SECTION TABLE OF CONTENTS

DIVISION 21 - FIRE SUPPRESSION

SECTION 21 13 13.00 10

WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

05/09

PART 1 GENERAL

1.1 REFERENCES
1.2 SYSTEM DESCRIPTION
 1.2.1 Hydraulic Design
 1.2.1.1 Hose Demand
 1.2.1.2 Basis for Calculations
 1.2.1.3 Hydraulic Calculations
 1.2.2 Sprinkler Coverage
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
 1.4.1 Fire Protection Specialist
 1.4.2 Sprinkler System Installer
 1.4.3 Shop Drawings
1.5 DELIVERY, STORAGE, AND HANDLING
1.6 EXTRA MATERIALS

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS
2.2 NAMEPLATES
2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE
2.4 UNDERGROUND PIPING COMPONENTS
 2.4.1 Pipe
 2.4.2 Fittings and Gaskets
 2.4.3 Gate Valve and Indicator Posts
2.5 ABOVEGROUND PIPING COMPONENTS
 2.5.1 Steel Piping Components
 2.5.1.1 Steel Pipe
 2.5.1.2 Fittings for Non-Grooved Steel Pipe
 2.5.1.3 Grooved Mechanical Joints and Fittings
 2.5.1.4 Flanges
 2.5.1.5 Bolts, Nut, and Washers
 2.5.2 Copper Tube Components
 2.5.2.1 Copper Tube
2.5.2.2 Copper Fittings and Joints
2.5.3 Plastic Piping Components
 2.5.3.1 Plastic Pipe
 2.5.3.2 Plastic Fittings
2.5.4 Pipe Hangers
2.5.5 Valves
 2.5.5.1 Control Valve and Gate Valve
 2.5.5.2 Check Valve
 2.5.5.3 Hose Valve
2.6 ALARM CHECK VALVE ASSEMBLY
2.7 WATERFLOW ALARM
2.8 ALARM INITIATING AND SUPERVISORY DEVICES
 2.8.1 Sprinkler Waterflow Indicator Switch, Vane Type
 2.8.2 Sprinkler Pressure (Waterflow) Alarm Switch
 2.8.3 Valve Supervisory (Tamper) Switch
2.9 FIRE DEPARTMENT CONNECTION
2.10 SPRINKLERS
 2.10.1 Concealed Sprinkler
 2.10.2 Recessed Sprinkler
 2.10.3 Flush Sprinkler
 2.10.4 Pendant Sprinkler
 2.10.5 Upright Sprinkler
 2.10.6 Sidewall Sprinkler
 2.10.7 Residential Sprinkler
 2.10.8 Intermediate Level Rack Sprinkler
 2.10.9 Corrosion Resistant Sprinkler
 2.10.10 Dry Sprinkler Assembly
2.11 ACCESSORIES
 2.11.1 Sprinkler Cabinet
 2.11.2 Pendant Sprinkler Escutcheon
 2.11.3 Pipe Escutcheon
 2.11.4 Sprinkler Guard
 2.11.5 Identification Sign
2.12 FIRE HOSE REEL ASSEMBLY
2.13 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY

PART 3 EXECUTION

3.1 FIELD MEASUREMENTS
3.2 INSTALLATION REQUIREMENTS
3.3 INSPECTION BY FIRE PROTECTION SPECIALIST
3.4 ABOVEGROUND PIPING INSTALLATION
 3.4.1 Protection of Piping Against Earthquake Damage
 3.4.2 Piping in Exposed Areas
 3.4.3 Piping in Finished Areas
 3.4.4 Pendant Sprinklers
 3.4.5 Upright Sprinklers
 3.4.6 Pipe Joints
 3.4.7 Reducers
 3.4.8 Pipe Penetrations
 3.4.9 Escutcheons
 3.4.10 Inspector's Test Connection
 3.4.11 Drains
 3.4.12 Installation of Fire Department Connection
 3.4.13 Identification Signs
3.5 UNDERGROUND PIPING INSTALLATION
3.6 ELECTRICAL WORK
3.7 PIPE COLOR CODE MARKING
3.8 PRELIMINARY TESTS
3.8.1 Underground Piping
 3.8.1.1 Flushing
 3.8.1.2 Hydrostatic Testing
3.8.2 Aboveground Piping
 3.8.2.1 Hydrostatic Testing
 3.8.2.2 Backflow Prevention Assembly Forward Flow Test
3.8.3 Testing of Alarm Devices
3.8.4 Main Drain Flow Test
3.9 FINAL ACCEPTANCE TEST
3.10 ONSITE TRAINING

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for wet pipe fire protection sprinkler systems.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: The Designer will edit this section for either a performance-designed system or a fully designed system as applicable.

This section is primarily intended for performance designed systems, i.e., systems where the size, layout, and support of branch lines and cross mains, and the layout of sprinkler heads will be designed by the Contractor.

The Designer will provide the following information in the contract documents for performance designed systems. This information will be in accordance with UFC 3-600-01.
(1) Show the layout and size of all piping and equipment from the point of connection to the water supply, to the sprinkler cross mains. The contract drawings must include a detailed sprinkler riser diagram. Water velocity in the piping should not exceed 6 m/s 20 ft/s.

(2) Show location and size of service mains, interior feed mains, control valves, sprinkler risers, drain lines, sectional valves, and inspector's test valves and switches on the drawings.

(3) Specify workflow data including hydrant flow results, including the location where the hydrant flow test was conducted, the location and size of existing mains and new water supply lines that will serve the sprinkler system (including all supervisory valves), and the location and size of all risers.

(4) Highlight or clearly indicate the area(s) to be protected by sprinklers on the drawings.

(5) Specify workflow requirements including the design density, design area, the hose stream demand (including location of the hose stream demand), the duration of supply, and sprinkler spacing and area of coverage in this section.

(6) Show the location of the backflow preventer (including provisions for a drain and access for maintenance) where the potable water supply system is at risk of contamination by the sprinkler system on the drawings.

(7) Show all provisions necessary for forward flow testing of the backflow preventer at system demand, as required by NFPA 13 on the drawings. Indicate location of all components and required items, including test ports, for pressure measurements both upstream and downstream of the backflow preventer, a drain to the building exterior, and appropriate, permanent means of disposing of the large quantity of water that will be involved in the initial test and subsequent annual tests.

(8) Highlight all concealed spaces on the drawings that require sprinkler protection, such as spaces above suspended ceilings that are built of combustible material or that can contain combustible materials, such as storage, and communication cabling that is not fire-rated.

