4.4.2.2 Stainless Steel Jackets

ASTM A167 or ASTM A240/A240M; Type 304, minimum thickness of 33 gauge (0.25 mm 0.010 inch), smooth surface with factory-applied polyethylene and kraft paper moisture barrier on inside surface. Provide stainless steel bands, minimum width of 13 mm 1/2 inch.

2.4.4.3 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply (minimum 0.072 mm 2.9 mils adhesive), heavy duty white or natural).

2.4.5 Weatherproof Duct Insulation

Provide [ASTM C552, cellular glass thermal insulation] [ASTM C534/C534M Grade 1, Type II, flexible elastomeric cellular insulation], and weatherproofing as specified in manufacturer's instruction. Multi-ply, Polymeric Blend Laminate Jacketing: Construction of laminate designed to provide UV resistance, high puncture, tear resistance and an excellent WVT rate.

2.5 EQUIPMENT INSULATION SYSTEMS

Insulate equipment and accessories as specified in Tables 5 and 6. In outside locations, provide insulation 13 mm 1/2 inch thicker than specified. Increase the specified insulation thickness for equipment where necessary to equal the thickness of angles or other structural members to make a smooth, exterior surface. Submit a booklet containing manufacturer's published installation instructions for the insulation systems in coordination with the submitted MICA Insulation Stds plates booklet. Annotate their installation instructions to indicate which product data and which MICA plate are applicable. The instructions must
PART 3 EXECUTION

**
NOTE: Project specifications will contain only the specific pipe or duct systems and equipment in a particular project that require insulation. Lists are not inclusive of systems requiring insulation. Edit, modify, and add to the information contained in the lists as required.
**

3.1 APPLICATION - GENERAL

Insulation shall only be applied to unheated and uncooled piping and equipment. Flexible elastomeric cellular insulation shall not be compressed at joists, studs, columns, ducts, hangers, etc. The insulation shall not pull apart after a one hour period; any insulation found to pull apart after one hour, shall be replaced.

3.1.1 Display Samples

Submit and display, after approval of materials, actual sections of installed systems, properly insulated in accordance with the specification requirements. Such actual sections must remain accessible to inspection throughout the job and will be reviewed from time to time for controlling the quality of the work throughout the construction site. Each material used shall be identified, by indicating on an attached sheet the specification requirement for the material and the material by each manufacturer intended to meet the requirement. The Contracting Officer will inspect display sample sections at the jobsite. Approved display sample sections shall remain on display at the jobsite during the construction period. Upon completion of construction, the display sample sections will be closed and sealed.

3.1.1.1 Pipe Insulation Display Sections

Display sample sections shall include as a minimum an elbow or tee, a valve, dielectric waterways and flanges, a hanger with protection shield and insulation insert, or dowel as required, at support point, method of fastening and sealing insulation at longitudinal lap, circumferential lap, butt joints at fittings and on pipe runs, and terminating points for each type of pipe insulation used on the job, and for hot pipelines and cold pipelines, both interior and exterior, even when the same type of insulation is used for these services.

3.1.1.2 Duct Insulation Display Sections

Display sample sections for rigid and flexible duct insulation used on the job. Use a temporary covering to enclose and protect display sections for duct insulation exposed to weather

3.1.2 Installation

Except as otherwise specified, material shall be installed in accordance
with the manufacturer's written instructions. Insulation materials shall
not be applied until [tests] [tests and heat tracing] specified in other
sections of this specification are completed. Material such as rust,
scale, dirt and moisture shall be removed from surfaces to receive
insulation. Insulation shall be kept clean and dry. Insulation shall not
be removed from its shipping containers until the day it is ready to use
and shall be returned to like containers or equally protected from dirt
and moisture at the end of each workday. Insulation that becomes dirty
shall be thoroughly cleaned prior to use. If insulation becomes wet or if
cleaning does not restore the surfaces to like new condition, the
insulation will be rejected, and shall be immediately removed from the
jobsite. Joints shall be staggered on multi layer insulation. Mineral
fiber thermal insulating cement shall be mixed with demineralized water
when used on stainless steel surfaces. Insulation, jacketing and
accessories shall be installed in accordance with MICA Insulation Stds
plates except where modified herein or on the drawings.

3.1.3 Firestopping

Where pipes and ducts pass through fire walls, fire partitions, above
grade floors, and fire rated chase walls, the penetration shall be sealed
with fire stopping materials as specified in Section 07 84 00
FIRESTOPPING. The protection of ducts at point of passage through
firewalls must be in accordance with NFPA 90A and/or NFPA 90B. All other
penetrations, such as piping, conduit, and wiring, through firewalls must
be protected with a material or system of the same hourly rating that is
listed by UL, FM, or a NRTL.

3.1.4 Painting and Finishing

Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.1.5 Installation of Flexible Elastomeric Cellular Insulation

Install flexible elastomeric cellular insulation with seams and joints
sealed with rubberized contact adhesive. Flexible elastomeric cellular
insulation shall not be used on surfaces greater than 105 degrees C 220
degrees F. Stagger seams when applying multiple layers of insulation.
Protect insulation exposed to weather and not shown to have vapor barrier
weatherproof jacketing with two coats of UV resistant finish or PVC or
metal jacketing as recommended by the manufacturer after the adhesive is
dry and cured.

3.1.5.1 Adhesive Application

Apply a brush coating of adhesive to both butt ends to be joined and to
both slit surfaces to be sealed. Allow the adhesive to set until dry to
touch but tacky under slight pressure before joining the surfaces.
Insulation seals at seams and joints shall not be capable of being pulled
apart one hour after application. Insulation that can be pulled apart one
hour after installation shall be replaced.

3.1.5.2 Adhesive Safety Precautions

Use natural cross-ventilation, local (mechanical) pickup, and/or general
area (mechanical) ventilation to prevent an accumulation of solvent
vapors, keeping in mind the ventilation pattern must remove any
heavier-than-air solvent vapors from lower levels of the workspaces.
Gloves and spectacle-type safety glasses are recommended in accordance
with safe installation practices.

3.1.6 Welding

No welding shall be done on piping, duct or equipment without written approval of the Contracting Officer. The capacitor discharge welding process may be used for securing metal fasteners to duct.

3.1.7 Pipes/Ducts/Equipment That Require Insulation

Insulation is required on all pipes, ducts, or equipment, except for omitted items as specified.

3.2 PIPE INSULATION SYSTEMS INSTALLATION

Install pipe insulation systems in accordance with the approved MICA Insulation Stds plates as supplemented by the manufacturer's published installation instructions.

3.2.1 Pipe Insulation

3.2.1.1 General

**
NOTE: Insulation may be omitted on heating piping in heated spaces, and on domestic cold water piping and interior roof drains where condensation and freezing are not problems and where hot piping is not hazardous to the occupants. However, the designer must maintain environmental control under heating and cooling conditions, meet the energy budget, not allow condensate formation and not allow freezing.
**

Pipe insulation shall be installed on aboveground hot and cold pipeline systems as specified below to form a continuous thermal retarder/barrier, including straight runs, fittings and appurtenances unless specified otherwise. Installation shall be with full length units of insulation and using a single cut piece to complete a run. Cut pieces or scraps abutting each other shall not be used. Pipe insulation shall be omitted on the following:

a. Pipe used solely for fire protection.

b. Chromium plated pipe to plumbing fixtures. However, fixtures for use by the physically handicapped shall have the hot water supply and drain, including the trap, insulated where exposed.

c. Sanitary drain lines.

d. Air chambers.

e. Adjacent insulation.

f. ASME stamps.

g. Access plates of fan housings.
h. Cleanouts or handholes.

3.2.1.2 Pipes Passing Through Walls, Roofs, and Floors

**
NOTE: Exterior wall and roof penetration details will be shown on the drawings. See Section 22 00 00 PLUMBING, GENERAL PURPOSE for additional information.
**

Pipe insulation shall be continuous through the sleeve.

Provide an aluminum jacket or vapor barrier/weatherproofing self adhesive jacket (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) less than 0.0000 permeability, greater than 3 ply standard grade, silver, white, black and embossed with factory applied moisture retarder over the insulation wherever penetrations require sealing.

3.2.1.2.1 Penetrate Interior Walls

The aluminum jacket or vapor barrier/weatherproofing - self adhesive jacket (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) less than 0.0000 permeability, greater than 3 plies standard grade, silver, white, black and embossed shall extend 50 mm 2 inches beyond either side of the wall and shall be secured on each end with a band.

3.2.1.2.2 Penetrating Floors

Extend the aluminum jacket from a point below the backup material to a point 250 mm 10 inches above the floor with one band at the floor and one not more than 25 mm 1 inch from the end of the aluminum jacket.

3.2.1.2.3 Penetrating Waterproofed Floors

Extend the aluminum jacket rom below the backup material to a point 50 mm 2 inches above the flashing with a band 25 mm 1 inch from the end of the aluminum jacket.

3.2.1.2.4 Penetrating Exterior Walls

Continue the aluminum jacket required for pipe exposed to weather through the sleeve to a point 50 mm 2 inches beyond the interior surface of the wall.

3.2.1.2.5 Penetrating Roofs

Insulate pipe as required for interior service to a point flush with the top of the flashing and sealed with flashing sealant. Tightly butt the insulation for exterior application to the top of flashing and interior insulation. Extend the exterior aluminum jacket 50 mm 2 inches down beyond the end of the insulation to form a counter flashing. Seal the flashing and counter flashing underneath with metal jacketing/flashing sealant.

3.2.1.2.6 Hot Water Pipes Supplying Lavatories or Other Similar Heated Service

Terminate the insulation on the backside of the finished wall. Protect the insulation termination with two coats of vapor barrier coating with a
minimum total thickness of 2.0 mm 1/16 inch applied with glass tape embedded between coats (if applicable). Extend the coating out onto the insulation 50 mm 2 inches and seal the end of the insulation. Overlap glass tape seams 25 mm 1 inch. Caulk the annular space between the pipe and wall penetration with approved fire stop material. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration at least 10 mm 3/8 inches.

