UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2022

SECTION TABLE OF CONTENTS

DIVISION 09 – FINISHES

SECTION 09 97 13.15

LOW VOC POLYSULFIDE INTERIOR COATING OF WELDED STEEL PETROLEUM FUEL TANKS

02/15, CHG 2: 08/17

PART 1 GENERAL

1.1 REFERENCES
1.2 DEFINITIONS
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
 1.4.1 Contract Errors, Omissions, and Other Discrepancies
 1.4.2 Corrective Action (CA)
 1.4.2.1 Corrective Action Procedures
 1.4.2.2 Implement Corrective Action
 1.4.3 Coating Work Plan
 1.4.4 Design Data
 1.4.4.1 Environmental Control System
 1.4.4.2 Use of Door Sheet Access Way
 1.4.5 Test Reports
 1.4.5.1 Coatings Qualification Inspection Reports
 1.4.5.2 Metallic Abrasive Qualification Test Reports
 1.4.5.3 Recycled Metallic Abrasive Field Test Reports (Daily and Weekly)
 1.4.5.4 Non-metallic Abrasive Qualification Test Reports
 1.4.6 Qualifications
 1.4.6.1 Qualifications of Certified Industrial Hygienist (CIH)
 1.4.6.2 Qualifications of Certified Protective Coatings Specialist (PCS)
 1.4.6.3 Qualifications of Coating Inspection Company
 1.4.6.4 Qualifications of QC Specialist Coating Inspector
 1.4.6.5 Qualifications of Individuals Performing Abrasive Blasting
 1.4.6.6 Qualifications of Individuals Applying Coatings
 1.4.6.7 Qualifications of Individuals Operating Plural Component Equipment
 1.4.6.8 Qualifications of Testing Laboratory for Coatings
 1.4.6.9 Qualifications of Testing Laboratory for Abrasive
 1.4.6.10 Qualifications of Coating Contractors
 1.4.6.11 Roof Joint Sealant Materials
1.4.6.12 Roof Joint Sealant Compatibility
1.4.6.13 Coating Materials
1.4.6.14 Non-metallic Abrasive
1.4.6.15 Metallic Abrasive
1.4.7 Protective Coating Specialist (PCS)
1.4.8 Pre-Application Meeting
1.5 PRODUCT DATA
1.5.1 Roof Joint Sealant Instructions
1.5.2 Coating System Instructions
1.6 DELIVERY AND STORAGE
1.7 COATING HAZARDS
1.8 WORK SEQUENCE
1.9 JOB SITE REFERENCES

PART 2 PRODUCTS
2.1 ROOF JOINT SEALANT
2.2 COATING SYSTEM
2.2.1 Coating Materials
2.3 COATING SAMPLE COLLECTION AND SHIPPING KIT
2.4 ABRASIVE SAMPLE COLLECTION AND SHIPPING KIT
2.5 TEST KITS
2.5.1 Test Kit for Measuring Chloride, Sulfate and Nitrate Ions on Steel and Coated Surfaces
2.5.2 Test Kit for Measuring Chlorides in Abrasives
2.5.3 Test Kit for Identifying Amine Blush on Epoxy Surfaces
2.6 ABRASIVE
2.6.1 Non-metallic Abrasive
2.6.2 Metallic Abrasive
2.6.2.1 New and Remanufactured Steel Grit
2.6.2.2 Recycled Steel Grit

PART 3 EXECUTION
3.1 REMOVAL OF COATINGS CONTAINING HAZARDOUS MATERIALS
3.2 DOOR SHEET ACCESS WAY
3.3 COATING AND ABRASIVE SAMPLE COLLECTION AND TESTING
3.3.1 Coating Sample Collection
3.3.2 Abrasive Sample Collection
3.3.3 Coating Sample Test Reports
3.3.4 Abrasive Sample Test Reports
3.4 FUEL REMOVAL AND TANK CLEANING
3.5 LIGHTING
3.6 ENVIRONMENTAL CONDITIONS
3.6.1 Tank Containment
3.6.2 Control System Requirements
3.6.3 Automated Monitoring Requirements
3.6.4 Humidity Control for Surface Preparation and First Coat Application
3.6.5 Humidity Control for Application of Finish Coat and Initial Curing
3.7 EQUIPMENT USED IN TANK
3.8 SURFACES TO BE COATED
3.9 SURFACE PREPARATION
3.9.1 Abrasive Blasting Equipment
3.9.2 Operational Evaluation of Abrasive
3.9.3 Surface Standard
3.9.4 Pre-Preparation Testing for Surface Contamination
3.9.4.1 Pre-Preparation Testing for Oil and Grease Contamination