(9) Provide details on the drawings of pipe restraints for underground piping. This includes details of pipe clamps, tie rods, mechanical retainer glands, and thrust blocks.
When connecting to an existing water distribution system, waterflow tests will be conducted to
determine available water supply for the sprinkler
system. The Designer will either perform or witness
the waterflow test. The waterflow test results
(including date test is performed) should be
included in the Project Development Brochure;
however it is critical that the waterflow test
results be included in the design documents no later
than the concept submission. Note that the
availability of the Designer to participate or
witness the waterflow test will be necessary. The
need for fire pumps or a water tank can in many
instances have a significant impact on the amount
programmed for design and construction of a facility.

A fully designed system will include the items
listed above and all additional information required
that is required by UFC 3-600-01 and NFPA 13 for a
fully operational system.

**
1.1 REFERENCES
**

NOTE: This paragraph is used to list the
publications cited in the text of the guide
specification. The publications are referred to in
the text by basic designation only and listed in
this paragraph by organization, designation, date,
and title.

Use the Reference Wizard's Check Reference feature
when you add a Reference Identifier (RID) outside of
the Section's Reference Article to automatically
place the reference in the Reference Article. Also
use the Reference Wizard's Check Reference feature
to update the issue dates.

References not used in the text will automatically
be deleted from this section of the project
specification when you choose to reconcile
references in the publish print process.

**
The publications listed below form a part of this specification to the
extent referenced. The publications are referred to within the text by
the basic designation only.

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

Fittings Classes 25, 125, and 250

ASME B16.3 (2016) Malleable Iron Threaded Fittings,
Classes 150 and 300

Fittings; Classes 125 and 250

SECTION 21 13 13.00 10 Page 6

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded

ASME B16.18 (2018) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (2016) Nonmetallic Flat Gaskets for Pipe Flanges

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1015 (2011) Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies - (ANSI approved 2010)

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C606 (2015) Grooved and Shouldered Joints

ASTM INTERNATIONAL (ASTM)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-71 (2018) Gray Iron Swing Check Valves, Flanged and Threaded Ends

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 13 (2016; TIA 16-1; TIA 16-2; TIA 16-3 2016; Errata 17-1; Errata 17-2) Standard for the Installation of Sprinkler Systems

NFPA 13R (2013) Standard for the Installation of Sprinkler Systems in Residential Occupancies Up to and Including Four Stories in Height

NFPA 101 (2018; TIA 18-1; TIA 18-2; TIA 18-3) Life Safety Code

NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET)

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 3-301-01 (2019) Structural Engineering

UNDERWRITERS LABORATORIES (UL)

UL 668 (2004; Reprint Jul 2016) UL Standard for Safety Hose Valves for Fire-Protection Service

UL Bld Mat Dir (updated continuously online) Building Materials Directory

1.2 SYSTEM DESCRIPTION

**

NOTE: Residential Occupancies: NFPA 13R is

13 13.00 10 Page 9
applicable for residential occupancies up to and including 4 stories in height. This standard should be referenced and followed only for such occupancies. NFPA 13R differs from NFPA 13 relative to type of sprinkler, design criteria, sprinkler coverage, etc. Care must be taken when using this specification for residential occupancies to assure that the final project specification clearly indicates design requirements.

**
Furnish piping offsets, fittings, and any other accessories as required to provide a complete installation and to eliminate interference with other construction. Install sprinkler system over and under ducts, piping and platforms when such equipment can negatively effect or disrupt the sprinkler discharge pattern and coverage. Provide wet pipe sprinkler system in [all areas of the building] [areas indicated on the drawings] [____]. Except as modified herein, the system shall be designed and installed in accordance with [NFPA 13] [NFPA 13R]. Rack sprinklers shall be in accordance with NFPA 13. Pipe sizes which are not indicated on drawings shall be determined by hydraulic calculation. Design any portions of the sprinkler system that are not indicated on the drawings including locating sprinklers, piping and equipment, and size piping and equipment when this information is not indicated on the drawings or is not specified herein. The design of the sprinkler system shall be based on hydraulic calculations, and the other provisions specified herein.

1.2.1 Hydraulic Design

**
NOTE: Applications requiring multiple densities/design areas must be referred to and shown on the drawings.

Systems covering 140 square meters 1500 square feet or greater will be hydraulically designed. Only systems less than 140 square meters 1500 square feet may be designed using the pipe schedule method of NFPA 13. This section must be edited if the system is to be designed using the pipe schedule method.

For sprinkler systems in residential occupancies, which are designed to NFPA 13R standards, paragraphs which address hydraulic design and sprinkler spacing must be edited according to NFPA 13R requirements.

**
Hydraulically design the system to discharge a minimum density of [____] L/min per square meter gpm/square foot over the hydraulically most demanding [280] [____] square m [3,000] [____] square feet of floor area. The minimum pipe size for branch lines in gridded systems shall be 32 mm 1-1/4 inch. Hydraulic calculations shall be in accordance with the Area/Density Method of NFPA 13. Water velocity in the piping shall not exceed 6 m/s 20 ft/s.

1.2.1.1 Hose Demand

Add an allowance for exterior hose streams of [____] L/min gpm to the sprinkler system demand [at the fire hydrant shown on the drawings closest
to the point where the water service enters the building] [at the point of
collection to the existing system].[An allowance for interior hose
stations of [_____]L/min gpm shall also be added to the sprinkler system
demand.]

1.2.1.2 Basis for Calculations

**

NOTE: The design must include an adequate water
supply to meet the sprinkler water demand. The
designer must provide water flow test results and
hydraulic calculations to ensure that the system
demand will be met.