3.2.1.2.7 Domestic Cold Water Pipes Supplying Lavatories or Other Similar Cooling Service

Terminate the insulation on the finished side of the wall (i.e., insulation must cover the pipe throughout the wall penetration). Protect the insulation with two coats of weather barrier mastic (breather emulsion type weatherproof mastic impermeable to water and permeable to air) with a minimum total thickness of 2 mm 1/16 inch. Extend the mastic out onto the insulation 50 mm 2 inches and shall seal the end of the insulation. The annular space between the outer surface of the pipe insulation and caulk the wall penetration with an approved fire stop material having vapor retarder properties. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration by at least 10 mm 3/8 inches.

3.2.1.3 Pipes Passing Through Hangers

Insulation, whether hot or cold application, shall be continuous through hangers. All horizontal pipes 50 mm 2 inches and smaller shall be supported on hangers with the addition of a Type 40 protection shield to protect the insulation in accordance with MSS SP-58. Whenever insulation shows signs of being compressed, or when the insulation or jacket shows visible signs of distortion at or near the support shield, insulation inserts as specified below for piping larger than 50 mm 2 inches shall be installed, or factory insulated hangers (designed with a load bearing core) can be used.

3.2.1.3.1 Horizontal Pipes Larger Than 50 mm 2 Inches at 16 Degrees C 60 Degrees F and Above

Supported on hangers in accordance with MSS SP-58, and Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.2.1.3.2 Horizontal Pipes Larger Than 50 mm 2 Inches and Below 16 Degrees C 60 Degrees F

Supported on hangers with the addition of a Type 40 protection shield in accordance with MSS SP-58. An insulation insert of cellular glass, prefabricated insulation pipe hangers, or perlite above 27 degrees C 80 degrees F shall be installed above each shield. The insert shall cover not less than the bottom 180-degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 50 mm 2 inches on each end beyond the protection shield. When insulation inserts are required in accordance with the above, and the insulation thickness is less than 25 mm 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the weight of the pipe from crushing the insulation, as an option to installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert.
3.2.1.3.3 Vertical Pipes

Supported with either Type 8 or Type 42 riser clamps with the addition of two Type 40 protection shields in accordance with MSS SP-58 covering the 360-degree arc of the insulation. An insulation insert of cellular glass or calcium silicate shall be installed between each shield and the pipe. The insert shall cover the 360-degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 50 mm 2 inches on each end beyond the protection shield. When insulation inserts are required in accordance with the above, and the insulation thickness is less than 25 mm 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the hanger from crushing the insulation, as an option instead of installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert. The vertical weight of the pipe shall be supported with hangers located in a horizontal section of the pipe. When the pipe riser is longer than 9 m 30 feet, the weight of the pipe shall be additionally supported with hangers in the vertical run of the pipe that are directly clamped to the pipe, penetrating the pipe insulation. These hangers shall be insulated and the insulation jacket sealed as indicated herein for anchors in a similar service.

3.2.1.3.4 Inserts

Covered with a jacket material of the same appearance and quality as the adjoining pipe insulation jacket, overlap the adjoining pipe jacket 38 mm 1-1/2 inches, and seal as required for the pipe jacket. The jacket material used to cover inserts in flexible elastomeric cellular insulation shall conform to ASTM C1136, Type 1, and is allowed to be of a different material than the adjoining insulation material.

3.2.1.4 Flexible Elastomeric Cellular Pipe Insulation

Flexible elastomeric cellular pipe insulation shall be tubular form for pipe sizes 150 mm 6 inches and less. Grade 1, Type II sheet insulation used on pipes larger than 150 mm 6 inches shall not be stretched around the pipe. On pipes larger than 300 mm 12 inches, the insulation shall be adhered directly to the pipe on the lower 1/3 of the pipe. Seams shall be staggered when applying multiple layers of insulation. Sweat fittings shall be insulated with miter-cut pieces the same size as on adjacent piping. Screwed fittings shall be insulated with sleeved fitting covers fabricated from miter-cut pieces and shall be overlapped and sealed to the adjacent pipe insulation. Type II requires an additional exterior vapor retarder/barrier covering for high relative humidity and below ambient temperature applications.

3.2.1.5 Pipes in high abuse areas.

**
NOTE: In high abuse areas such as janitor closets and traffic areas in equipment rooms and kitchens, aluminum jackets will be shown. Normally, pipe insulation to the 2 m 6 feet level will be protected in high abuse areas. The designer will specifically indicate the high abuse areas.
**

In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, [welded PVC] [stainless steel],
aluminum or flexible laminate cladding (comprised of elastomeric, plastic or metal foil laminate) laminated self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) vapor barrier/weatherproofing jacket, less than 0.0000 permeability; (greater than 3 ply, standard grade, silver, white, black and embossed) [aluminum] jackets shall be utilized. Pipe insulation to the 2 m 6 foot level shall be protected. [Other areas that specifically require protection to the 2 m 6 foot level are [_____].]

3.2.1.6 Pipe Insulation Material and Thickness

**

NOTE: Where the temperature of cold water entering a building is below average dew point of the indoor ambient air and where condensate drip will cause damage or create a hazard, insulate piping with vapor barrier to prevent condensation, regardless to whether piping is above or below ceilings.

Flexible elastomeric and cellular glass are very suitable for chilled water applications. Minimum thickness recommended for cellular glass insulation is 40 mm 1.5 inches. The reason is that the breakage rate during shipment of 25 mm 1 inch thick cellular insulation is too high to be economical. Flexible elastomeric recommended minimum thickness is 25 mm 1 inch.

For cryogenic equipment handling media between minus 34 and minus 18 degrees C minus 30 and minus 1 degree F, use cellular glass insulation.

In Tables 1 and 3, state if a vapor barrier is required. Pipes and equipment with a temperature below 27 degrees C 80 degrees F should generally be provided with a vapor barrier jacket to prevent sweating. However, engineering judgment should be exercised to determine if a vapor barrier jacket is required. Reference paragraph ABOVEGROUND COLD PIPELINE (-34 TO 16 DEG. C -30 TO 60 DEG. F) for Vapor Retarder/Vapor Barrier requirements.

In Tables 1 and 2, when it is necessary to insulate existing cold water systems or systems that must remain in operation, the Designer may consider using a mineral fiber insulation that meets ASTM C547, with an integral wicking material designed to remove condensed water. The Designer should not consider using a mineral fiber integral wicking material when ambient conditions at the pipe location can be expected to be exposed to any high humidity conditions. Follow manufacturer's recommendations for installation.

**

**

NOTE: ASHRAE 90.2 is for low-rise residential building. ASHRAE 90.1 is for all buildings except low-rise residential buildings. Low-rise building has one or two stories without elevators. High-rise
Building has multistory with elevators.

NOTE: In project locations with Environmental Severity Classification (ESC) of C4 or C5 and/or high humidity areas as identified in ASHRAE 90.1 as climate zones 0A, 1A, 2A, 3A, 3C, 4C and 5C, use cellular glass in lieu of fiberglass materials to insulate all chilled water, refrigerant and condensate drain lines, including valves, strainers, and fittings when possible. Provide vapor barrier and coatings for all cold piping 60 degrees F and lower. See UFC 1-200-01 for determination of ESC for project locations.

Pipe insulation materials must be as listed in Table 1 and must meet or exceed the requirements of ASHRAE 90.1 – SI and ASHRAE 90.2.

Table 1: Insulation Material for Piping

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Specification</th>
<th>Type</th>
<th>Class</th>
<th>VR/VB Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water (Supply & Return, Dual Temperature Piping, 4.44°C 40°F nominal)</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Mineral Fiber with Wicking Material</td>
<td>ASTM C547</td>
<td>[I]</td>
<td></td>
<td>[Yes]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating Hot Water Supply & Return, Heated Oil (Max 121°C 250°F)</td>
<td>Mineral Fiber</td>
<td>ASTM C547</td>
<td>I</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Calcium Silicate</td>
<td>ASTM C533</td>
<td>I</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Faced Phenolic Foam</td>
<td>ASTM C1126</td>
<td>III</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Perlite</td>
<td>ASTM C610</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Cold Domestic Water Piping, Makeup Water & Drinking Fountain Drain Piping</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>
TABLE 1
Insulation Material for Piping

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Specification</th>
<th>Type</th>
<th>Class</th>
<th>VR/VB Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 93 C 200 F)</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 93 C 200 F)</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 93 C 200 F)</td>
<td>Mineral Fiber</td>
<td>ASTM C547</td>
<td>I</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 93 C 200 F)</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 93 C 200 F)</td>
<td>Faced Phenolic Foam</td>
<td>ASTM C1126</td>
<td>III</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Refrigerant Suction Piping (1.67 degrees C 35 degrees F nominal)</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Refrigerant Suction Piping (1.67 degrees C 35 degrees F nominal)</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Compressed Air Discharge, Steam and Condensate Return (94 to 121 Degrees C 201 to 250 Degrees F)</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Compressed Air Discharge, Steam and Condensate Return (94 to 121 Degrees C 201 to 250 Degrees F)</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Compressed Air Discharge, Steam and Condensate Return (94 to 121 Degrees C 201 to 250 Degrees F)</td>
<td>Mineral Fiber</td>
<td>ASTM C547</td>
<td>I</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>Compressed Air Discharge, Steam and Condensate Return (94 to 121 Degrees C 201 to 250 Degrees F)</td>
<td>Calcium Silicate</td>
<td>ASTM C533</td>
<td>I</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Compressed Air Discharge, Steam and Condensate Return (94 to 121 Degrees C 201 to 250 Degrees F)</td>
<td>Faced Phenolic Foam</td>
<td>ASTM C1126</td>
<td>III</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Compressed Air Discharge, Steam and Condensate Return (94 to 121 Degrees C 201 to 250 Degrees F)</td>
<td>Perlite</td>
<td>ASTM C610</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1

