UNIFIED FACILITIES GUIDE SPECIFICATIONS
References are in agreement with UMRL dated July 2023

SECTION TABLE OF CONTENTS

DIVISION 22 - PLUMBING

SECTION 22 13 36

PNEUMATIC SEWAGE EJECTORS

02/09

PART 1 GENERAL

1.1 REFERENCES
1.2 SUMMARY
1.3 SUBMITTALS
1.4 DELIVERY, STORAGE, AND HANDLING
1.5 EXTRA MATERIALS

PART 2 PRODUCTS

2.1 GENERAL MATERIAL AND EQUIPMENT REQUIREMENTS
 2.1.1 Standard Products
 2.1.2 Nameplates
 2.1.3 Protection from Moving Parts
2.2 MATERIALS AND EQUIPMENT
 2.2.1 Check Valves
 2.2.2 Cast Iron Gate Valves
 2.2.3 Bronze Gate Valves
 2.2.4 Motor Controls
 2.2.5 Cast Iron Pipe
 2.2.6 Steel Pipe
 2.2.7 Cast Iron Pipe Fittings
 2.2.8 Malleable Iron Fittings
 2.2.9 Malleable Iron Unions
 2.2.10 Pipe Hangers and Supports
 2.2.11 Bolts, Nuts, Anchors, and Washers
2.3 SEWAGE RECEIVER
2.4 AIR COMPRESSOR
2.5 AIR RESERVOIR
2.6 ELECTRIC MOTOR
2.7 CONTROLS
2.8 ELECTRICAL WORK
2.9 FACTORY PAINTING
PART 3 EXECUTION

3.1 EXAMINATION
3.2 PIPING INSTALLATION
 3.2.1 Cast Iron Pipe Joints
 3.2.2 Steel Pipe Joints
 3.2.3 Pipe Hangers and Supports
3.3 VALVE INSTALLATION
 3.3.1 Gate Valves
 3.3.2 Check Valves
3.4 EQUIPMENT INSTALLATION
3.5 FIELD PAINTING
3.6 CONCRETE FOUNDATIONS
3.7 TESTS
3.8 MANUFACTURER'S FIELD SERVICES

-- End of Section Table of Contents --
UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated July 2023

SECTION 22 13 36

PNEUMATIC SEWAGE EJECTORS

02/09

NOTE: This guide specification covers the requirements for pneumatic sewage ejectors.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.
The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

- **ASME B1.20.1** (2013; R 2018) Pipe Threads, General Purpose (Inch)
- **ASME B1.20.2M** (2006; R 2011) Pipe Threads, 60 Deg. General Purpose (Metric)
- **ASME B16.1** (2020) Gray Iron Pipe Flanges and Flanged Fittings Classes 25, 125, and 250
- **ASME B16.3** (2021) Malleable Iron Threaded Fittings, Classes 150 and 300
- **ASME B16.39** (2020) Standard for Malleable Iron Threaded Pipe Unions; Classes 150, 250, and 300
- **ASME BPVC SEC VIII D1** (2019) BPVC Section VIII-Rules for Construction of Pressure Vessels Division 1

AMERICAN WATER WORKS ASSOCIATION (AWWA)

ASTM INTERNATIONAL (ASTM)

COMPRESSED AIR AND GAS INSTITUTE (CAGI)

SUMMARY

**

NOTE: Select maximum sphere size required for project. Normal facilities allow entrance of solids up to 65 mm 2-1/2 inches. Larger solids may be required to be handled depending on type of solids in entering sewage.

Consider requiring small capacity ejectors for office buildings and small residential group applications be provided as completely factory assembled, preconnected and coordinated components, packaged units for ease in installation.

**

Provide sewage ejectors of the duplex pneumatic type complete with [receivers,] [receivers and compressors,] electric motors, control equipment, piping, and all necessary accessories. Capacities of all equipment and materials less than those specified or indicated are not acceptable. Ejector must be able to pass through maximum sphere size of [65] [75] [100] [_____] mm [2-1/2] [3] [4] [_____] inch diameter.

SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list, and corresponding submittal items in the text, to reflect only the submittals.