Design Calculations: The designer will provide
detailed hydraulic calculations that clearly
demonstrate that the water supply will meet the
demand of the sprinkler system and hose streams.
Calculations will be submitted with the concept
design submission.
**

The design of the system shall be based upon a water supply with a static
pressure of [____], and a flow of [____] at a residual pressure of
[____]. Water supply shall be presumed available [at the point of
connection to existing] [at the base of the riser] [____]. Hydraulic
calculations shall be based upon the Hazen-Williams formula with a "C"
value of 120 for steel piping, 150 for copper tubing, 140 for new
cement-lined ductile-iron piping, and [100] [____] for existing
underground piping.[Hydraulic calculations shall be based on operation
of the fire pump(s) provided in Section 21 30 00 FIRE PUMPS]

1.2.1.3 Hydraulic Calculations

Submit hydraulic calculations, including a drawing showing hydraulic
reference points and pipe segments and as outlined in NFPA 13, except that
calculations shall be performed by computer using software intended
specifically for fire protection system design using the design data shown
on the drawings. Software that uses k-factors for typical branch lines is
not acceptable. Calculations shall be based on the water supply data
shown on the drawings to substantiate that the design area used in the
calculations is the most demanding hydraulically. Water supply curves and
system requirements shall be plotted on semi-logarithmic graph paper so as
to present a summary of the complete hydraulic calculation. Provide a
summary sheet listing sprinklers in the design area and their respective
hydraulic reference points, elevations, actual discharge pressures and
actual flows. Elevations of hydraulic reference points (nodes) shall be
indicated. Documentation shall identify each pipe individually and the
nodes connected thereto. Indicate the diameter, length, flow, velocity,
friction loss, number and type fittings, total friction loss in the pipe,
equivalent pipe length and Hazen-Williams coefficient for each pipe. For
gridded systems, calculations shall show peaking of demand area friction
loss to verify that the hydraulically most demanding area is being used.
Also for gridded systems, a flow diagram indicating the quantity and
direction of flows shall be included. A drawing showing hydraulic
reference points (nodes) and pipe designations used in the calculations
shall be included and shall be independent of shop drawings.
1.2.2 Sprinkler Coverage

Sprinklers shall be uniformly spaced on branch lines. In buildings protected by automatic sprinklers, sprinklers shall provide coverage throughout 100 percent of the building. This includes, but is not limited to, telephone rooms, electrical equipment rooms, boiler rooms, switchgear rooms, transformer rooms, and other electrical and mechanical spaces. Coverage per sprinkler shall be in accordance with NFPA 13, but shall not exceed 9 square m (100 square feet) for extra hazard occupancies, 12 square m (130 square feet) for ordinary hazard occupancies, and 21 square m (225 square feet) for light hazard occupancies. Exceptions are as follows:

a. Facilities that are designed in accordance with NFPA 13R and NFPA 13D.

b. Sprinklers may be omitted from small rooms which are exempted for specific occupancies in accordance with NFPA 101.

1.3 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. When used, a designation following the "G" designation identifies the office that will review the submittal for Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Shop Drawings; G[, [______]]
As-Built Drawings

SD-03 Product Data

Fire Protection Related Submittals
Materials and Equipment; G[, [______]]
Spare Parts
Preliminary Tests; G[, [______]]
Final Acceptance Test; G[, [______]]
Onsite Training; G[, [______]]
Fire Protection Specialist; G[, [______]]
Sprinkler System Installer; G[, [______]]

SD-05 Design Data

Sway Bracing; G[, [______]]
Hydraulic Calculations; G[, [______]]

SD-06 Test Reports

Preliminary Test Report
Final Acceptance Test Report

SD-07 Certificates

Inspection by Fire Protection Specialist

SD-10 Operation and Maintenance Data

Operating and Maintenance Manuals; G[, [______]]

1.4 QUALITY ASSURANCE

Compliance with referenced NFPA standards is mandatory. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification governs. Interpret reference to "authority having jurisdiction" to mean the Contracting Officer.

1.4.1 Fire Protection Specialist

**
** NOTE: Level IV may be selected where warranted by system complexity. **
**

Perform work specified in this section under the supervision of and
certified by the Fire Protection Specialist who is an individual registered professional engineer[who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES)] in a related engineering discipline with a minimum of 5 years experience, dedicated to fire protection engineering that can be verified with documentation] or who is certified as a Level [III] [IV] Technician by National Institute for Certification in Engineering Technologies (NICET) in the Automatic Sprinkler System Layout subfield of Fire Protection Engineering Technology in accordance with NICET 1014-7. Submit the name and documentation of certification of the proposed Fire Protection Specialists, no later than 14 days [_____] after the Notice to Proceed and prior to the submittal of the sprinkler system drawings and hydraulic calculations. The Fire Protection Specialist shall prepare and submit a list of the fire protection related submittals, no later than [7] [_____] days after the approval of the Fire Protection Specialist, from the Contract Submittal Register that relate to the successful installation of the sprinkler system(s). The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the Fire Protection Specialist when submitted to the Government. The Fire Protection Specialist shall be regularly engaged in the design and installation of the type and complexity of system specified in the contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.4.2 Sprinkler System Installer

Work specified in this section shall be performed by the Sprinkler System Installer who is regularly engaged in the installation of the type and complexity of system specified in the contract documents, and who has served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months. Submit the name and documentation of certification of the proposed Sprinkler System Installer, concurrent with submittal of the Fire Protection Specialist Qualifications.

1.4.3 Shop Drawings

Shop Drawings shall conform to the requirements established for working plans as prescribed in NFPA 13. Submit [3] [_____] copies of the Sprinkler System shop drawings, no later than [21] [_____] days prior to the start of sprinkler system installation. Drawings shall include plan and elevation views demonstrating that the equipment will fit the allotted spaces with clearance for installation and maintenance. Each set of drawings shall include the following:

a. Descriptive index of drawings in the submittal with drawings listed in sequence by drawing number. A legend identifying device symbols, nomenclature, and conventions used.

b. Floor plans drawn to a scale not less than 1:100 1/8" = 1'-0" which clearly show locations of sprinklers, risers, pipe hangers, seismic separation assemblies, sway bracing, inspector's test connections, drains, and other applicable details necessary to clearly describe the proposed arrangement. Each type of fitting used and the locations of bushings, reducing couplings, and welded joints shall be indicated.

c. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from
walls to branch lines; from sprinkler feed mains, cross-mains and branch lines to finished floor and roof or ceiling. A detail shall show the dimension from the sprinkler and sprinkler deflector to the ceiling in finished areas.

d. Longitudinal and transverse building sections showing typical branch line and cross-main pipe routing as well as elevation of each typical sprinkler above finished floor.

e. Details of each type of riser assembly; pipe hanger; sway bracing for earthquake protection, and restraint of underground water main at point-of-entry into the building, and electrical devices and interconnecting wiring. Submit load calculations for sizing of sway bracing, for systems that are required to be protected against damage from earthquakes.

1.5 DELIVERY, STORAGE, AND HANDLING

All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed.

1.6 EXTRA MATERIALS

Submit spare parts data for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. Include a list of special tools and test equipment required for maintenance and testing of the products supplied.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide materials and equipment which are standard products of a manufacturer regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

2.2 NAMEPLATES

All equipment shall have a nameplate that identifies the manufacturer's name, address or style, model or serial number, and catalog number.