SECTION 09 97 13.15 Page 2
SECTION 09 97 13.15

LOW VOC POLYSULFIDE INTERIOR COATING OF WELDED STEEL PETROLEUM FUEL TANKS
02/15, CHG 2: 08/17

NOTE: This guide specification covers the requirements for a Low VOC (< 50 grams/liter) two-coat polysulfide modified novolac epoxy - PMNE coating systems for interiors of newly constructed, Navy bulk fuel storage tanks. For maintenance coating design, see notes herein. Severe corrosion and corrosion pitting is not addressed in this specification.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: Updates to this guide specification should be edited or reviewed by an SSPC certified Protective Coatings Specialist (PCS) that has five or more years of experience preparing coating guide specifications.
The designer must not alter the products or processes specified herein without thorough knowledge of the need for the changes and the implications of those changes. Use of alternate coating systems must be justified by evaluating lifecycle costs using 50 year life as a baseline.

**

NOTE: The metric standard for measuring coating thickness is microns (25.4 microns = 1 mil - use nominal 25 microns = 1 mil).

**

**

NOTE: This specification is for a 2 Coat Field Applied system. Applied coating system is compliant with EPA VOC regulations.

All coatings comply with 50 g/l .42 lbs./gal. max.VOC.

The designer must review state and local regulations and determine whether the coating in this Section complies with restrictions on volatile organic compounds (VOC) and other chemical constituents.

**

NOTE: Previous versions of this specification have included a requirement for surfaces to be abrasive blasted to SSPC 7/NACE No.4, inspected, and repaired, prior to coating. That requirement has been removed from this specification, and if required for a repair project, it should be included in the structural repair Section of the project specification. Tailor the paragraph to the needs of cleaning that will be required in preparation for repairs, and note that the abrasive blasting for inspection should be accomplished in such a manner that it does not conflict with any surface condition requirements in this Section, such as creating excessive surface profile that may require excessive thickness of the first coat. For repair projects, specify appropriate portions of the steel surfacing requirements (according to NACE SP0178) from Section 33 56 21.17 SINGLE WALL ABOVE GROUND FIXED ROOF STEEL POL STORAGE TANK.

**

**

NOTE: This guide specification is intended for coating of new structures and coating of existing structures where all existing coating material is being removed to bare metal.

Designs for maintenance painting of fuel tank linings should be based on recent inspections. To
develop a complete design, a coating inspection, or Coating Condition Survey (CCS), as described in Section 09 97 13.27 HIGH PERFORMANCE COATING FOR STEEL STRUCTURES, should be accomplished prior to designing a coating project for fuel tank interiors. Without a competent inspection, there is no reliable way to determine the type or condition of the existing coating system. Without knowing the existing conditions, proper (effective and financially supportable) surface preparation or coating system selection cannot be made. It is not always cost effective to replace the entire coating system in a fuel tank, however, this is the tendency in preparing a design without inspection results.

Do not provide general overcoat to a fuel tank lining unless recommended in a CCS to add corrosion protection. Provide complete removal and replacement, or repairs to existing, as deemed appropriate by the CCS. Overcoating the interior of a tank is generally a liability unless extraordinary measures are taken to ensure adhesion to the old coating, regardless of whether it is epoxy or urethane.

**
**
NOTE: Designers are encouraged to contact the NAVFAC Paints & Coatings at NAVFACEXWC Code CI9, 805-982-1057, prior to beginning a new Navy design.
**

PART 1 GENERAL

1.1 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by
the basic designation only.