Insulation Material for Piping

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Specification</th>
<th>Type</th>
<th>Class</th>
<th>VR/VB Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Temperature Hot Water, Steam and Condensate (122 to 176 Degrees C / 251 to 350 Degrees F)</td>
<td>Mineral Fiber</td>
<td>ASTM C547</td>
<td>I</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Calcium Silicate</td>
<td>ASTM C533</td>
<td>I</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>I or II</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Perlite</td>
<td>ASTM C610</td>
<td>I</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>High Temperature Hot Water & Steam (177 to 371 Degrees C / 351 to 700 Degrees F)</td>
<td>Mineral Fiber</td>
<td>ASTM C547</td>
<td>I</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Calcium Silicate</td>
<td>ASTM C533</td>
<td>I</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Perlite</td>
<td>ASTM C610</td>
<td>I</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>I</td>
<td>I</td>
<td>No</td>
</tr>
<tr>
<td>Brine Systems Cryogenics (−34 to −18 Degrees C / −30 to 0 Degrees F)</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>II</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Brine Systems Cryogenics (−18 to 1.11 Degrees C / 0 to 34 Degrees F)</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>II</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Note: VR/VB = Vapor Retarder/Vapor Barrier

**

NOTE: Table 2 is not inclusive of all systems requiring insulation. Pipe insulation thicknesses must meet or exceed the requirements of ASHRAE 90.2 for low-rise residential buildings, and ASHRAE 90.1 for all other buildings except low-rise residential. Edit, modify, and add to the information contained in Tables 1 and 2 as required for the project. Use Table 6.8.3A and Table 6.8.3B in ASHRAE 90.1 for minimum thickness in buildings other than low-rise residential. For low-rise residential buildings, refer to Table 6-4 of ASHRAE 90.2 for Minimum Pipe Insulation. These tables will become a part of the project specifications.
Where the temperature of cold water entering a building is below average dew point of the indoor ambient air and where condensate drip will cause damage or create a hazard, insulate piping with vapor barrier to prevent condensation, regardless to whether piping is above or below ceilings.

Flexible elastomeric and cellular glass are very suitable for chilled water applications. Minimum thickness recommended for cellular glass insulation is 40 mm 1.5 inches. The reason is that the breakage rate during shipment of 25 mm 1 inch thick cellular insulation is too high to be economical. Flexible elastomeric recommended minimum thickness is 25 mm 1 inch.

For cryogenic equipment handling media between minus 34 and minus 18 degrees C 30 and minus 1 degree F, use cellular glass.

Economic insulation thickness recommendations (EITR) are based on three factors: energy, economics, and environment. Design conditions are as follows:

1. Ambient Temperature: 27 degrees C 80 degrees F, Still Air.

2. Jacket Surface Emissivity: 0.2 Metal, 0.9 All Purpose, 0.1 Oxidized Aluminum, 0.5 Coated Aluminized Vapor Barrier Jacket and Vapor Barrier/Weather Barrier.

3. Surface Temperatures: 29 degrees C 85 degrees F nominal for service temperatures under 176 degrees C 350 degrees F; maximum 60 degrees C 140 degrees F for high service temperatures at and above 177 degrees C 351 degrees F.

4. Average energy cost of six dollars per 1,055,000 kJ million Btu's.

EITR is a term used by North America Insulation Manufacturers Association (NAIMA), Commercial/Industrial Insulation Committee. Current member companies are: Knauf Fiber Glass, CertainTeed, Manville, Partek North America, Rock Wool Manufacturing, and Owen Corning Fiberglass. Data of mineral fiber and calcium silicate are supplied by NAIMA. Data of cellular glass are supplied by Pittsburgh Corning Corporation. Other data are obtained from manufacturers' published documents. Insulation thickness calculation was generated by manufacturers. Individual and precise calculation may be done by using computer programs such as NAIMA 3 E's Insulation Thickness Computer Program. These computer programs shall comply with ASTM C680, 1989 "Determination of Heat Gain or Loss and the Surface Temperatures of Insulated Pipe and
TABLE 2

Piping Insulation Thickness (mm/Inch)

For flexible cellular foam the thickness should be 13mm instead of 15mm. Economic thickness or prevention of condensation is the basis of these tables. If prevention of condensation is the criterion, the ambient temperature and relative humidity must be stated. Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Tube And Pipe Size (mm)</th>
<th>(inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><25<1</td>
<td>25-<40</td>
<td>40-<100</td>
</tr>
<tr>
<td>Chilled Water (Supply & Return, Dual Temperature Piping, 4.44 Degrees C 40 Degrees F nominal)</td>
<td>Cellular Glass</td>
<td>401.5</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>Mineral Fiber with Wicking Material</td>
<td>251</td>
<td>401.5</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>251</td>
<td>251</td>
</tr>
</tbody>
</table>

| Chilled Water (Supply & Return, Dual Temperature Piping, 4.44 Degrees C 40 Degrees F nominal) |
|---|--------------------------------------|-------------------------|--------|
| | Cellular Glass | 401.5 | 401.5 | 401.5 | 401.5 | 502 |
| | Flexible Elastomeric Cellular | 251 | 251 | 251 | N/A | N/A |
| | Mineral Fiber with Wicking Material | 251 | 401.5 | 401.5 | 502 | 502 |

<table>
<thead>
<tr>
<th>Heating Hot Water Supply & Return, Heated Oil (Max 121 C 250 F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Fiber</td>
</tr>
<tr>
<td>Calcium Silicate</td>
</tr>
<tr>
<td>Cellular Glass</td>
</tr>
<tr>
<td>Perlite</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cold Domestic Water Piping, Makeup Water & Drinking Fountain Drain Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular Glass</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
</tr>
</tbody>
</table>
For flexible cellular foam the thickness should be 13mm instead of 15mm. Economic thickness or prevention of condensation is the basis of these tables. If prevention of condensation is the criterion, the ambient temperature and relative humidity must be stated. Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
<th>Tube And Pipe Size (mm)</th>
<th>Inch</th>
<th>Material</th>
<th>Tube And Pipe Size (mm)</th>
<th>Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 93 C 200 F)</td>
<td></td>
<td></td>
<td>Mineral Fiber</td>
<td>251</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellular Glass</td>
<td>401.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>251</td>
<td>1</td>
</tr>
<tr>
<td>Refrigerant Suction Piping (1.67 degrees C 35 degrees F nominal)</td>
<td></td>
<td></td>
<td>Mineral Fiber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellular Glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressed Air Discharge, Steam and Condensate Return (94 to 121 Degrees F)</td>
<td></td>
<td></td>
<td>Mineral Fiber</td>
<td>401.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calcium Silicate</td>
<td>652.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellular Glass</td>
<td>502</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Perite</td>
<td>652.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>251</td>
<td>1</td>
</tr>
<tr>
<td>Exposed Lavatory Drains, Exposed Domestic Water Piping & Drains to Areas for Handicapped Personnel</td>
<td></td>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>130.5</td>
<td>5</td>
</tr>
<tr>
<td>Horizontal Roof Drain Leaders (Including Underside of Roof Drain Fittings)</td>
<td></td>
<td></td>
<td>Cellular Glass</td>
<td>401.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>251</td>
<td>1</td>
</tr>
</tbody>
</table>

SECTION 23 07 00 Page 38
TABLE 2

Piping Insulation Thickness (mm/inch)
For flexible cellular foam the thickness should be 13mm instead of 15mm. Economic thickness or prevention of condensation is the basis of these tables. If prevention of condensation is the criterion, the ambient temperature and relative humidity must be stated. Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Tube And Pipe Size (mm) (inch)</td>
</tr>
<tr>
<td><25<1 25-<40 40-<100 1.5-<4 100-<200 4-<8 > or = 200>8</td>
</tr>
<tr>
<td>Faced Phenolic Foam 251 251 251 251 251</td>
</tr>
</tbody>
</table>

Condensate Drain Located Inside Building

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular Glass</td>
</tr>
<tr>
<td>Faced Phenolic Foam</td>
</tr>
<tr>
<td>251 251 251 251 251</td>
</tr>
</tbody>
</table>

Medium Temperature Hot Water, Steam and Condensate (122 to 176 Degrees C251 to 350 Degrees F)

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Fiber</td>
</tr>
<tr>
<td>401.5 401.5 401.5 401.5 401.5</td>
</tr>
<tr>
<td>652.5* 80* 903.5*</td>
</tr>
<tr>
<td>Calcium Silicate</td>
</tr>
<tr>
<td>652.5 903.5 1154.5 1154.5 1255</td>
</tr>
<tr>
<td>Perlite</td>
</tr>
<tr>
<td>652.5 903.5 1154.5 1154.5 1255</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
</tr>
<tr>
<td>251 251 251 N/A N/A</td>
</tr>
</tbody>
</table>

High Temperature Hot Water & Steam (177 to 371 Degrees C351 to 700 Degrees F)

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Fiber</td>
</tr>
<tr>
<td>652.5 803 803 1004 1004</td>
</tr>
</tbody>
</table>

Brine Systems Cryogenics (-34 to -18 Degrees C-30 to 0 Degrees F)

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular Glass</td>
</tr>
<tr>
<td>652.5 652.5 803 803 903.5</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
</tr>
<tr>
<td>251 251 N/A N/A N/A</td>
</tr>
</tbody>
</table>

Brine Systems Cryogenics (-18 to 1.11 Degrees C0 to 34 Degrees F)

<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular Glass</td>
</tr>
<tr>
<td>502 502 502 652.5 803</td>
</tr>
</tbody>
</table>
TABLE 2

Piping Insulation Thickness (mm/inch)
For flexible cellular foam the thickness should be 13mm instead of 15mm. Economic thickness or prevention of condensation is the basis of these tables. If prevention of condensation is the criterion, the ambient temperature and relative humidity must be stated. Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
<th>Tube And Pipe Size (mm) (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><25<1 25<40 40<100 100<200 ></td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>251 251 251 N/A N/A</td>
</tr>
</tbody>
</table>

3.2.2 Aboveground Cold Pipelines

**
NOTE: Insulation may be omitted on domestic cold-water piping and interior roof drains where condensation and freezing are not problems. However, the designer must maintain conditioned space control under cooling conditions - meet the energy budget, not allow condensation formation and not allow freezing.
**

The following cold pipelines for minus 34 to plus 16 degrees C minus 30 to plus 60 degrees F, shall be insulated in accordance with Table 2 except those piping listed in subparagraph Pipe Insulation in PART 3 as to be omitted. This includes but is not limited to the following:

a. Make-up water.
b. Horizontal and vertical portions of interior roof drains.
c. Refrigerant suction lines.
d. Chilled water.
e. Dual temperature water, i.e. HVAC hot/chilled water.
f. Air conditioner condensate drains.
g. Brine system cryogenics
h. Exposed lavatory drains and domestic water lines serving plumbing fixtures for handicap persons.