2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE

Provide Materials and Equipment that have been tested by Underwriters Laboratories, Inc. and are listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM APP GUIDE. Submit manufacturer's catalog data included with the Sprinkler System Drawings for all items specified herein. The data shall be highlighted to show model, size, options, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with all contract requirements. In addition, provide a complete equipment list that includes equipment description, model number and quantity.
2.4 UNDERGROUND PIPING COMPONENTS

**
NOTE: The drawings must show the service connection details and the underground water mains for the sprinkler system. The drawings must show details of the water service point-of-entry into the building and through the floor slab, and underground piping restraints, including number and size of restraining rods and thrust blocks.
**

2.4.1 Pipe
Piping from a point 150 mm 6 inches above the floor to [a point 1500 mm 5 feet outside the building wall] [the point of connection to the existing water mains] shall be ductile iron with a rated working pressure of [1034] [1207] [_____] kPa [150] [175] [_____] psi conforming to AWWA C151/A21.51, with cement mortar lining conforming to AWWA C104/A21.4. Piping more than 1500 mm 5 feet outside the building walls shall comply with Section 33 11 00 WATER UTILITY DISTRIBUTION PIPING.

2.4.2 Fittings and Gaskets
Fittings shall be ductile iron conforming to AWWA C110/A21.10 with cement mortar lining conforming to AWWA C104/A21.4. Gaskets shall be suitable in design and size for the pipe with which such gaskets are to be used. Gaskets for ductile iron pipe joints shall conform to AWWA C111/A21.11.

2.4.3 Gate Valve and Indicator Posts

**
NOTE: This paragraph will be deleted if underground valves are either not required or are specified elsewhere.
**

Gate valves for underground installation shall be of the inside screw type with counter-clockwise rotation to open. Where indicating type valves are shown or required, indicating valves shall be gate valves with an approved indicator post of a length to permit the top of the post to be located 900 mm 3 feet above finished grade. Gate valves and indicator posts shall be listed in UL Fire Prot Dir or FM APP GUIDE.

2.5 ABOVEGROUND PIPING COMPONENTS

**
NOTE: The following are basic restrictions on the use of plastic pipes:

a. Will be used only in light hazard occupancies and in residential occupancies.

b. Will not be used in combustible concealed spaces that are required to be sprinklered.

c. Will not be used in spaces where ambient temperature exceed 65 Degrees C 150 Degrees F.

**
d. They must be protected, as a minimum, by either
(1) one layer of 9.525 mm 3/8 inch thick gypsum
board, or (2) a suspended membrane ceiling with
lay-in ceiling panels or tiles having a weight of
not less than 1.7 kg per square meter 0.35 psf
installed on metallic support grids, or by other
method approved by UL. Method or protection of
piping must be indicated and detailed in the
contract documents.

e. Will not be used where water pressure surges
could exceed 1207 kPa 175 psi.

f. Will not be used in areas where the system could
be subject to impact or physical stress or abuse.

g. Can be used only in wet pipe sprinkler systems.

h. Quick response sprinkler heads will be used with
plastic piping.

Aboveground piping shall be steel [or copper] [, copper, or plastic].

2.5.1 Steel Piping Components

**

Aboveground piping shall be steel [or copper] [, copper, or plastic].

2.5.1 Steel Piping Components

**

NOTE: Specify steel piping exposed to the weather
or corrosive atmospheres to properly protected
against corrosive effects.

**

2.5.1.1 Steel Pipe

Except as modified herein, steel pipe shall be black as permitted by NFPA 13
and shall conform to applicable provisions of ASTM A795/A795M,
ASTM A53/A53M, or ASTM A135/A135M. Pipe in which threads or grooves are
cut or rolled formed shall be Schedule 40 or shall be listed by
Underwriters' Laboratories to have a corrosion resistance ratio (CRR) of
1.0 or greater after threads or grooves are cut or rolled formed. Pipe
shall be marked with the name of the manufacturer, kind of pipe, and ASTM
designation.

2.5.1.2 Fittings for Non-Grooved Steel Pipe

Fittings shall be cast iron conforming to ASME B16.4, steel conforming to
ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3.
[Steel press fittings shall be approved for fire protection systems.] Fittings
into which sprinklers, drop nipples or riser nipples (sprigs) are
screwed shall be threaded type. Plain-end fittings with mechanical
couplings, fittings that use steel gripping devices to bite into the pipe
and segmented welded fittings shall not be used.

2.5.1.3 Grooved Mechanical Joints and Fittings

Joints and fittings shall be designed for not less than 1200 kPa 175 psi
service and shall be the product of the same manufacturer; segmented welded
fittings shall not be used. Fitting and coupling houses shall be
malleable iron conforming to ASTM A47/A47M, Grade 32510; ductile iron conforming to ASTM A536, Grade 65-45-12. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A183 and shall be cadmium plated or zinc electroplated.

2.5.1.4 Flanges

Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1.6 mm 1/16 inch thick, and full face or self-centering flat ring type.

2.5.1.5 Bolts, Nut, and Washers

Bolts shall be conform to ASTM A449, Type 1 and shall extend no less than three full threads beyond the nut with bolts tightened to the required torque. Nuts shall be [hexagon type conforming to ASME B18.2.2] [ASTM A193/A193M, Grade 5] [ASTM A563M ASTM A563, Grade [C3] [DH3]]. Washers shall meet the requirements of ASTM F436M ASTM F436. Flat circular washers shall be provided under all bolt heads and nuts.

2.5.2 Copper Tube Components

2.5.2.1 Copper Tube

Copper tube shall conform to ASTM B88M ASTM B88, Types L and M.

2.5.2.2 Copper Fittings and Joints

Cast copper alloy solder-joint pressure fittings shall conform to ASME B16.18 and wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and ASTM B75/B75M. Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B62. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment. Extracted brazed tee joints produced with an acceptable tool and installed as recommended by the manufacturer may be used. Grooved mechanical joints and fittings shall be designed for not less than 862 kPa 125 psig service and shall be the product of the same manufacturer. Grooved fitting and mechanical coupling housing shall be ductile iron conforming to ASTM A536. Gaskets for use in grooved joints shall be molded synthetic polymer of pressure responsive design and shall conform to ASTM D2000 for circulating medium up to 110 degrees C 230 degrees F. Grooved joints shall conform to AWWA C606. Coupling nuts and bolts for use in grooved joints shall be steel and shall conform to ASTM A183.