SECTION 22 13 36 Page 5
required for the project. The Guide Specification technical editors have classified those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For Army projects, fill in the empty brackets following the "G" classification, with a code of up to three characters to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" classification indicates submittals required as proof of compliance for sustainability Guiding Principles Validation or Third Party Certification and as described in Section 01 33 00 SUBMITTAL PROCEDURES.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Equipment Installation

SD-03 Product Data
 Materials and Equipment
 Sewage Receiver
 Air Compressor
 Air Reservoir
 Electric Motor
 Controls
 Spare Parts
1.4 DELIVERY, STORAGE, AND HANDLING

Protect equipment delivered and placed in storage from the weather, excessive humidity and excessive temperature variation; and dirt, dust, or other contaminants.

1.5 EXTRA MATERIALS

Submit spare parts data for each different item of material and equipment specified and include a complete list of parts and supplies, with current unit prices and source of supply. Provide one set of special tools, calibration devices, and instruments required for operation, calibration, and maintenance of the equipment.

PART 2 PRODUCTS

2.1 GENERAL MATERIAL AND EQUIPMENT REQUIREMENTS

2.1.1 Standard Products

Provide materials and equipment which are the standard products of a manufacturer regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Provide equipment supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site. Submit data consisting of manufacturer's descriptive and technical literature, catalog cuts, performance charts and curves, and installation instructions.

2.1.2 Nameplates

For each major item of equipment, provide the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment.

2.1.3 Protection from Moving Parts

Fully enclose or guard belts, pulleys, chains, couplings, projecting setscrews, keys, and other rotating parts located so that any person can come in close proximity thereto.

2.2 MATERIALS AND EQUIPMENT

Provide materials and equipment conforming to the following requirements:

2.2.1 Check Valves

Provide check valves conforming to MSS SP-80, Type 3 or 4, Class 125, except provide valves on the discharge side of the receivers with replaceable valve seats.

2.2.2 Cast Iron Gate Valves

**
NOTE: Consider ball valves for small capacity, 1.25
- 2.5 liters per second 20-40 gpm, ejectors. For 80
 to 100 mm 3-4 inch valves, manufacturers claim
 noiseless operation with virtually no wear on moving
 parts.

Provide cast iron gate valves conforming to MSS SP-70, Type I, II, or III,
Class 125, threaded or flanged ends.

2.2.3 Bronze Gate Valves

NOTE: Consider ball valves for small capacity, 1.25
- 2.5 liters per second 20-40 gpm, ejectors. For 80
 to 100 mm 3-4 inch valves, manufacturers claim
 noiseless operation with virtually no wear on moving
 parts.

Provide bronze gate valves conforming to MSS SP-80, Type 1, Class 125.

2.2.4 Motor Controls

Provide motor controls conforming to NEMA ICS 2.

2.2.5 Cast Iron Pipe

Provide cast iron pipe conforming to AWWA C115/A21.15, Class 150, as
applicable to pipe barrel only; ASME B16.1, Class 125, for pipe flange.

2.2.6 Steel Pipe

Provide steel pipe conforming to ASTM A53/A53M, standard weight, zinc
coated.

2.2.7 Cast Iron Pipe Fittings

Provide cast iron pipe fittings conforming to ASME B16.1.

2.2.8 Malleable Iron Fittings

Provide malleable iron fittings conforming to ASME B16.3.

2.2.9 Malleable Iron Unions

Provide malleable iron unions conforming to ASME B16.39, Type B.

2.2.10 Pipe Hangers and Supports

Provide pipe hangers and supports conforming to MSS SP-58, Type [____] hanger, Type [____] supports.

2.2.11 Bolts, Nuts, Anchors, and Washers

Furnish steel galvanized bolts, nuts, anchors, washers, and all other
types of support necessary for the installation of the equipment according
to ASTM A153/A153M.
2.3 **SEWAGE RECEIVER**

Furnish sewage receiver consisting of cast iron or welded steel construction conforming to ASME BPVC SEC VIII D1. Provide flanged sewage inflow and outflow pipe connections; provide screwed air-supply and vent-piping connections. Provide pipe threads conforming to ASME B1.20.2M ASME B1.20.1, and pipe flanges conforming to ASME B16.1. Design receiver for a working pressure of [_____] kPa psi and tested at a pressure 50 percent greater than the working pressure. Provide receiver with suitable support and a manhole or handhole conveniently located. Coat steel receiver [inside] [inside and outside] with coal tar primer and enamel conforming to the requirements of AWWA C203 in all respects of material and application, or coat with a coal-tar epoxy paint system conforming to the requirements of SSPC PS 11.01. The interior walls of the receiver and inflow and outflow openings, approaches and fittings must be free from any obstructions that might interfere with the free passage of raw unscreened sewage. Provide ejector unit with sufficient capacity for the discharge of sanitary sewage under the conditions of rate of flow, static head, and friction loss. As used herein, rate of flow is the continuous rate of flow into the ejector station; static head is the difference between the invert elevations of the inlet sewer to the ejector station and the force main at the point of final discharge; and friction loss is computed on the basis of the indicated continuous rate of flow.