[i. Domestic cold and chilled drinking water.]

3.2.2.1 Insulation Material and Thickness
NOTE: Table 1 is not all inclusive of service insulation requirements. Edit, modify, and add to the tables as required for your project. Consideration may be given to increasing or decreasing the thickness of insulation required if, in the judgment of the designer, the situation warrants. For example, hot water piping in conditioned spaces may not require the tabulated thickness; or extremely cold systems in a high humidity climate may require additional insulation.

The designer should take into consideration the dew point temperature of the area in which the system is to be built. This is separate from the design dry bulb and design wet bulb temperatures, and should not be confused with the information provided in UFC 3-400-02. When accounting for the dew point for design of the insulation thickness, consider using a relative humidity range of 80 to 90 percent unless you are in unusual circumstances. In very dry environments (Denver) consider using a relative humidity less than 80 percent, and remember to meet the requirements of the energy budget. In lower humidity environments, use the lower end of this range outdoors (80 to 85 percent). In high humidity environments use 90 percent. Indoors, where the humidity is to be controlled at 50 percent, it is more appropriate to design to 70 percent.

ASHRAE 90.1 insulation standard is a reference the designer should use to introduce a different material, or utilize an existing material type for an application that is not listed, or is outside the temperature range listed in Table 2. Table 2 may be modified for regions that meet one of the following conditions from UFC 3-410-01 or UFC 3-410-02. A wet bulb temperature of 19 degrees C 67 degrees F or higher and the outside design relative humidity is 50 percent or higher (dew point temperature greater than 16 C 60 F) for 3,000 hours or more. A wet bulb temperature of 22.8 degrees C 73 degrees F or higher and the outside design relative humidity is 50 percent or higher (dew point temperature greater than 19 C 67 F) for 1,500 hours or more. (Outside design relative humidity based on the 2.5 percent dry bulb and 5.0 percent wet bulb temperatures.) (Weather data obtained from UFC 3-400-02.)

Further references for recommended thickness includes the International Mechanical Code and manufacturers recommended thickness tables. The refrigerant suction piping thickness was determined for 1 degree C 35 degrees F service and the chilled water supply and return and dual temperature piping thickness was determined for 4 degrees C 40 degrees F nominal service temperature.

**

Insulation thickness for cold pipelines shall be determined using Table 2.
3.2.2.2 Factory or Field applied Jacket

**
NOTE: In high abuse areas such as janitor closets and traffic areas in equipment rooms and kitchens, aluminum jackets will be shown. Normally, pipe insulation to the 2 m 6 foot level will be protected in high abuse areas. The designer will specifically indicate what pipes are to be provided with aluminum jackets. On overseas projects, designer to verify availability of labor at locale for insulation trade; if not available delete option for field applied jacket. If stateside, option for field applied jacket to remain.
**

Insulation shall be covered with a factory applied vapor retarder jacket/vapor barrier or [field applied] seal welded PVC jacket or greater than 3 ply laminated self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, standard grade, silver, white, black and embossed for use with Mineral Fiber, Cellular Glass, and Phenolic Foam Insulated Pipe. Insulation inside the building, to be protected with an aluminum jacket or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) product, less than 0.0000 permeability, standard grade, Embossed Silver, White & Black, shall have the insulation and vapor retarder jacket installed as specified herein. The aluminum jacket or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, White & Black, shall be installed as specified for piping exposed to weather, except sealing of the laps of the aluminum jacket is not required. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, white & black, shall be provided for pipe insulation to the 1.8 m 6 ft level. Other areas that specifically require protection to the 1.8 m 6 ft level are [______].

3.2.2.3 Installing Insulation for Straight Runs Hot and Cold Pipe

Apply insulation to the pipe with tight butt joints. Seal all butted joints and ends with joint sealant and seal with a vapor retarder coating, greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape or PVDC adhesive tape.

3.2.2.3.1 Longitudinal Laps of the Jacket Material

Overlap not less than 38 mm 1-1/2 inches. Provide butt strips 75 mm 3 inches wide for circumferential joints.

3.2.2.3.2 Laps and Butt Strips

Secure with adhesive and staple on 100 mm 4 inch centers if not factory self-sealing. If staples are used, seal in accordance with paragraph STAPLES below. Note that staples are not required with cellular glass
3.2.2.3.3 Factory Self-Sealing Lap Systems

May be used when the ambient temperature is between 4 and 50 degrees C and 120 degrees F during installation. Install the lap system in accordance with manufacturer's recommendations. Use a stapler only if specifically recommended by the manufacturer. Where gaps occur, replace the section or repair the gap by applying adhesive under the lap and then stapling.

3.2.2.3.4 Staples

Coat all staples, including those used to repair factory self-seal lap systems, with a vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - 0.0000 perm adhesive tape. Coat all seams, except those on factory self-seal systems, with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

3.2.2.3.5 Breaks and Punctures in the Jacket Material

Patch by wrapping a strip of jacket material around the pipe and secure it with adhesive, staple, and coat with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape. Extend the patch not less than 38 mm 1-1/2 inches past the break.

3.2.2.3.6 Penetrations Such as Thermometers

Fill the voids in the insulation and seal with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

3.2.2.3.7 Flexible Elastomeric Cellular Pipe Insulation

Install by slitting the tubular sections and applying them onto the piping or tubing. Alternately, whenever possible slide un-slit sections over the open ends of piping or tubing. Secure all seams and butt joints and seal with adhesive. When using self seal products only the butt joints shall be secured with adhesive. Push insulation on the pipe, never pulled. Stretching of insulation may result in open seams and joints. Clean cut all edges. Rough or jagged edges of the insulation are not be permitted. Use proper tools such as sharp knives. Do not stretch Grade 1, Type II sheet insulation around the pipe when used on pipe larger than 150 mm 6 inches. On pipes larger than 300 mm 12 inches, adhere sheet insulation directly to the pipe on the lower 1/3 of the pipe.

3.2.2.4 Insulation for Fittings and Accessories

a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be sealed with joint sealant and sealed with a vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

b. Precut or preformed insulation shall be placed around all fittings and accessories and shall conform to MICA plates except as modified herein: 5 for anchors; 10, 11, and 13 for fittings; 14 for valves;
17 for flanges and unions. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 50 mm 2 inches or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 "Mitered Insulation Elbow'. Submit a booklet containing completed MICA Insulation Stds plates detailing each insulating system for each pipe, duct, or equipment insulating system, after approval of materials and prior to applying insulation.

(1) The MICA plates shall detail the materials to be installed and the specific insulation application. Submit all MICA plates required showing the entire insulating system, including plates required to show insulation penetrations, vessel bottom and top heads, legs, and skirt insulation as applicable. The MICA plates shall present all variations of insulation systems including locations, materials, vaporproofing, jackets and insulation accessories.

(2) If the Contractor elects to submit detailed drawings instead of edited MICA Plates, the detail drawings shall be technically equivalent to the edited MICA Plate submittal.

c. Upon completion of insulation installation on flanges, unions, valves, anchors, fittings and accessories, terminations, seams, joints and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with PVDC or greater than 3 ply laminate jacket – less than 0.0000 perm adhesive tape or two coats of vapor retarder coating with a minimum total thickness of 2 mm 1/16 inch, applied with glass tape embedded between coats. Tape seams shall overlap 25 mm 1 inch. The coating shall extend out onto the adjoining pipe insulation 50 mm 2 inches. Fabricated insulation with a factory vapor retarder jacket shall be protected with either greater than 3 ply laminate jacket – less than 0.0000 perm adhesive tape, standard grade, silver, white, black and embossed or PVDC adhesive tape or two coats of vapor retarder coating with a minimum thickness of 2 mm 1/16 inch and with a 50 mm 2 inch wide glass tape embedded between coats. Where fitting insulation butts to pipe insulation, the joints shall be sealed with a vapor retarder coating and a 100 mm 4 inch wide ASJ tape which matches the jacket of the pipe insulation.

d. Anchors attached directly to the pipe shall be insulated for a sufficient distance to prevent condensation but not less than 150 mm 6 inches from the insulation surface.

e. Insulation shall be marked showing the location of unions, strainers, and check valves.

3.2.2.5 Optional PVC Fitting Covers

At the option of the Contractor, premolded, one or two piece PVC fitting covers may be used in lieu of the vapor retarder and embedded glass tape. Factory precut or premolded insulation segments shall be used under the fitting covers for elbows. Insulation segments shall be the same insulation as the pipe insulation including same density, thickness, and thermal conductivity. The covers shall be secured by PVC vapor retarder
tape, adhesive, seal welding or with tacks made for securing PVC covers. Seams in the cover, and tacks and laps to adjoining pipe insulation jacket, shall be sealed with vapor retarder tape to ensure that the assembly has a continuous vapor seal.

3.2.3 Aboveground Hot Pipelines

3.2.3.1 General Requirements

All hot pipe lines above 16 degrees C 60 degrees F, except those piping listed in subparagraph Pipe Insulation in PART 3 as to be omitted, shall be insulated in accordance with Table 2. This includes but is not limited to the following:

a. Domestic hot water supply & re-circulating system.

b. Steam.

c. Condensate & compressed air discharge.

d. Hot water heating.

e. Heated oil.

f. Water defrost lines in refrigerated rooms.

Insulation shall be covered, in accordance with manufacturer's recommendations, with a factory applied Type I jacket or field applied aluminum where required or seal welded PVC.

3.2.3.2 Insulation for Fittings and Accessories

Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be sealed with joint sealant. Insulation shall be marked showing the location of unions, strainers, check valves and other components that would otherwise be hidden from view by the insulation.

3.2.3.2.1 Precut or Preformed

Place precut or preformed insulation around all fittings and accessories. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity.

3.2.3.2.2 Rigid Preformed

Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 50 mm 2 inches or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 "Mitered Insulation Elbow".