2.5.3 Plastic Piping Components

NOTE: See Note in Paragraph 2.5 for restrictions on use of plastic piping. When plastic pipe is not permitted, delete this paragraph.

2.5.3.1 Plastic Pipe

Plastic pipe shall be chlorinated polyvinyl chloride (CPVC) conforming to ASTM F442/F442M, 1207 kPa 175 psi rating and listed in UL Fire Prot Dir for use in wet pipe sprinkler systems.
2.5.3.2 Plastic Fittings

Plastic fitting shall be chlorinated polyvinyl chloride (CPVC) as listed in UL Fire Prot Dir for use in wet pipe sprinkler systems.

2.5.4 Pipe Hangers

Hangers shall be listed in UL Fire Prot Dir or FM APP GUIDE and of the type suitable for the application, construction, and pipe type and sized to be supported.

2.5.5 Valves

2.5.5.1 Control Valve and Gate Valve

**
NOTE: A control valve is required for control of each individual sprinkler riser. The type of such valves should be either the OS&Y or wall type indicator post. Where multiple risers are supplied from a single water service, riser control valves of the OSY type should be located in a valve room with exterior access. For more guidance on arrangement of sprinkler control valves, refer to NFPA 13, Appendix A.
**

Manually operated sprinkler control valve and gate valve shall be outside stem and yoke (OS&Y) type and shall be listed in UL Bld Mat Dir or FM APP GUIDE.

2.5.5.2 Check Valve

Check valve 50 mm 2 inches and larger shall be listed in UL Bld Mat Dir or FM APP GUIDE. Check valves 100 mm 4 inches and larger shall be of the swing type with flanged cast iron body and flanged inspection plate, shall have a clear waterway and shall meet the requirements of MSS SP-71, for Type 3 or 4.

2.5.5.3 Hose Valve

**
NOTE: This specification does not include standpipe systems covered by NFPA 14. However, in conjunction with the project drawings, this specification can be expanded to include combined sprinkler and standpipe systems. Delete hose valve reducer when not required.
**

Valve shall comply with UL 668 and shall have a minimum rating of 2070 kPa 300 psi. Valve shall be non-rising stem, all bronze, 90 degree angle type, with 65 mm 2-1/2 inch American National Standard Fire Hose Screw Thread (NH) male outlet in accordance with NFPA 1963. Hose valve shall be provided with 65 to 40 mm 2-1/2 to 1-1/2 inch reducer. Hose valves shall be equipped with lugged cap with drip drain, cap gasket and chain. Valve finish shall be [polished brass] [rough chrome plated] [polished chrome plated].
2.6 ALARM CHECK VALVE ASSEMBLY

**
NOTE: In lieu of an alarm check valve, the designer may show a back flow preventer and an accompanying two inch drain on the sprinkler system side, along with a vane type waterflow switch.
**

Assembly shall include an alarm check valve, standard trim piping, pressure gauges, bypass, retarding chamber, testing valves, main drain, and other components as required for a fully operational system.

2.7 WATERFLOW ALARM

**
NOTE: Electric waterflow alarms are preferred. Coordinate type and location of waterflow alarm with the electrical designer.
**

[Electrically operated, exterior-mounted, waterflow alarm bell shall be provided and installed in accordance with NFPA 13. Waterflow alarm bell shall be rated 24 VDC and shall be connected to the Fire Alarm Control Panel (FACP) in accordance with Section [28 31 00.00 10 FIRE DETECTION AND ALARM SYSTEM, DIRECT CURRENT LOOP] [28 31 64.00 10 FIRE DETECTION AND ALARM SYSTEM, ADDRESSABLE] [Mechanically operated, exterior-mounted, water motor alarm assembly shall be provided and installed in accordance with NFPA 13. Water motor alarm assembly shall include a body housing, impeller or pelton wheel, drive shaft, striker assembly, gong, wall plate and related components necessary for complete operation. Minimum 19 mm 3/4 inch galvanized piping shall be provided between the housing and the alarm check valve. Drain piping from the body housing shall be minimum 25 mm 1 inch galvanized and shall be arranged to drain to the outside of the building. Piping shall be galvanized both on the inside and outside surfaces.]

2.8 ALARM INITIATING AND SUPERVISORY DEVICES

**
NOTE: Water motor alarms and pressure alarm switches can be used only with an alarm check valve. Vane type waterflow indicators can be used with or without an alarm check valve and are often used for zoning of the system, e.g., building wings or floors.

To permit testing of each alarm device, the designer will indicate a separate inspector's test connection for each device. Coordinate selections and delete inapplicable devices.
**

2.8.1 Sprinkler Waterflow Indicator Switch, Vane Type

Switch shall be vane type with a pipe saddle and cast aluminum housing. The electro-mechanical device shall include a flexible, low-density polyethylene paddle conforming to the inside diameter of the fire...
protection pipe. The device shall sense water movements and be capable of detecting a sustained flow of 38 L/min 10 gpm or greater. The device shall contain a retard device adjustable from 0 to 90 seconds to reduce the possibility of false alarms caused by transient flow surges. The switch shall be tamper resistant and contain two SPDT (Form C) contacts arranged to transfer upon removal of the housing cover, and shall be equipped with a silicone rubber gasket to assure positive water seal and a dustproof cover and gasket to seal the mechanism from dirt and moisture.

2.8.2 Sprinkler Pressure (Waterflow) Alarm Switch

Pressure switch shall include a metal housing with a neoprene diaphragm, SPDT snap action switches and a 13 mm 1/2 inch NPT male pipe thread. The switch shall have a maximum service pressure rating of 1207 kPa 175 psi. There shall be two SPDT (Form C) contacts factory adjusted to operate at 28 to 55 kPa 4 to 8 psi. The switch shall be capable of being mounted in any position in the alarm line trim piping of the alarm check valve.

2.8.3 Valve Supervisory (Tamper) Switch

Switch shall be suitable for mounting to the type of control valve to be supervised open. The switch shall be tamper resistant and contain one set of SPDT (Form C) contacts arranged to transfer upon removal of the housing cover or closure of the valve of more than two rotations of the valve stem.