AMERICAN PETROLEUM INSTITUTE (API)

API Std 650
(2013; Errata 1 2013; Addendum 1 2014; Errata 2 2014; Addendum 2 2016; Addendum 3 2018) Welded Tanks for Oil Storage

API Std 653
(2014; Addendum 1 2018) Tank Inspection, Repair, Alteration, and Reconstruction

ASTM INTERNATIONAL (ASTM)

ASTM D56
(2016a) Standard Test Method for Flash Point by Tag Closed Cup Tester

ASTM D93

ASTM D185

ASTM D476
(2015) Dry Pigmentary Titanium Dioxide Pigments

ASTM D523

ASTM D714

ASTM D1141
(1998; R 2013) Standard Practice for the Preparation of Substitute Ocean Water

ASTM D1210
(2005; R 2014) Fineness of Dispersion of Pigment-Vehicle Systems by Hegman-Type Gage

ASTM D1475

ASTM D1640
(2003; R 2009) Drying, Curing, or Film Formation of Organic Coatings at Room Temperature

ASTM D2196

ASTM D2240

ASTM D2369
(2010; R 2015; E 2015) Volatile Content of Coatings

ASTM D2370

ASTM D3278 (1996; R 2011) Flash Point of Liquids by Small Scale Closed-Cup Apparatus

ASTM D3335 (1985a; R 2020) Low Concentrations of Lead, Cadmium, and Cobalt in Paint by Atomic Absorption Spectroscopy

ASTM D3718 (1985a; R 2015) Low Concentrations of Chromium in Paint by Atomic Absorption Spectroscopy

ASTM D3925 (2002; R 2015) Sampling Liquid Paints and Related Pigmented Coatings

ASTM D3960 (2005; R 2013) Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings

ASTM D4285 (1983; R 2018) Indicating Oil or Water in Compressed Air

ASTM D4400 (1999; E 2012; R 2012) Sag Resistance of Paints Using a Multinotch Applicator

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

NACE INTERNATIONAL (NACE)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACE SP0188</td>
<td>(1999; R 2006) Discontinuity (Holiday) Testing of New Protective Coatings on Conductive Substrates</td>
</tr>
</tbody>
</table>

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPC 7/NACE No.4</td>
<td>(2007) Brush-Off Blast Cleaning</td>
</tr>
<tr>
<td>SSPC AB 1</td>
<td>(2015; E 2017) Mineral and Slag Abrasives</td>
</tr>
<tr>
<td>SSPC AB 2</td>
<td>(2015; E 2016) Cleanliness of Recycled Ferrous Metallic Abrasive</td>
</tr>
<tr>
<td>SSPC AB 3</td>
<td>(2003; E 2004) Ferrous Metallic Abrasive</td>
</tr>
<tr>
<td>SSPC PA 1</td>
<td>(2016) Shop, Field, and Maintenance Coating of Metals</td>
</tr>
<tr>
<td>SSPC PA 2</td>
<td>(2015; E 2018) Procedure for Determining Conformance to Dry Coating Thickness Requirements</td>
</tr>
<tr>
<td>SSPC PA 17</td>
<td>(2012; E 2012) Procedure for Determining Conformance to Steel Profile/Surface Roughness/Peak Count Requirements</td>
</tr>
<tr>
<td>SSPC QP 1</td>
<td>(2019) Standard Procedure for Evaluating the Qualifications of Industrial/Marine Painting Contractors (Field Application to Complex Industrial Steel Structures and Other Metal Components)</td>
</tr>
<tr>
<td>SSPC SP 1</td>
<td>(2015) Solvent Cleaning</td>
</tr>
<tr>
<td>SSPC SP 10/NACE No. 2</td>
<td>(2007) Near-White Blast Cleaning</td>
</tr>
<tr>
<td>SSPC SP COM</td>
<td>(2016; E 2017) Surface Preparation</td>
</tr>
</tbody>
</table>
1.2 DEFINITIONS