3.2.4 Piping Exposed to Weather

**
NOTE: In project locations with Environmental Severity Classification (ESC) of C4 or C5 or high humid areas as identified in ASHRAE 90.1 as climate

SECTION 23 07 00 Page 45
zones 0A, 1A, 2A, 3A, 3C, 4C and 5C, provide aluminum or stainless steel jacket on piping exposed to weather. See UFC 1-200-01 for determination of ESC for project locations.

**

Piping exposed to weather shall be insulated and jacketed as specified for the applicable service inside the building. After this procedure, a laminated self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability (greater than 3 ply, standard grade, silver, white, black and embossed aluminum jacket, stainless steel or PVC jacket shall be applied. PVC jacketing requires no factory-applied jacket beneath it, however an all service jacket shall be applied if factory applied jacketing is not furnished. Flexible elastomeric cellular insulation exposed to weather shall be treated in accordance with paragraph INSTALLATION OF FLEXIBLE ELASTOMERIC CELLULAR INSULATION in PART 3.

3.2.4.1 Aluminum Jacket

The jacket for hot piping may be factory applied. The jacket shall overlap not less than 50 mm 2 inches at longitudinal and circumferential joints and shall be secured with bands at not more than 300 mm 12 inch centers. Longitudinal joints shall be overlapped down to shed water and located at 4 or 8 o'clock positions. Joints on piping 16 degrees C 60 degrees F and below shall be sealed with metal jacketing/flashling sealant while overlapping to prevent moisture penetration. Where jacketing on piping 16 degrees C 60 degrees F and below abuts an un-insulated surface, joints shall be caulked to prevent moisture penetration. Joints on piping above 16 degrees C 60 degrees F shall be sealed with a moisture retarder.

3.2.4.2 Insulation for Fittings

Flanges, unions, valves, fittings, and accessories shall be insulated and finished as specified for the applicable service. Two coats of breather emulsion type weatherproof mastic (impermeable to water, permeable to air) recommended by the insulation manufacturer shall be applied with glass tape embedded between coats. Tape overlaps shall be not less than 25 mm 1 inch and the adjoining aluminum jacket not less than 50 mm 2 inches. Factory preformed aluminum jackets may be used in lieu of the above. Molded PVC fitting covers shall be provided when PVC jackets are used for straight runs of pipe. PVC fitting covers shall have adhesive welded joints and shall be weatherproof laminated self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed, and UV resistant.

3.2.4.3 PVC Jacket

PVC jacket shall be ultraviolet resistant and adhesive welded weather tight with manufacturer's recommended adhesive. Installation shall include provision for thermal expansion.

3.2.4.4 Stainless Steel Jackets

ASTM A167 or ASTM A240/A240M; Type 304, minimum thickness of 33 gauge (0.25 mm 0.010 inch), smooth surface with factory-applied polyethylene and kraft paper moisture barrier on inside surface. Provide stainless steel

SECTION 23 07 00 Page 46
bands, minimum width of 13 mm 1/2 inch.

3.2.5 Below Ground Pipe Insulation

**
NOTE: Where significant amounts (approximately 8 meters 25 feet) of below grade piping is to be insulated, a separate specification section will be developed to allow factory pre-insulated systems as an alternate to field applied systems. Portions of the underground piping that are to be insulated using this paragraph will be indicated on the drawings.
**

Below ground pipes shall be insulated in accordance with Table 2, except as precluded in subparagraph Pipe Insulation in PART 3. This includes, but is not limited to the following:

a. Heated oil.
b. Domestic hot water.
c. Heating hot water.
d. Dual temperature water.
e. Steam.
f. Condensate.

3.2.5.1 Type of Insulation

Below ground pipe shall be insulated with Cellular Glass insulation, in accordance with manufacturer's instructions for application with thickness as determined from Table 2 (whichever is the most restrictive).

3.2.5.2 Installation of Below ground Pipe Insulation

a. Bore surfaces of the insulation shall be coated with a thin coat of gypsum cement of a type recommended by the insulation manufacturer. Coating thickness shall be sufficient to fill surface cells of insulation. Mastic type materials shall not be used for this coating. Note that unless this is for a cyclic application (i.e., one that fluctuates between high and low temperature on a daily process basis) there is no need to bore coat the material.

b. Stainless steel bands, 19 mm 3/4 inch wide by 0.508 mm 0.020 inch thick shall be used to secure insulation in place. A minimum of two bands per section of insulation shall be applied. As an alternate, fiberglass reinforced tape may be used to secure insulation on piping up to 300 mm 12 inches in diameter. A minimum of two bands per section of insulation shall be applied.

c. Insulation shall terminate at anchor blocks but shall be continuous through sleeves and manholes.

d. At point of entry to buildings, underground insulation shall be terminated 50 mm 2 inches inside the wall or floor, shall butt tightly...
against the aboveground insulation and the butt joint shall be sealed with high temperature silicone sealant and covered with fibrous glass tape.

e. Provision for expansion and contraction of the insulation system shall be made in accordance with the insulation manufacturer's recommendations.

f. Flanges, couplings, valves, and fittings shall be insulated with factory pre-molded, prefabricated, or field-fabricated sections of insulation of the same material and thickness as the adjoining pipe insulation. Insulation sections shall be secured as recommended by the manufacturer.

g. Insulation, including fittings, shall be finished with three coats of asphaltic mastic, with 6 by 5.5 mesh synthetic reinforcing fabric embedded between coats. Fabric shall be overlapped a minimum of 50 mm 2 inches at joints. Total film thickness shall be a minimum of 4.7 mm 3/16 inch. As an alternate, a prefabricated bituminous laminated jacket, reinforced with internal reinforcement mesh, shall be applied to the insulation. Jacketing material and application procedures shall match manufacturer's written instructions. Vapor barrier - less than 0.0000 permeability self adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) jacket greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply (minimum 0.072 2.9 mils adhesive), heavy duty, white or natural). Application procedures shall match the manufacturer's written instructions.

h. At termination points, other than building entrances, the mastic and cloth or tape shall cover the ends of insulation and extend 50 mm 2 inches along the bare pipe.

3.3 DUCT INSULATION SYSTEMS INSTALLATION

**

NOTE: Insulation may be omitted on heating duct in heated spaces. Designer will determine if internally lined ducts are comparable in insulating value to those unlined ducts to be insulated. If not, field insulation will be added.

The designer must maintain conditioned space control under cooling and heating conditions - meet the energy budget, and not allow condensation formation. The following do not require insulation: factory fabricated double wall internally insulated duct, glass fiber duct, site-erected air conditioning casings and plenums constructed of factory-insulated sheet metal panels, ducts internally lined with insulation or sound absorbing material, unless indicated otherwise, return ducts in ceiling spaces or as indicated, supply ducts in ceiling spaces which are used as return air plenums (or as indicated), factory pre-insulated flexible ducts, ducts within HVAC equipment, exhaust air ducts unless noted, and duct portions inside walls or floor-ceiling space in which both sides of the space are exposed to
conditioned air and the space is not vented or exposed to unconditioned air.

In humid locations identified in ASHRAE 90.1 as Climate Zones 0A, 1A, 2A, 3A, 3C, 4C and 5C, exposed outdoor duct must be factory fabricated double wall internally insulated duct.

Ceiling spaces shall be defined as those spaces between the ceiling and bottom of floor deck or roof deck inside the air-conditioned space insulated envelope, and ceilings that form plenums.

ASHRAE 90.2 is for low-rise residential building. ASHRAE 90.1 is for all buildings except low-rise residential buildings. Low-rise building has one or two stories without elevators. High-rise building has multistory with elevators.

**
Install duct insulation systems in accordance with the approved MICA Insulation Stds plates as supplemented by the manufacturer's published installation instructions. Duct insulation minimum thickness and insulation level must be as listed in Table 3 and must meet or exceed the requirements of [ASHRAE 90.1 - SI][ASHRAE 90.2].

Except for oven hood exhaust duct insulation, corner angles shall be installed on external corners of insulation on ductwork in exposed finished spaces before covering with jacket. [Duct insulation shall be omitted on exposed supply and return ducts in air conditioned spaces [where the difference between supply air temperature and room air temperature is less than 9 degrees C 15 degrees F] unless otherwise shown.] Air conditioned spaces shall be defined as those spaces directly supplied with cooled conditioned air (or provided with a cooling device such as a fan-coil unit) and heated conditioned air (or provided with a heating device such as a unit heater, radiator or convector).

3.3.1 Duct Insulation Minimum Thickness

**
NOTE: The following tables are adapted from ASHRAE 90.1. They may be used to modify the thicknesses listed in Table 3. The thicknesses listed are recommended, and may be changed at the discretion of the designer. Duct insulation thicknesses must meet or exceed the requirements of ASHRAE 90.2 for low-rise residential buildings, and ASHRAE 90.1 for all other buildings except low-rise residential.