2.4 **AIR COMPRESSOR**

**

NOTE: If compressed air is to be supplied from a central plant, this paragraph will be deleted. If a central air supply is used, a pressure-reducing valve may be required and will be specified.

Indicate m³/s cfm and kPa psi requirements for compressors on the drawings. Include an air reservoir to the air compressor in this paragraph if needed.

**

Supply air to the sewage receivers by air compressors of capacities indicated to supply air to operate the ejectors. Equip each compressor with suction silencer, complete automatic lubrication system, an air filter, and means for cooling. Design compressors for operation without water seal or any water connection. The air compressor must conform to CAGI B19.1. Air compressor unit must be a factory packaged assembly. Provide each duplex compressor system with [automatic alternation system] [manual alternation system].

2.5 **AIR RESERVOIR**

**

NOTE: A manhole will be specified for tanks larger than 1000 mm (36 inches) in diameter. An inspection opening will be specified for tanks 1000 mm 36 inches in diameter or smaller.

**

If the equipment furnished requires a compressed-air reservoir for proper operation, construct the tank in conformance with ASME BPVC SEC VIII D1, with flanged or screwed inlet and outlet connections as required. Provide a display of the ASME seal on the receiver or a certified test report from
an approved independent testing laboratory indicating compliance. Design storage tank for a working pressure of [_____] kPa psi and tested at a pressure 50 percent greater than the working pressure. Fit the tank with a pressure gauge, [manhole,] [inspection openings,] blowoff cock, and a safety valve set at [_____] kPa psi. Provide the connection to the compressor with a check valve and a shutoff valve.

2.6 ELECTRIC MOTOR

**
NOTE: If more than one type motor is required, each type will be specified. Motors installed above grade in normal-atmosphere frames will have open type frames. Motors installed in pits below grades will have dripproof frames.
**

Provide electric motor conforming to NEMA MG 1 and suitable for operation of [_____]-volt [_____]-Hz [_____]-phase alternating current. Provide [open] [dripproof] [totally enclosed] [explosion proof] motor frames. Base temperature rise on minus 40 degrees C minus 40 degrees F ambient temperature.

2.7 CONTROLS

**
NOTE: NEMA 3R and NEMA 4 Types are exterior panel types.
**

Provide an automatic-control system for each ejector. Provide controls consisting of suitable devices for regulating the cycle of each sewage receiver and each compressor. Provide valves and accessories as required to control the flow of air to the sewage receiver, to exhaust the residual air, and to vent the receiver to the outside. Provide pressure switches to control the operation of each compressor on the air reservoir. Enclose automatic controls in a NEMA 250, [Type 12] [Type 3R] [Type 4] panel, wire completely, and test with internal connections being made on terminal blocks. Provide factory preconnected sensor, motor control, and motor. Provide local or remote alarm signaling as required. Provide an air operated automatic valve between air compressor and ejector to control admission and relief of air to and from ejector, and to prevent waste materials or gases from entering compressor. Control the ejection cycle by a fully transistorized solid-state electronic liquid level control device, which activates the compressor motor. Provide liquid level control device to sense liquid level by use of a stainless steel probe mounted in the receiver. The ejection cycle must be adjustable from [_____] to [_____] seconds by an integral adjustable timer. Include manual-off-automatic three-way switch.

2.8 ELECTRICAL WORK

Provide electric motor driven equipment specified complete with motor, motor starter, wiring, and controls in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Electrical characteristics are as indicated. Provide motor starters complete with properly sized thermal overload protection and other appurtenances necessary for the motor control specified. Furnish starters in [general purpose] [watertight] [explosion-proof, Class I, Division 1] enclosures. Provide motors of
sufficient capacity to drive the equipment at the specified capacity without exceeding the nameplate rating on the motor. Provide manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices.