Definitions are provided throughout this Section, generally in the paragraph where used, and denoted by capital letters. The following definitions are used throughout this Section:

a. CEILING - interior tank surfaces that extend from the horizontal plane at the designated maximum fuel line upward, including the upper portion of the tank shell (walls), columns, structural steel, the underside of the roof plates and other steel components in this area.

b. SHELL - interior tank surfaces that extend along the vertical tank walls between the horizontal planes approximately 1 meter 40 inches above the shell to bottom joint upward to the horizontal plane at the designated fuel line, including columns, wall plates, and other steel components in this area.

c. FLOOR - interior tank surfaces below the horizontal plane approximately 1 meter 40 inches above the shell to bottom joint, including columns, wall plates, piping, pipe supports, bottom plates, and other steel components in this area.

1.3 SUBMITTALS

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list, and corresponding submittal items in the text, to reflect only the submittals required for the project. The Guide Specification technical editors have classified those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item if the submittal is sufficiently important or complex in context of the project.

SECTION 09 97 13.15 Page 10
For Army projects, fill in the empty brackets following the "G" classification, with a code of up to three characters to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" classification indicates submittals required as proof of compliance for sustainability Guiding Principles Validation or Third Party Certification and as described in Section 01 33 00 SUBMITTAL PROCEDURES.

Choose the first bracketed item for Navy, Air Force, and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" or "S" classification. Submittals not having a "G" or "S" classification are [for Contractor Quality Control approval.][for information only. When used, a code following the "G" classification identifies the office that will review the submittal for the Government.] Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-05, Design Data

Environmental Control System

Use of Door Sheet Access Way; G[, [____]]

SD-06 Test Reports

Coatings Qualification Inspection Reports

Non-metallic Abrasive Qualification Test Reports; G[, [____]]

Metallic Abrasive Qualification Test Reports

Coating Sample Test Reports

Abrasive Sample Test Reports

Inspection Report Forms

Daily Inspection Reports

Recycled Metallic Abrasive Field Test Reports (Daily and Weekly)

SD-07 Certificates

Contract Errors, Omissions, and Other Discrepancies

SECTION 09 97 13.15 Page 11
Corrective Action Procedures
Implement Corrective Action
Coating Work Plan
Coating Materials
Non-metallic Abrasive
Metallic Abrasive
Qualifications of Certified Industrial Hygienist (CIH)
Qualifications of Individuals Performing Abrasive Blasting
Qualifications of Individuals Applying Coatings
Qualifications of Individuals Operating Plural Component Equipment
Qualifications of Certified Protective Coatings Specialist (PCS)
Qualifications of Coating Inspection Company
Qualifications of QC Specialist Coating Inspector
Qualifications of Testing Laboratory for Coatings
Qualifications of Testing Laboratory for Abrasive
Qualifications of Coating Contractors
Roof Joint Sealant Materials
Roof Joint Sealant Compatibility
Protective Coating Specialist (PCS)
Pre-Application Meeting
SD-08 Manufacturer's Instructions
Roof Joint Sealant Instructions
Coating System Instructions
SD-11 Closeout Submittals
Disposal of Used Abrasive; G[, [____]]
Inspection Logbook; G[, [____]]

1.4 QUALITY ASSURANCE

1.4.1 Contract Errors, Omissions, and Other Discrepancies

Submit all errors, omissions, and other discrepancies in contract documents to the Contracting Officer within 30 days of contract award for all work covered in this Section, other than the work that will not be
uncovered until a later date. All such discrepancies must be addressed and resolved, and the Coating Work Plan modified, prior to beginning the Initial and Follow-Up phases of work. Discrepancies that become apparent only after work is uncovered must be identified at the earliest discoverable time and submitted for resolution. Schedule time (Float) should be built into the project schedule at those points where old work is to be uncovered or where access is not available during the first 30 days after award, to allow for resolution of contract discrepancies.

1.4.2 Corrective Action (CA)

CA must be included in the Quality Control Plan.

1.4.2.1 Corrective Action Procedures

Develop procedures for determining the root cause of each non-compliance, developing a plan to eliminate the root cause so that the non-compliance does not recur, and following up to ensure that the root cause was eliminated. Develop Corrective Action Request (CAR) forms for initiating CA, and for tracking and documenting each step.