Use Table 6.8.2A and Table 6.8.2B in ASHRAE 90.1 for minimum required insulation thickness for buildings other than low-rise residential. For low-rise residential buildings use minimum duct insulation requirements included in ASHRAE 90.2
Table 3

Minimum Duct Insulation

<table>
<thead>
<tr>
<th>Duct Location</th>
<th>Cooling Annual Cooling Degree Days Base 18 C 65 F</th>
<th>Cooling Insulation R-Value (sm K)/W (h sf F)/Btu</th>
<th>Heating Annual Heating Degree Days Base 18 C 65 F</th>
<th>Heating Insulation R-Value (sm K)/W (h sf F)/Btu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior of Building</td>
<td><260 500</td>
<td>0.58 3.3</td>
<td>816 1500</td>
<td>0.58 3.3</td>
</tr>
<tr>
<td></td>
<td>260 - 621500 - 1150</td>
<td>0.88 5.0</td>
<td>816 - 24821500 - 4500</td>
<td>0.88 5.0</td>
</tr>
<tr>
<td></td>
<td>622 - 10931151 - 2000</td>
<td>1.14 6.5</td>
<td>2483 - 41494501 - 7500</td>
<td>1.14 6.5</td>
</tr>
<tr>
<td></td>
<td>>109320000</td>
<td>1.41 8.0</td>
<td>>414975000</td>
<td>1.41 8.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Insulation R-Value (sm K)/W (h sf F)/Btu</th>
<th>Temperature Difference</th>
<th>Insulation R-Value (sm K)/W (h sf F)/Btu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside building envelope or in unconditioned spaces</td>
<td><815</td>
<td>None required</td>
<td><815</td>
</tr>
<tr>
<td></td>
<td>8 <TD <2215 <TD <40</td>
<td>0.58 3.3</td>
<td>8 <TD <2215 <TD <40</td>
</tr>
<tr>
<td></td>
<td>22 <TD40 <TD</td>
<td>0.88 5.0</td>
<td>22 <TD40 <TD</td>
</tr>
</tbody>
</table>

These R-values do not include the film resistances. The required minimum thicknesses do not consider water vapor transmission and condensation. Additional insulation, vapor retarders, or both, may be required to limit vapor transmission and condensation. Where ducts are designed to convey both heated and cooled air, duct insulation shall be as required by the most restrictive condition. Where exterior walls are used as plenum walls, wall insulation shall be a required by the most restrictive condition of this section or the insulation for the building envelope. Cooling ducts are those designed to convey mechanically cooled air or return ducts in such systems. Heating ducts are those designed to convey mechanically heated air or return ducts in such systems. Thermal resistance will be measured in accordance with ASTM C518 at a mean temperature of 24 degrees C 75 degrees F. The Temperature difference is at design conditions between the space within which the duct is located and the design air temperature in the duct. Resistance for runouts to terminal devices less than 3 m 10 feet in length need not exceed 0.58 (sm K)/W 3.3 (h sf F)/Btu. Unconditioned spaces include crawlspace and attics.

**

Duct insulation minimum thickness in accordance with Table 4.

SECTION 23 07 00 Page 50
Table 4 - Minimum Duct Insulation (mm) (inches)

<table>
<thead>
<tr>
<th>Duct Type</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Air Ducts</td>
<td>50 2.0</td>
</tr>
<tr>
<td>Relief Ducts</td>
<td>40 1.5</td>
</tr>
<tr>
<td>Fresh Air Intake Ducts</td>
<td>40 1.5</td>
</tr>
<tr>
<td>Warm Air Ducts</td>
<td>50 2.0</td>
</tr>
<tr>
<td>Relief Ducts</td>
<td>40 1.5</td>
</tr>
<tr>
<td>Fresh Air Intake Ducts</td>
<td>40 1.5</td>
</tr>
</tbody>
</table>

3.3.2 Insulation and Vapor Retarder/Vapor Barrier for Cold Air Duct

**

NOTE: Cold air ducts needing insulation are ducts that handle air at or below 16 degrees C 60 degrees F. Mixing boxes, relief air ducts, and filter boxes should not be insulated unless condensation is a problem. Insulation may be omitted on that portion of return air ducts installed in the ceiling spaces where condensation is not a problem, and on that portion of supply ducts installed in ceiling spaces used as a return air plenum where condensation is not a problem. The designer is required to provide calculations to prove, if insulation is not provided for ducts or equipment, the space will be properly cooled and condensation will not form on ductwork or equipment. For ducts to be used for both heating and cooling, the requirements for cold ducts will govern.

**

NOTE: Insulate all supply and return ductwork in humid locations. Humid locations are those in ASHRAE climate zones 0A, 1A, 2A, 3A, 3C, 4C and 5C (as identified in ASHRAE 90.1).

**

Insulation and vapor retarder/vapor barrier shall be provided for the following cold air ducts and associated equipment.

a. Supply ducts.
b. Return air ducts.
c. Relief ducts.
d. Flexible run-outs (field-insulated).
e. Plenums.
f. Duct-mounted coil casings.
g. Coil headers and return bends.
h. Coil casings.

i. Fresh air intake ducts.

j. Filter boxes.

k. Mixing boxes (field-insulated).

l. Supply fans (field-insulated).

m. Site-erected air conditioner casings.

n. Ducts exposed to weather.

o. Combustion air intake ducts.

Insulation for rectangular ducts shall be flexible type where concealed, minimum density 12 kg/cubic m 3/4 pcf, and rigid type where exposed, minimum density 48 kg/cubic m 3 pcf. Insulation for both concealed or exposed round/oval ducts shall be flexible type, minimum density 12 kg/cubic m 3/4 pcf or a semi rigid board, minimum density 48 kg/cubic m 3 pcf, formed or fabricated to a tight fit, edges beveled and joints tightly butted and staggered. Insulation for all exposed ducts shall be provided with either a white, paintable, factory-applied Type I jacket or a field applied vapor retarder/vapor barrier jacket coating finish as specified, the total field applied dry film thickness shall be approximately 2 mm 1/16 inch. Insulation on all concealed duct shall be provided with a factory-applied Type I or II vapor retarder/vapor barrier jacket. Duct insulation shall be continuous through sleeves and prepared openings except firewall penetrations. Duct insulation terminating at fire dampers, shall be continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air and which may be prone to condensate formation. Duct insulation and vapor retarder/vapor barrier shall cover the collar, neck, and any un-insulated surfaces of diffusers, registers and grills. Vapor retarder/vapor barrier materials shall be applied to form a complete unbroken vapor seal over the insulation. Sheet Metal Duct shall be sealed in accordance with Section 23 30 00 HVAC AIR DISTRIBUTION.

3.3.2.1 Installation on Concealed Duct

a. For rectangular, oval or round ducts, flexible insulation shall be attached by applying adhesive around the entire perimeter of the duct in 150 mm 6 inch wide strips on 300 mm 12 inch centers.

b. For rectangular and oval ducts, 600 mm 24 inches and larger insulation shall be additionally secured to bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 400 mm 16 inch centers and not more than 400 mm 16 inches from duct corners.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 400 mm 16 inch centers and not more than 400 mm 16 inches from duct corners.

d. Insulation shall be impaled on the mechanical fasteners (self stick pins) where used and shall be pressed thoroughly into the adhesive. Care shall be taken to ensure vapor retarder/vapor barrier jacket.
joints overlap 50 mm 2 inches. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type duct hangers.

e. Where mechanical fasteners are used, self-locking washers shall be installed and the pin trimmed and bent over.

f. Jacket overlaps shall be secured with staples and tape as necessary to ensure a secure seal. Staples, tape and seams shall be coated with a brush coat of vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate (minimum 0.05 mm 2 mils adhesive, 0.075 3 mils embossed) - less than 0.0000 perm adhesive tape.

g. Breaks in the jacket material shall be covered with patches of the same material as the vapor retarder jacket. The patches shall extend not less than 50 mm 2 inches beyond the break or penetration in all directions and shall be secured with tape and staples. Staples and tape joints shall be sealed with a brush coat of vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) - less than 0.0000 perm adhesive tape.

h. At jacket penetrations such as hangers, thermometers, and damper operating rods, voids in the insulation shall be filled and the penetration sealed with a brush coat of vapor retarder coating or PVDC adhesive tape greater than 3 ply laminate (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) - less than 0.0000 perm adhesive tape.

i. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish or tape with a brush coat of vapor retarder coating. The coating shall overlap the adjoining insulation and un-insulated surface 50 mm 2 inches. Pin puncture coatings shall extend 50 mm 2 inches from the puncture in all directions.

j. Where insulation standoff brackets occur, insulation shall be extended under the bracket and the jacket terminated at the bracket.

3.3.2.2 Installation on Exposed Duct Work

a. For rectangular ducts, rigid insulation shall be secured to the duct by mechanical fasteners on all four sides of the duct, spaced not more than 300 mm 12 inches apart and not more than 75 mm 3 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 300 mm 12 inches and larger. One row shall be provided for each side of duct less than 300 mm 12 inches. Mechanical fasteners shall be as corrosion resistant as G60 coated galvanized steel, and shall indefinitely sustain a 22.7 kg 50 lb tensile dead load test perpendicular to the duct wall.

b. Form duct insulation with minimum jacket seams. Fasten each piece of rigid insulation to the duct using mechanical fasteners. When the height of projections is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over. Vapor retarder/barrier jacket shall be continuous across seams, reinforcing, and projections. When height of projections is greater than the insulation thickness, insulation and jacket shall be carried over.
Apply insulation with joints tightly butted. Neatly bevel insulation around name plates and access plates and doors.

c. Impale insulation on the fasteners; self-locking washers shall be installed and the pin trimmed and bent over.

d. Seal joints in the insulation jacket with a 100 mm 4 inch wide strip of tape. Seal taped seams with a brush coat of vapor retarder coating.

e. Breaks and ribs or standing seam penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 50 mm 2 inches beyond the break or penetration and shall be secured with tape and stapled. Staples and joints shall be sealed with a brush coat of vapor retarder coating.

f. At jacket penetrations such as hangers, thermometers, and damper operating rods, the voids in the insulation shall be filled and the penetrations sealed with a flashing sealant.

g. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish. The coating shall overlap the adjoining insulation and un-insulated surface 50 mm 2 inches. Pin puncture coatings shall extend 50 mm 2 inches from the puncture in all directions.

h. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation with minimum density of 12 kg per cubic meter 3/4 pcf, attached as in accordance with MICA standards.

3.3.3 Insulation for Warm Air Duct

**

NOTE: Warm air ducts needing insulation are ducts that handle air above 16 degrees C 60 degrees F. Mixing boxes, relief air ducts, and filter boxes should not be insulated unless condensation is a problem. Factory fabricated double-walled internally insulated duct exposed to the weather should be externally insulated on long runs of duct in cold climates. If insulation is required for unique building design, indicate on the drawings the locations the insulation is to be installed. Ducts for dual purposes will be as required for cold duct.

In humid locations, exhaust ducts passing through concealed spaces which exhaust conditioned air must be insulated and a vapor barrier provided. Humid locations are those in ASHRAE climate zones 0A, 1A, 2A, 3A, 3C, 4C and 5C (as identified in ASHRAE 90.1). Include item below relating to exhaust ducts where this condition occurs in project.

Delete items below as required.