2.9 FIRE DEPARTMENT CONNECTION

**
NOTE: The designer will coordinate the desired location of the fire department connection with and verify the type of threads used by the fire department serving the building where the sprinkler system is being installed.
**

Fire department connection shall be [projecting] [flush] type with cast brass body, matching wall escutcheon lettered "Auto Spkr" with a [polished brass] [chromium plated] finish. The connection shall have two inlets with individual self-closing clappers, caps with drip drains and chains. Female inlets shall have 65 mm 2-1/2 inch diameter American National Fire Hose Connection Screw Threads (NH) per [NFPA 1963] [______].

2.10 SPRINKLERS

**
NOTE: The designer will indicate on the contract drawings the type of sprinkler heads for each area if more than one type of sprinklers is to be provided. Delete sprinkler types from this paragraph that are not intended for use in the system(s) used in the contract.

Areas that are classified as light hazard will be equipped with quick response sprinklers. Residential areas will be equipped with residential sprinklers.

**

Sprinklers with internal O-rings shall not be used. Sprinklers shall be
used in accordance with their listed coverage limitations. Temperature
classification shall be [ordinary] [intermediate] [_____] [as indicated].
Sprinklers in high heat areas including attic spaces or in close proximity
to unit heaters shall have temperature classification in accordance with
NFPA 13. Extended coverage sprinklers shall not be used.

2.10.1 Concealed Sprinkler

Concealed sprinkler shall be [chrome-plated] [stainless steel] [white
polyester] [quick-response type] [_____] and shall have a nominal 13 mm
1/2 inch or 13.5 mm 17/32 inch orifice.

2.10.2 Recessed Sprinkler

Recessed sprinkler shall be [chrome-plated] [stainless steel] [white
polyester] [quick-response type] [_____] and shall have a nominal 13 mm
1/2 inch or 13.5 mm 17/32 inch orifice.

2.10.3 Flush Sprinkler

Flush sprinkler shall be [chrome-plated] [stainless steel] [white
polyester] [quick-response type] [_____] and shall have a nominal 13 mm
1/2 inch or 13.5 mm 17/32 inch orifice.

2.10.4 Pendent Sprinkler

Pendent sprinkler shall be of the fusible strut or glass bulb type,
[recessed] [quick-response] type with nominal 13 mm 1/2 inch [or 13.5 mm
17/32 inch] orifice. Pendent sprinklers shall have a [polished chrome]
[stainless steel] [white polyester] [_____] finish.

2.10.5 Upright Sprinkler

Upright sprinkler shall be [brass] [chrome-plated] [stainless steel]
[white polyester] [quick-response type] [_____] and shall have a nominal
13 mm 1/2 inch or 13.5 mm 17/32 inch orifice.

2.10.6 Sidewall Sprinkler

Sidewall sprinkler shall have a nominal 13 mm 1/2 inch orifice. Sidewall
sprinkler shall have a [brass] [polished chrome] [stainless steel] [white
polyester] [_____] finish. Sidewall sprinkler shall be the quick-response
type.

2.10.7 Residential Sprinkler

Residential sprinkler shall be the [pendent] [and] [sidewall] type with
nominal 13 mm 1/2 inch orifice. Residential sprinkler shall have a
[polished chrome] [white polyester] [_____] finish.

2.10.8 Intermediate Level Rack Sprinkler

Intermediate level rack sprinkler shall be of the upright or pendent type
with nominal 13 mm 1/2 inch orifice and minimum "K" factor of 5.5. The
sprinkler shall be equipped with a deflector plate to shield the fusible
element from water discharged above it.
2.10.9 Corrosion Resistant Sprinkler

**
NOTE: The use of corrosion resistant sprinklers is generally limited to industrial type occupancies such as those involving electroplating, steam rooms, salt storage, and piers and wharves.
**

Corrosion resistant sprinkler shall be the [upright] [pendent] type installed in locations as indicated. Corrosion resistant coatings shall be factory-applied by the sprinkler manufacturer.

2.10.10 Dry Sprinkler Assembly

Dry sprinkler assembly shall be of the [pendent,] [upright,] [sidewall,] [45-degree] type as indicated. Assembly shall include an integral escutcheon. Maximum length shall not exceed maximum indicated in UL Fire Prot Dir. Sprinklers shall have a [polished chrome] [polyester coating] [or] [white enamel] finish.

2.11 ACCESSORIES

2.11.1 Sprinkler Cabinet

Spare sprinklers shall be provided in accordance with NFPA 13 and shall be packed in a suitable metal or plastic cabinet. Spare sprinklers shall be representative of, and in proportion to, the number of each type and temperature rating of the sprinklers installed. At least one wrench of each type required shall be provided.

2.11.2 Pendent Sprinkler Escutcheon

Escutcheon shall be one-piece metallic type with a depth of less than 19 mm 3/4 inch and suitable for installation on pendent sprinklers. The escutcheon shall have a factory finish that matches the pendent sprinkler heads.

2.11.3 Pipe Escutcheon

Escutcheon shall be polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or set screw.

2.11.4 Sprinkler Guard

Guard shall be a steel wire cage designed to encase the sprinkler and protect it from mechanical damage. Guards shall be provided on sprinklers located [_____] [as indicated].

2.11.5 Identification Sign

Valve identification sign shall be minimum 150 mm wide by 50 mm high 6 inches wide by 2 inches high with enamel baked finish on minimum 1.214 mm 18 gauge steel or 0.6 mm 0.024 inch aluminum with red letters on a white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "inspector's test," "alarm test," "alarm line," and similar wording as required to identify operational components.
2.12 FIRE HOSE REEL ASSEMBLY

Assembly shall include nozzle, fire hose, reel, 40 mm 1-1/2 inch valve, and bracket suitable for wall mounting. The assembly shall be semi-automatic type complete with Underwriters clip which permits controlled one-man operation whereby control valve can be opened, hose unreeled and clip released by pulling on hose. Valve shall be non-rising stem, all bronze, angle type with 40 mm 1-1/2 inch American National Standard Fire Hose Screw Thread (NH) male outlet in accordance with NFPA 1963. Reel shall be of steel construction with red enamel finish and shall be equipped with 30 m 100 feet of 40 mm 1-1/2 inch rubber lined fire hose. Nozzle shall be of the industrial combination fog-straight stream type with shutoff. Components of the assembly shall be listed in UL Fire Prot Dir.