1.4.2.2 Implement Corrective Action

The Contractor must take action to identify and eliminate the root cause of each non-compliance so as to prevent recurrence. These procedures must apply to non-compliance in the work, and to non-compliance in the QC System. Corrective actions must be appropriate to the effects of the non-compliance encountered. Each CAR must be serialized, tracked in a Log to completion and acceptance by the Contracting Officer, and retained in project records. The Corrective Action Log, showing status of each CAR, must be submitted to the Contracting Officer monthly. A CAR may be initiated by either the Contractor or the Contracting Officer. The Contracting Officer must approve each CAR at the root cause identification stage, the plan for elimination stage, and the close out stage after verification that the root cause has been eliminated.

1.4.3 Coating Work Plan

**

NOTE: For maintenance painting, add requirement for pre-work determination of the existing surface profile. If paint removal is specified in another Section, such as a blast cleaning prior to inspection or repair, or in the lead removal Section, include this evaluation of existing profile such that the paint removal operation does not create excessive profile.

**

**

NOTE: Choose the options pertaining to the floating pan that apply to the project. The pan should be removed for any significant coating work on the SHELL and CEILING, and for all but minor repairs on the FLOOR.

**

a. This work plan must be considered as part of the Quality Control Plan.
b. Provide procedures for reviewing contract documents immediately after award to identify errors, omissions, and discrepancies so that any such issues can be resolved prior to project planning and development of detailed procedures.

c. Provide procedures for verification of key processes during Initial Phase to ensure that contract requirements can be met. Key processes must include surface preparation, coating application and curing, inspection, and documentation, and any other process that might adversely impact orderly progression of work.

d. Provide procedures for all phases of coating operations, including planned work, rework, repair, inspection, and documentation. Address mobilization and setup, surface preparation, coating application, coating initial cure, tracking and correction of non-compliant work, and demobilization. Coordinate work processes with health and safety plans and confined space entry plans. For each process, provide procedures that include appropriate work instructions, material and equipment requirements, personnel qualifications, controls, and process verification procedures. Provide procedures for inspecting work to verify and document compliance with contract requirements, including inspection forms and checklists, and acceptance and rejection criteria.

e. Provide procedures for determining the existing surface profile under paint, and procedures for ensuring that the profile is not increased beyond the maximum profile specified herein. Provide procedures for removing floating pan and preparing for re-installation. Provide procedures for installing floating pan after tank lining has been applied and cured, how the coated floor and shell surfaces will be protected during pan installation. Describe how the floating pan will be protected, and procedures for evaluating and repairing damage to pan. The floating pan must not be used as staging or as a work platform.[____]

f. Provide procedures for correcting non-compliant work. Detailed procedures are required in advance to avoid delays in meeting overcoat windows as well as to avoid delays in production. Provide procedures for repairing defects in the coating film, such as runs, drips, sags, holidays, overspray, as well as how to correct coating thickness non-compliance, any other areas of repair or rework that might be adversely affected by delays in preparing and approving new procedures.

g. If a procedure is based on a proposed or approved request for deviation, the deviation must be referenced. Changes to procedures must be noted by submittal number and date approved, clearly delineating old requirements and new requirements, so that the records provide a continuous log of requirements and procedures.

1.4.4 Design Data

1.4.4.1 Environmental Control System

Submit design details of the proposed environmental control system to
include ventilation, humidity control, and temperature regulation. Provide calculations for humidity control during separate surface preparation and coating application procedures, ventilation requirements during coating application, and maximum allowable coating application rates to coincide with ventilation. Include basis of design data on local conditions. Provide equipment layout sketches and procedures showing function of each piece of equipment and fail-safe measures. A Certified Industrial Hygienist must approve calculations, work procedures and personal protective equipment.

1.4.4.2 Use of Door Sheet Access Way

If use of a door sheet access way is desired, submit design drawings and calculations that address all aspects of the door sheet opening in accordance with API Std 653 and API Std 650, including cutting of door sheet, tank stabilization, door sheet replacement, weld testing, and final acceptance. A registered engineer must approve all calculations and procedures prior to submittal for government approval.