**

Insulation and vapor barrier shall be provided for the following warm air ducts and associated equipment:

a. Supply ducts.
b. Return air ducts.
c. Relief air ducts
d. Flexible run-outs (field insulated).
e. Plenums.
f. Duct-mounted coil casings.
g. Coil-headers and return bends.
h. Coil casings.
i. Fresh air intake ducts.
j. Filter boxes.
k. Mixing boxes.
l. Supply fans.
m. Site-erected air conditioner casings.
n. Ducts exposed to weather.
o. Exhaust ducts passing through concealed spaces exhausting conditioned air.

Insulation for rectangular ducts shall be flexible type where concealed, and rigid type where exposed. Insulation on exposed ducts shall be provided with a white, paint-able, factory-applied Type II jacket, or finished with adhesive finish. Flexible type insulation shall be used for round ducts, with a factory-applied Type II jacket. Insulation on concealed duct shall be provided with a factory-applied Type II jacket. Adhesive finish where indicated to be used shall be accomplished by applying two coats of adhesive with a layer of glass cloth embedded between the coats. The total dry film thickness shall be approximately 2.0 mm 1/16 inch. Duct insulation shall be continuous through sleeves and prepared openings. Duct insulation shall terminate at fire dampers and flexible connections.

3.3.3.1 Installation on Concealed Duct

a. For rectangular, oval and round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 150 mm 6 inch wide strips on 300 mm 12 inch centers.

b. For rectangular and oval ducts 600 mm 24 inches and larger, insulation shall be secured to the bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 450 mm 18 inch centers and not more than 450 mm 18 inches from duct corner.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 450 mm 18 inch centers and not more than 450 mm 18 inches from duct corners.
d. The insulation shall be impaled on the mechanical fasteners where used. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type hangers.

e. Self-locking washers shall be installed where mechanical fasteners are used and the pin trimmed and bent over.

f. Insulation jacket shall overlap not less than 50 mm 2 inches at joints and the lap shall be secured and stapled on 100 mm 4 inch centers.

3.3.3.2 Installation on Exposed Duct

a. For rectangular ducts, the rigid insulation shall be secured to the duct by the use of mechanical fasteners on all four sides of the duct, spaced not more than 400 mm 16 inches apart and not more than 150 mm 6 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 300 mm 12 inches and larger and a minimum of one row for each side of duct less than 300 mm 12 inches.

b. Duct insulation with factory-applied jacket shall be formed with minimum jacket seams, and each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projection is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over the projection. Jacket shall be continuous across seams, reinforcing, and projections. Where the height of projections is greater than the insulation thickness, insulation and jacket shall be carried over the projection.

c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and pin trimmed and bent over.

d. Joints on jacketed insulation shall be sealed with a 100 mm 4 inch wide strip of tape and brushed with vapor retarder coating.

e. Breaks and penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 50 mm 2 inches beyond the break or penetration and shall be secured with adhesive and stapled.

f. Insulation terminations and pin punctures shall be sealed with tape and brushed with vapor retarder coating.

g. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation, minimum density of 12 kg per cubic meter 3/4 pcf attached by staples spaced not more than 400 mm 16 inches and not more than 150 mm 6 inches from the degrees of joints. Joints shall be sealed in accordance with item "d." above.

3.3.4 Ducts Handling Air for Dual Purpose

For air handling ducts for dual purpose below and above 16 degrees C 60 degrees F, ducts shall be insulated as specified for cold air duct.

3.3.5 Insulation for Evaporative Cooling Duct

Evaporative cooling supply duct located in spaces not evaporatively
cooled, shall be insulated. Material and installation requirements shall be as specified for duct insulation for warm air duct.

3.3.6 Duct Test Holes

After duct systems have been tested, adjusted, and balanced, breaks in the insulation and jacket shall be repaired in accordance with the applicable section of this specification for the type of duct insulation to be repaired.

3.3.7 Duct Exposed to Weather

3.3.7.1 Installation

Ducts exposed to weather shall be insulated and finished as specified for the applicable service for exposed duct inside the building. After the above is accomplished, the insulation shall then be further finished as detailed in the following subparagraphs.

3.3.7.2 Round Duct

Laminated self-adhesive (minimum 0.05 mm 2 mils adhesive, 0.075 mm 3 mils embossed) vapor barrier/weatherproofing jacket - Less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply, heavy duty, white and natural) membrane shall be applied overlapping material by 75 mm 3 inches no bands or caulking needed - see manufacturer's recommended installation instructions. Aluminum jacket with factory applied moisture retarder shall be applied with the joints lapped not less than 75 mm 3 inches and secured with bands located at circumferential laps and at not more than 300 mm 12 inch intervals throughout. Horizontal joints shall lap down to shed water and located at 4 or 8 o'clock position. Joints shall be sealed with metal jacketing sealant to prevent moisture penetration. Where jacketing abuts an un-insulated surface, joints shall be sealed with metal jacketing sealant.

3.3.7.3 Fittings

Fittings and other irregular shapes shall be finished as specified for rectangular ducts.

3.3.7.4 Rectangular Ducts

Two coats of weather barrier mastic reinforced with fabric or mesh for outdoor application shall be applied to the entire surface. Each coat of weatherproof mastic shall be 2 mm 1/16 inch minimum thickness. The exterior shall be a metal jacketing applied for mechanical abuse and weather protection, and secured with screws or vapor barrier/weatherproofing jacket less than 0.0000 permeability greater than 3 ply, standard grade, silver, white, black, and embossed or greater than 8 ply, heavy duty white and natural. Membrane shall be applied overlapping material by 75 mm 3 inches. No bands or caulking needed—see manufacturing recommend installation instructions.

3.3.8 Kitchen Exhaust Duct Insulation

NFPA 96 for [ovens,] [griddles,] [deep fat fryers,] [steam kettles,] [vegetable steamers,] [high pressure cookers,] [and] [mobile serving units]. Provide insulation with 19 mm 3/4 inch wide, minimum 4 mm 0.15
inch thick galvanized steel bands spaced not over 305 mm 12 inches o.c.; or 16 gauge galvanized steel wire with corner clips under the wire; or with heavy welded pins spaced not over 305 mm 12 inches apart each way. Do not use adhesives.

3.4 EQUIPMENT INSULATION SYSTEMS INSTALLATION

Install equipment insulation systems in accordance with the approved MICA Insulation Stds plates as supplemented by the manufacturer's published installation instructions.

3.4.1 General

Removable insulation sections shall be provided to cover parts of equipment that must be opened periodically for maintenance including vessel covers, fasteners, flanges and accessories. Equipment insulation shall be omitted on the following:

b. Boiler manholes.
c. Cleanouts.
d. ASME stamps.
e. Manufacturer's nameplates.
f. Duct Test/Balance Test Holes.

3.4.2 Insulation for Cold Equipment

**
NOTE: Special cold equipment including Government-furnished equipment that requires field-applied insulation will be inserted in the appropriate paragraph.
**

Cold equipment below 16 degrees C 60 degrees F: Insulation shall be furnished on equipment handling media below 16 degrees C 60 degrees F including the following:

a. Pumps.
b. Refrigeration equipment parts that are not factory insulated.
c. Drip pans under chilled equipment.
d. Cold water storage tanks.
e. Water softeners.
f. Duct mounted coils.
g. Cold and chilled water pumps.
h. Pneumatic water tanks.
i. Roof drain bodies.

j. Air handling equipment parts that are not factory insulated.

k. Expansion and air separation tanks.

3.4.2.1 Insulation Type

**
NOTE: Additional data on insulation thickness may be found in manufacturers catalogs and computer sizing programs and from individual calculations. Care should be taken in the selection of an insulating material for high temperature equipment. If the equipment rises to high operating temperature in a short period of time, thermal stresses may occur in rigid insulations that may lead to cracking and subsequent deterioration of the insulation.
**

Insulation shall be suitable for the temperature encountered. Material and thicknesses shall be as shown in Table 5:

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (mm) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to 16 degrees C 35 to 60 degrees F</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>40.15</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>25.1</td>
</tr>
<tr>
<td>Minus 18 to 1 degree C 1 to 34 degrees F</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>75.3</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>40.15</td>
</tr>
<tr>
<td>Minus 34 to minus 17 degrees C Minus 30 to 0 degrees F</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>90.35</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>45.175</td>
</tr>
</tbody>
</table>

3.4.2.2 Pump Insulation

a. Insulate pumps by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints that do not leave raw ends of insulation exposed. Joints between sides and between sides and bottom shall be joined by adhesive with lap strips for rigid mineral fiber and contact adhesive for flexible elastomeric...
cellular insulation. The box shall conform to the requirements of MICA Insulation Stds plate No. 49 when using flexible elastomeric cellular insulation. Joints between top cover and sides shall fit tightly forming a female shiplap joint on the side pieces and a male joint on the top cover, thus making the top cover removable.

b. Exposed insulation corners shall be protected with corner angles.

c. Upon completion of installation of the insulation, including removable sections, two coats of vapor retarder coating shall be applied with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be \(2 \text{ mm} \ 1/16 \text{ inch} \). A parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. Flashing sealant shall be applied to parting line, between equipment and removable section insulation, and at all penetrations.

3.4.2.3 Other Equipment

a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not more than \(300 \text{ mm} \ 12 \text{ inch} \) centers except flexible elastomeric cellular which shall be adhered with contact adhesive. Insulation corners shall be protected under wires and bands with suitable corner angles.

c. Cellular glass shall be installed in accordance with manufacturer's instructions. Joints and ends shall be sealed with joint sealant, and sealed with a vapor retarder coating.

d. Insulation on heads of heat exchangers shall be removable. Removable section joints shall be fabricated using a male-female shiplap type joint. The entire surface of the removable section shall be finished by applying two coats of vapor retarder coating with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be \(2 \text{ mm} \ 1/16 \text{ inch} \).

e. Exposed insulation corners shall be protected with corner angles.

f. Insulation on equipment with ribs shall be applied over \(150 \text{ by } 150 \text{ mm} \ 6 \text{ by } 6 \text{ inches} \) by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and \(50 \text{ by } 50 \text{ mm} \ 2 \text{ by } 2 \text{ inches} \) washers or shall be securely banded or wired in place on \(300 \text{ mm} \ 12 \text{ inch} \) centers.