2.13 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY

**
NOTE: Indicate piping, type of connection and equipment, such as a test header with hose valves, required for flow testing of the backflow preventer at full system demand as required by NFPA 13. Arrangement of test assembly should be coordinated with the installation.
**

Double-check backflow prevention assembly shall comply with ASSE 1015. The assembly shall have a bronze, cast-iron or stainless steel body with flanged ends. The assembly shall include pressure gauge test ports and OS&Y shutoff valves on the inlet and outlet, 2-positive-seating check valve for continuous pressure application, and four test cocks. Assemblies shall be rated for working pressure of [1034] [1207] [_____] kPa [150] [175] [_____] psi. The maximum pressure loss shall be 40 kPa 6 psi at a flow rate equal to the sprinkler water demand, at the location of the assembly. A test port for a pressure gauge shall be provided both upstream and downstream of the double check backflow prevention assembly valves.

PART 3 EXECUTION

3.1 FIELD MEASUREMENTS

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION REQUIREMENTS

The installation shall be in accordance with the applicable provisions of NFPA 13, NFPA 24 and publications referenced therein. Installation of in-rack sprinklers shall comply with applicable provisions of NFPA 13.

3.3 INSPECTION BY FIRE PROTECTION SPECIALIST

Prior to ceiling installation and concurrent with the Final Acceptance Test Report, certification by the Fire Protection Specialist that the sprinkler system is installed in accordance with the contract requirements, including signed approval of the Preliminary and Final
Acceptance Test Reports. The Fire Protection Specialist shall: 1) inspect the sprinkler system periodically during the installation to assure that the sprinkler system is being provided and installed in accordance with the contract requirements, 2) witness the preliminary and final tests, and sign the test results, 3) after completion of the system inspections and a successful final test, certify in writing that the system has been installed in accordance with the contract requirements. Any discrepancy shall be brought to the attention of the Contracting Officer in writing, no later than three working days after the discrepancy is discovered.

3.4 ABOVEGROUND PIPING INSTALLATION

3.4.1 Protection of Piping Against Earthquake Damage

Seismically protect the system piping against damage from earthquakes. This requirement is not subject to determination under NFPA 13. Install the seismic protection of the system piping in accordance with UFC 3-301-01, NFPA 13 and Annex A. Include the required features identified therein that are applicable to the specific piping system.

3.4.2 Piping in Exposed Areas

Install exposed piping without diminishing exit access widths, corridors or equipment access. Exposed horizontal piping, including drain piping, shall be installed to provide maximum headroom.

3.4.3 Piping in Finished Areas

In areas with suspended or dropped ceilings and in areas with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed.

3.4.4 Pendent Sprinklers

Drop nipples to pendent sprinklers shall consist of minimum 25 mm 1 inch pipe with a reducing coupling into which the sprinkler shall be threaded. Hangers shall be provided on arm-overs to drop nipples supplying pendent sprinklers when the arm-over exceeds 300 mm 12 inches for steel pipe or 150 mm 6 inches for copper tubing. Where sprinklers are installed below suspended or dropped ceilings, drop nipples shall be cut such that sprinkler ceiling plates or escutcheons are of a uniform depth throughout the finished space. The outlet of the reducing coupling shall not extend more than 25 mm 1 inch below the underside of the ceiling. On pendent sprinklers installed below suspended or dropped ceilings, the distance from the sprinkler deflector to the underside of the ceiling shall not exceed 100 mm 4 inches. Recessed pendent sprinklers shall be installed such that the distance from the sprinkler deflector to the underside of the ceiling shall not exceed the manufacturer's listed range and shall be of uniform depth throughout the finished area. Pendent sprinklers in suspended ceilings shall be a minimum of 150 mm 6 inches from ceiling grid.

3.4.5 Upright Sprinklers

Riser nipples or "sprigs" to upright sprinklers shall contain no fittings between the branch line tee and the reducing coupling at the sprinkler. Riser nipples exceeding 750 mm 30 inches in length shall be individually supported.
3.4.6 Pipe Joints

Pipe joints shall conform to NFPA 13, except as modified herein. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe material, wall thickness and size. Grooved couplings, fittings and grooving tools shall be products of the same manufacturer. For copper tubing, pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, narrow-land micrometer, or other method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations, such as behind solid walls or ceilings, unless an access panel is shown on the drawings for servicing or adjusting the joint.

3.4.7 Reducers

Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved-end or rubber-gasketed reducing couplings will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 13 mm 1/2 inch.

3.4.8 Pipe Penetrations

Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes penetrate fire walls, fire partitions, or floors, pipes shall be fire stopped in accordance with Section 07 84 00 FIRESTOPPING. In penetrations that are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement that will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal.

3.4.9 Escutcheons

Escutcheons shall be provided for pipe penetration of ceilings and walls. Escutcheons shall be securely fastened to the pipe at surfaces through which piping passes.
3.4.10 Inspector's Test Connection

**
NOTE: Designer will indicate location of the inspector's test connections and all associated valves on the contract drawings, and will provide details of drain piping, if drain piping is needed.
**

Unless otherwise indicated, test connection shall consist of 25 mm 1 inch pipe connected [to the remote branch line] [at the riser as a combination test and drain valve]; a test valve located approximately 2 m 7 feet above the floor; a smooth bore brass outlet equivalent to the smallest orifice sprinkler used in the system; and a painted metal identification sign affixed to the valve with the words "Inspector's Test." The discharge orifice shall be located outside the building wall directed so as not to cause damage to adjacent construction or landscaping during full flow discharge.

3.4.11 Drains

Main drain piping shall be provided to discharge [at a safe point outside the building] [at the location indicated]. Auxiliary drains shall be provided as required by NFPA 13.

3.4.12 Installation of Fire Department Connection

Connection shall be mounted [on the exterior wall approximately 900 mm 3 feet above finished grade] [adjacent to and on the sprinkler system side of the backflow preventer]. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 and arranged to drain to the outside.

3.4.13 Identification Signs

Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate or as required by NFPA 13. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser as specified in NFPA 13.

3.5 UNDERGROUND PIPING INSTALLATION

**
NOTE: Restraint of the underground piping must be detailed on the contract drawings.
**

The fire protection water main shall be laid, and joints anchored, in accordance with NFPA 24. Minimum depth of cover shall be [900] [_____] mm [3] [_____] feet. The supply line shall terminate inside the building with a flanged piece, the bottom of which shall be set not less than 150 mm 6 inches above the finished floor. A blind flange shall be installed temporarily on top of the flanged piece to prevent the entrance of foreign matter into the supply line. A concrete thrust block shall be provided at the elbow where the pipe turns up toward the floor. In addition, joints shall be anchored in accordance with NFPA 24 using pipe clamps and steel rods from the elbow to the flange above the floor and from the elbow to a pipe clamp in the horizontal run of pipe. Buried steel components shall be provided with a corrosion protective coating in accordance with
AWWA C203. Piping more than 1500 mm 5 feet outside the building walls shall meet the requirements of Section 33 11 00 WATER UTILITY DISTRIBUTION PIPING.