1.4.5 Test Reports

1.4.5.1 Coatings Qualification Inspection Reports

Submit test results from independent laboratory for material required in paragraph COATING MATERIALS. Samples must have been tested within the last two years. Note that this testing is for the purpose of prequalifying the coating material.

1.4.5.2 Metallic Abrasive Qualification Test Reports

Submit results for abrasive as required in paragraph 4 REQUIREMENTS of SSPC AB 3. Submit test results from independent laboratory of representative samples of each abrasive to be used on the jobsite. Samples must have been tested within the last three years. Note that this testing is for the purpose of prequalifying the abrasive.

1.4.5.3 Recycled Metallic Abrasive Field Test Reports (Daily and Weekly)

Submit test results from independent laboratory of daily and weekly Quality Control testing required by SSPC AB 2, as modified in paragraph ABRASIVE.

1.4.5.4 Non-metallic Abrasive Qualification Test Reports

Submit results for abrasive as required in paragraph 4 REQUIREMENTS of SSPC AB 1. Submit test results from independent laboratory of representative samples of each abrasive to be used on the jobsite. Samples must have been tested within the last three years. Note that this testing is for the purpose of prequalifying the abrasive.

1.4.6 Qualifications

1.4.6.1 Qualifications of Certified Industrial Hygienist (CIH)

Submit name, address, telephone number, FAX number, and e-mail address of the independent third party CIH. Submit documentation that hygienist is certified by the American Board of Industrial Hygiene in comprehensive practice, including certification number and date of certification/recertification. Provide evidence of experience with
hazards involved in industrial coating application work.

1.4.6.2 Qualifications of Certified Protective Coatings Specialist (PCS)

Submit name, address, telephone number, FAX number, and e-mail address of the independent third party PCS. Submit documentation that the specialist is certified by SSPC: The Society for Protective Coatings (SSPC) as a PCS, including certification number and date of certification/recertification. If the PCS is employed by the same coating inspection company to which the coating inspector is employed, this does not violate the independent third-party requirements. The PCS must remain certified during the entire project, and the Contracting Officer must be notified of any change in certification status within 10 days of the change. The PCS must not be the designated coating inspector.

1.4.6.3 Qualifications of Coating Inspection Company

Submit documentation that the coating inspection company performing all coating inspection functions is certified by SSPC to the requirements of SSPC QP 5 prior to contract award. The coating inspection company submitted and approved must remain and not changed through completion of the contract. The coating inspection company must remain so certified for the duration of the coating work. If a coating inspection company's certification expires, the firm will not be allowed to perform any inspection functions, and all surface preparation and coating application work must stop, until the certification is reissued. Requests for extension of time for any delay to the completion of the project due to an inactive certification will not be considered and liquidated damages will apply. Notify the Contracting Officer of any change in coating inspection company certification status. Notify the Contracting Officer of all scheduled and unannounced on site inspections from SSPC and furnish a copy of all inspection reports.

1.4.6.4 Qualifications of QC Specialist Coating Inspector

Submit documentation that each coating inspector is employed, and qualified to SSPC QP 5, Level III, by the selected coating inspection company. Each inspector must remain employed by the coating inspection company while performing any coating inspection functions. In addition to the handwritten records, the inspector must employ the electronic reporting program TruQC or equivalent as outlined in Table III. The Administrator must be the designated Government Representative for the project.

1.4.6.5 Qualifications of Individuals Performing Abrasive Blasting

Submit name, address, and telephone number of each person that will be performing abrasive blasting. Submit documentation that each blaster is qualified by SSPC to the SSPC CAS Coating Application Specialist Level 2 Certification Program (Interim Status). Each blaster must remain certified during the entire period of abrasive blasting, and the Contracting Officer must be notified of any change in qualification status. NOTE: Interim status will be acceptable up to 30 Sep 2017. After 30 Sep 2017 Full Status is required.