2.9 FACTORY PAINTING

**

NOTE: Corrosion coating for items exposed to direct sunlight should be high-build epoxy in lieu of coal tar epoxy.
**

Thoroughly clean and prime equipment, and give two finish coats of paint at the factory in accordance with the recommendations of the manufacturer.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 PIPING INSTALLATION

Provide flanged cast iron sewage influent and effluent lines. Provide steel air piping with malleable iron unions and fittings.

3.2.1 Cast Iron Pipe Joints

Wipe flanges of the pipe clean, and push the sections together evenly after a cloth-reinforced rubber gasket, as furnished by the manufacturer, has been placed between the flanges. Loosely assemble bolts and nuts by hand and then tightened evenly with a wrench of the type and length recommended by the manufacturer. Turn opposite nuts alternately to avoid damage from excessive tightening.

3.2.2 Steel Pipe Joints

Install steel pipe with sufficient unions to facilitate maintenance and removal of pipe and fittings. After cutting and before threading, ream pipe. Full cut threads, and do not expose no more than three threads on the pipe after assembly. Make joints tight with a stiff mixture of graphite and oil, or an inert filler and oil, or an approved thread lubricant, applied with a brush to the male threads only. Caulking of threaded joints will not be permitted.

3.2.3 Pipe Hangers and Supports

Use pipe hangers and supports on all pipe runs longer than 3 m 10 feet. Space pipe hangers and supports no more than 3 m 10 feet. Support horizontal pipe near fittings at each change in direction of piping and no more than 1.5 m 5 feet apart at valves. Support vertical piping at base, at intervals no more than 4.5 m 15 feet and at terminations.
3.3 VALVE INSTALLATION

Install bronze valves with screwed ends in the steel pipeline, and install valves with bronze-mounted iron bodies with flanged ends in the cast-iron pipeline. Cast the year of manufacture cast in the body of each valve. Remove and replace, at no additional cost to the Government, any valve that does not seat tightly or does not operate satisfactorily.

3.3.1 Gate Valves

Open gate valves by turning counterclockwise. The operating nut must have an arrow cast in the metal, indicating the direction of opening. Before the valve is installed, tighten the stuffing boxes and operate the valve to see that all parts are in working condition.

3.3.2 Check Valves

Provide check valves with freely operating, positively seating flaps, and easily removable covers.

3.4 EQUIPMENT INSTALLATION

Submit drawings containing complete wiring and schematic diagrams and any other details required to demonstrate that the system has been coordinated and will function as a unit. Show proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearances for maintenance and operation. Unless otherwise indicated, install all equipment in accordance with manufacturer's recommendations. Installation of the air [compressor] [compressor and air reservoir] must conform to CAGI B19.1.

3.5 FIELD PAINTING

Field painting, required for ferrous surfaces not furnished at the factory, is specified in Section 09 90 00 PAINTS AND COATINGS.

3.6 CONCRETE FOUNDATIONS

Provide concrete for foundation as specified in Section 03 30 00 CAST-IN-PLACE CONCRETE. Provide concrete foundations that are integral with and of the same class as the building floor unless otherwise indicated. Use Class B concrete in foundations that are entirely separated from the surrounding floor. When new foundations are constructed on existing concrete, bond the new concrete to the old as specified in Section 03 30 00 CAST-IN-PLACE CONCRETE. Provide foundation bolts as required for positioning during the placement of the concrete.

3.7 TESTS

**
NOTE: Consider accepting a Certificate of Compliance for capacity of ejectors of small size capacity where requiring shop tests or installed tests for capacity would add disproportionately to the cost.
**

Either furnish the manufacturer's report of ejector capacity determined by shop tests or make such tests as may be necessary to determine the
3.8 MANUFACTURER'S FIELD SERVICES

Provide services of a manufacturer's representative who is experienced in the installation, adjustment, and operation of the equipment specified. Supervise the installation, adjustment, and testing of the equipment in accordance with the approved *Operation and Maintenance Manuals*. Submit [6] [____] copies of operation and [6] [____] copies of maintenance manuals as required for the equipment furnished. Furnish one complete set prior to performance testing and furnish the remainder upon acceptance. Manuals must be approved prior to the field training course. Detail the step-by-step procedures required for system start-up, operation, and shut-down. Include the manufacturer's name, model number, parts list, and a brief description of all equipment and their basic operating features. List routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guides. Include include piping and equipment layout and simplified wiring and control diagrams of the system as installed.

-- End of Section --