3.6 ELECTRICAL WORK

**
NOTE: Coordinate power and alarm requirements with the contract drawings and other specification sections.
**

Except as modified herein, electric equipment and wiring shall be in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. [Alarm signal wiring connected to the building fire alarm control system shall be in accordance with [Section 28 31 00.00 10 FIRE DETECTION AND ALARM SYSTEM, DIRECT CURRENT LOOP] [and] [Section 28 31 64.00 10 FIRE DETECTION AND ALARM SYSTEM, ADDRESSABLE.]] [All wiring for supervisory and alarm circuits shall be [#14] [#16] AWG solid copper installed in metallic tubing or conduit.] Wiring color code shall remain uniform throughout the system.

3.7 PIPE COLOR CODE MARKING

**
NOTE: Designer will coordinate color code marking with Section 09 90 00 PAINTS AND COATINGS. Color code marking for piping which are not listed in Table I of Section 09 90 00 will be added to the table.
**

Color code mark piping as specified in Section 09 90 00 PAINTS AND COATINGS.

3.8 PRELIMINARY TESTS

The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. Submit proposed procedures for Preliminary Tests, no later than [14] [_____] days prior to the proposed start of the tests and proposed date and time to begin the preliminary tests. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Upon completion of specified tests, submit [3] [_____] copies of the completed Preliminary Test Report, no later than [7] [_____] days after the completion of the Tests. The Report shall include both the Contractor's Material and Test Certificate for Underground Piping and the Contractor's Material and Test Certificate for Aboveground Piping. All items in the Preliminary Tests Report shall be signed by the Fire Protection Specialist.

3.8.1 Underground Piping

3.8.1.1 Flushing

Underground piping shall be flushed in accordance with NFPA 24. This includes the requirement to flush the lead-in connection to the fire protection system at a flow rate not less that the calculated maximum
3.8.1.2 Hydrostatic Testing

New underground piping shall be hydrostatically tested in accordance with NFPA 24. The allowable leakage shall be measured at the specified test pressure by pumping from a calibrated container. The amount of leakage at the joints shall not exceed 1.89 L (2 quarts) per hour per 100 gaskets or joints, regardless of pipe diameter.

3.8.2 Aboveground Piping

3.8.2.1 Hydrostatic Testing

Aboveground piping shall be hydrostatically tested in accordance with NFPA 13 at not less than 1400 kPa (200 psi) or 350 kPa (50 psi) in excess of maximum system operating pressure and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall be read from a gauge located at the low elevation point of the system or portion being tested.

3.8.2.2 Backflow Prevention Assembly Forward Flow Test

Each backflow prevention assembly shall be tested at system flow demand, including all applicable hose streams, as specified in NFPA 13. Provide all equipment and instruments necessary to conduct a complete forward flow test, including 65 mm (2.5 inch) diameter hoses, playpipe nozzles, calibrated pressure gauges, pitot tube gauge, plus all necessary supports to safely secure hoses and nozzles during the test. At the system demand flow, the pressure readings and pressure drop (friction) across the assembly shall be recorded. Provide a metal placard on the backflow prevention assembly that lists the pressure readings both upstream and downstream of the assembly, total pressure drop, and the system test flow rate. The pressure drop shall be compared to the manufacturer's data.

3.8.3 Testing of Alarm Devices

Each alarm switch shall be tested by flowing water through the inspector's test connection. Each water-operated alarm devices shall be tested to verify proper operation.

3.8.4 Main Drain Flow Test

Following flushing of the underground piping, a main drain test shall be made to verify the adequacy of the water supply. Static and residual pressures shall be recorded on the certificate specified in paragraph SUBMITTALS. In addition, a main drain test shall be conducted each time after a main control valve is shut and opened.

3.9 FINAL ACCEPTANCE TEST

Begin the Final Acceptance Test only when the Preliminary Test Report has been approved. Submit proposed procedures for Final Acceptance Test, no later than [14] [_____] days prior to the proposed start of the tests, and proposed date and time to begin the Test, submitted with the procedures. Notification shall be provided at least [14] [_____] days prior to the proposed start of the test. Notification shall include a copy of the Contractor's Material & Test Certificates. The Fire Protection Specialist
shall conduct the Final Acceptance Test and shall provide a complete
demonstration of the operation of the system. This shall include
operation of control valves and flowing of inspector's test connections to
verify operation of associated waterflow alarm switches. After operation
of control valves has been completed, the main drain test shall be
repeated to assure that control valves are in the open position. Submit
as-built shop drawings, at least [14] [_____] days after completion of the
Final Tests, updated to reflect as-built conditions after all related work
is completed. Drawings shall be on reproducible full-size mylar film. In
addition, the representative shall have available copies of as-built
drawings and certificates of tests previously conducted. The installation
shall not be considered accepted until identified discrepancies have been
corrected and test documentation is properly completed and received.
Submit [3] [_____] copies of the completed Final Acceptance Test Report
no later than [7] [_____] days after the completion of the Final Acceptance
Tests. All items in the Final Acceptance Report shall be signed by the
Fire Protection Specialist as specified.

3.10 ONSITE TRAINING

**
NOTE: The number of hours of instruction should be
determined based on the number and complexity of the
systems specified.
**

The Fire Protection Specialist shall conduct a training course for
operating and maintenance personnel as designated by the Contracting
Officer. Submit proposed schedule, at least 14 [_____] days prior to the
start of related training. Training shall be provided for a period of
[_____] hours of normal working time and shall start after the system is
functionally complete and after the Final Acceptance Test. Submit [6]
[_____] Operating and Maintenance Manuals listing step-by-step procedures
required for system startup, operation, shutdown, and routine maintenance,
at least 14 days [_____] prior to field training. The manuals shall
include the manufacturer's name, model number, parts list, list of parts
and tools that should be kept in stock by the owner for routine
maintenance including the name of a local supplier, simplified wiring and
controls diagrams, troubleshooting guide, and recommended service
organization (including address and telephone number) for each item of
equipment. [Each service organization submitted shall be capable of
providing [4] [_____] hour on-site response to a service call on an
emergency basis.] The Onsite Training shall cover all of the items
contained in the approved manuals.

-- End of Section --