3.4.2.4 Vapor Retarder/Vapor Barrier

Upon completion of installation of insulation, penetrations shall be caulked. Two coats of vapor retarder coating or vapor barrier jacket shall be applied over insulation, including removable sections, with a layer of open mesh synthetic fabric embedded between the coats. The total dry thickness of the finish shall be \(2 \text{ mm} \ 1/16 \text{ inch} \). Flashing sealant or vapor barrier tape shall be applied to parting line between equipment and removable section insulation.
3.4.3 Insulation for Hot Equipment

**
NOTE: Special hot equipment such as sterilizers, expansion tanks for high temperature water systems, process equipment, and special Government-furnished equipment that requires field-applied insulation will be inserted in the appropriate subparagraphs. Expansion tanks on hot water heating systems will not normally be insulated.
**

Insulation shall be furnished on equipment handling media above 16 degrees C 60 degrees F including the following:

a. Converters.
b. Heat exchangers.
c. Hot water generators.
d. Water heaters.
e. Pumps handling media above 54 degrees C 130 degrees F.
f. Fuel oil heaters.
g. Hot water storage tanks.
h. Air separation tanks.
i. Surge tanks.
j. Flash tanks.
k. Feed-water heaters.
l. Unjacketed boilers or parts of boilers.
m. Boiler flue gas connection from boiler to stack (if inside).
n. Induced draft fans.
o. Fly ash and soot collectors.
p. Condensate receivers.

3.4.3.1 Insulation

**
NOTE: Additional data on insulation thickness may be found in manufacturers catalogs and computer sizing programs and from individual calculations. Care should be taken in the selection of an insulating material for high temperature equipment. If the equipment rises to high operating temperature in a short period of time, thermal stresses may occur in rigid insulations that may lead to cracking and subsequent deterioration of the insulation.
**
Insulation shall be suitable for the temperature encountered. Shell and tube-type heat exchangers shall be insulated for the temperature of the shell medium.

Insulation thickness for hot equipment shall be determined using Table 6:

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (mm)</th>
<th>Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>103 kPa or 121 degrees C15 psig or 250 degrees F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid Mineral Fiber</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Flexible Mineral Fiber</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Calcium Silicate/Perlite</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>Faced Phenolic Foam</td>
<td>401.5</td>
<td></td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular (<93 C<200 F)</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>1380 kPa or 204 degrees C200psig or 400 degrees F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid Mineral Fiber</td>
<td>753</td>
<td></td>
</tr>
<tr>
<td>Flexible Mineral Fiber</td>
<td>753</td>
<td></td>
</tr>
<tr>
<td>Calcium Silicate/Perlite</td>
<td>1004</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>1004</td>
<td></td>
</tr>
<tr>
<td>316 degrees C600 degrees F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid Mineral Fiber</td>
<td>1255</td>
<td></td>
</tr>
<tr>
<td>Flexible Mineral Fiber</td>
<td>1506</td>
<td></td>
</tr>
<tr>
<td>Calcium Silicate/Perlite</td>
<td>1506</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>1506</td>
<td></td>
</tr>
</tbody>
</table>

316 degrees C600 degrees F: Thickness necessary to limit the external temperature of the insulation to 50 C 120 F. Heat transfer calculations shall be submitted to substantiate insulation and thickness selection.

3.4.3.2 Insulation of Boiler Stack and Diesel Engine Exhaust Pipe

Inside [boiler House] [mechanical Room], bevel insulation neatly around
openings and provide sheet metal insulation stop strips around such openings. Apply a skim coat of hydraulic setting cement directly to insulation. Apply a flooding coat of adhesive over hydraulic setting cement, and while still wet, press a layer of glass cloth or tape into adhesive and seal laps and edges with adhesive. Coat glass cloth with adhesive. When dry, apply a finish coat of adhesive at can-consistency so that when dry no glass weave shall be observed. Provide metal jackets for [stacks] [and] [exhaust pipes] that are located above finished floor and spaces outside [boiler house] [mechanical room]. Apply metal jackets directly over insulation and secure with 19 mm 3/4 inch wide metal bands spaced on 457 mm 18 inch centers. Do not insulate name plates. Insulation type and thickness shall be in accordance with the following Table 7.

TABLE 7

<p>| Insulation and Thickness for Boiler Stack and Diesel Engine Exhaust Pipe |
| Service & Surface Temperature Range (Degrees C F) |</p>
<table>
<thead>
<tr>
<th>Material</th>
<th>Outside Diameter (mm) (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 - 32 0.25 - 1.25 25 - 801 1.67 90-125 3.5-5 150 - 250 6 - 10 > or = 280 - 90011 - 36</td>
</tr>
<tr>
<td>Boiler Stack (Up to 204 degrees C) (Up to 400 degrees F)</td>
<td></td>
</tr>
<tr>
<td>Mineral Fiber ASTM C585 Class B-3, ASTM C547 Class 1, or ASTM C612 Class 1</td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium Silicate ASTM C533, Type I</td>
<td>N/A</td>
</tr>
<tr>
<td>Cellular Glass ASTM C552, Type II</td>
<td>401.5</td>
</tr>
<tr>
<td>Boiler Stack (205 to 315 degrees C) (401 to 600 degrees F)</td>
<td></td>
</tr>
<tr>
<td>Mineral Fiber ASTM C547 Class 2, ASTM C592 Class 1, or ASTM C612 Class 3</td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium Silicate ASTM C533, Type I or II</td>
<td>N/A</td>
</tr>
</tbody>
</table>
TABLE 7

Insulation and Thickness for
Boiler Stack and Diesel Engine Exhaust Pipe

Service & Surface Temperature Range (Degrees C F)

<table>
<thead>
<tr>
<th>Material</th>
<th>Outside Diameter (mm) (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 - 32</td>
</tr>
<tr>
<td>Mineral Fiber/Cellular Glass Composite:</td>
<td></td>
</tr>
<tr>
<td>Mineral Fiber</td>
<td>ASTM C547 Class 2, ASTM C592 Class 1, or ASTM C612 Class 3</td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>ASTM C552, Type II</td>
</tr>
</tbody>
</table>

Boiler Stack (316 to 427 degrees C) (601 to 800 degrees F)

<table>
<thead>
<tr>
<th>Material</th>
<th>Outside Diameter (mm) (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Calcium Silicate</td>
<td>ASTM C533, Type I or II</td>
</tr>
<tr>
<td>Mineral Fiber/Cellular Glass Composite:</td>
<td></td>
</tr>
<tr>
<td>Mineral Fiber</td>
<td>ASTM C547 Class 2, ASTM C592 Class 1, or ASTM C612 Class 3</td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>ASTM C552, Type II</td>
</tr>
</tbody>
</table>

Diesel Engine Exhaust (Up to 371 degrees C) (Up to 700 degrees F)
TABLE 7

<table>
<thead>
<tr>
<th>Material</th>
<th>Outside Diameter (mm) (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 - 32</td>
</tr>
<tr>
<td></td>
<td>0.25 - 1.25</td>
</tr>
<tr>
<td>Calcium Silicate</td>
<td>803</td>
</tr>
<tr>
<td>ASTM C533, Type I or II</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>652.5</td>
</tr>
<tr>
<td>ASTM C552, Type II</td>
<td></td>
</tr>
</tbody>
</table>

3.4.3.3 Insulation of Pumps

Insulate pumps by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints that do not leave raw ends of insulation exposed. Bottom and sides shall be banded to form a rigid housing that does not rest on the pump. Joints between top cover and sides shall fit tightly. The top cover shall have a joint forming a female shiplap joint on the side pieces and a male joint on the top cover, making the top cover removable. Two coats of Class I adhesive shall be applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. A parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. The total dry thickness of the finish shall be 2 mm 1/16 inch. Caulking shall be applied to parting line of the removable sections and penetrations.

3.4.3.4 Other Equipment

a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not greater than 300 mm 12 inch centers except flexible elastomeric cellular which shall be adhered. Insulation corners shall be protected under wires and bands with suitable corner angles.

c. On high vibration equipment, cellular glass insulation shall be set in a coating of bedding compound as recommended by the manufacturer, and joints shall be sealed with bedding compound. Mineral fiber joints shall be filled with finishing cement.

d. Insulation on heads of heat exchangers shall be removable.
removable section joint shall be fabricated using a male-female shiplap type joint. Entire surface of the removable section shall be finished as specified.

e. Exposed insulation corners shall be protected with corner angles.

f. On equipment with ribs, such as boiler flue gas connection, draft fans, and fly ash or soot collectors, insulation shall be applied over 150 by 150 mm 6 by 6 inch by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and 50 by 50 mm 2 by 2 inch washers or shall be securely banded or wired in place on 300 mm 12 inch (maximum) centers.

g. On equipment handling media above 316 degrees C 600 degrees F, insulation shall be applied in two or more layers with joints staggered.

h. Upon completion of installation of insulation, penetrations shall be caulked. Two coats of adhesive shall be applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 2 mm 1/16 inch. Caulking shall be applied to parting line between equipment and removable section insulation.

3.4.4 Equipment Handling Dual Temperature Media

Below and above 16 degrees C 60 degrees F: equipment handling dual temperature media shall be insulated as specified for cold equipment.

3.4.5 Equipment Exposed to Weather

3.4.5.1 Installation

Equipment exposed to weather shall be insulated and finished in accordance with the requirements for ducts exposed to weather in paragraph DUCT INSULATION INSTALLATION.

3.4.5.2 Optional Panels

At the option of the Contractor, prefabricated metal insulation panels may be used in lieu of the insulation and finish previously specified. Thermal performance shall be equal to or better than that specified for field applied insulation. Panels shall be the standard catalog product of a manufacturer of metal insulation panels. Fastenings, flashing, and support system shall conform to published recommendations of the manufacturer for weatherproof installation and shall prevent moisture from entering the insulation. Panels shall be designed to accommodate thermal expansion and to support a 1112 N 250 pound walking load without permanent deformation or permanent damage to the insulation. Exterior metal cover sheet shall be aluminum and exposed fastenings shall be stainless steel or aluminum.

-- End of Section --