1.4.6.6 Qualifications of Individuals Applying Coatings

Submit name, address, and telephone number of each person that will be applying coatings. Submit documentation that each applicator is qualified
by SSPC to the SSPC CAS Coating Application Specialist Level 2 Certification Program (Interim Status). Each applicator must remain certified during the entire period of coating application, and the Contracting Officer must be notified of any change in qualification status. NOTE: Interim status will be acceptable up to 30 Sep 2017. After 30 Sep 2017 Full Status is required.

1.4.6.7 Qualifications of Individuals Operating Plural Component Equipment

Submit name, address, and telephone number of each person that will be operating plural component equipment. Submit documentation that each operator is qualified by SSPC C 14 Marine Plural Component Program (MPCAC-C14). Each operator must remain certified during the entire period of coating application, and the Contracting Officer must be notified of any change in qualification status.

1.4.6.8 Qualifications of Testing Laboratory for Coatings

Submit name, address, telephone number, FAX number, and e-mail address of the independent third party laboratory selected to perform testing of coating samples for compliance with specification requirements. Submit documentation that laboratory is regularly engaged in testing of paint samples for conformance with specifications, and that employees performing testing are qualified.

1.4.6.9 Qualifications of Testing Laboratory for Abrasive

Submit name, address, telephone number, FAX number, and e-mail address of the independent third party laboratory selected to perform testing of abrasive for compliance with specification requirements. Submit documentation that laboratory has experience in testing samples of abrasive for conformance with specifications, and that employees performing testing are qualified.

1.4.6.10 Qualifications of Coating Contractors

**
NOTE: If project involves removal of paint containing hazardous materials, add requirement for SSPC QP-2 certification in section of specification where the hazardous paint removal is specified, generally Section 02 83 00 LEAD REMEDIATION.
**

**
NOTE: Solicitations requiring certification for prequalification should point out the existence and location of the certification requirement on the PROJECT INFORMATION FORM. This requirement must be pointed out in the solicitation documents for the "prior to contract award" requirement to be enforceable. Certification is a special responsibility requirement pursuant to FAR 9.104-2 Special Standards. This is analogous to requiring bidders to have a specified level of experience or expertise and GAO has sustained these types of special requirements.
**
All Contractors and Subcontractors that perform surface preparation or coating application must be certified to **SSPC QP 1** and **SSPC QS 1** prior to contract award, and must remain certified while accomplishing any surface preparation or coating application. The painting Contractors and painting Subcontractors must remain so certified for the duration of the project. If a Contractor's or Subcontractor's certification expires, the firm will not be allowed to perform any work until the certification is reissued. Requests for extension of time for any delay to the completion of the project due to an inactive certification will not be considered and liquidated damages will apply. Notify the Contracting Officer of any change in Contractor certification status. Notify the Contracting Officer of all scheduled and unannounced on site audits from SSPC and furnish a copy of all audit reports.

[For OCONUS, non-US territories where documentation is provided that **SSPC QP 1** and **SSPC QS 1** certified contractors did not bid and are not available, all Contractors and Subcontractors that perform surface preparation or coating application must be certified to **ISO 9001** prior to contract award, and must remain certified while accomplishing any surface preparation or coating application. The painting Contractors and painting Subcontractors must remain so certified for the duration of the project. If a Contractor's or Subcontractor's certification expires, the firm will not be allowed to perform any work until the certification is reissued. Requests for extension of time for any delay to the completion of the project due to an inactive certification will not be considered and liquidated damages will apply. Notify the Contracting Officer of any change in Contractor certification status. Notify the Contracting Officer of all scheduled and unannounced on site inspections from the ISO certifying organization and furnish a copy of all inspection reports.]

1.4.6.11 **Roof Joint Sealant Materials**

Provide manufacturer's certification of conformance to contract requirements.

1.4.6.12 **Roof Joint Sealant Compatibility**

Provide manufacturer's certification that the selected joint sealant is compatible with the coating materials.

1.4.6.13 **Coating Materials**

Provide manufacturer's certification of conformance to contract requirements.

1.4.6.14 **Non-metallic Abrasive**

Provide manufacturer's certification that the materials are currently approved by the Naval Sea Systems Command and listed on the Qualified Products List (QPL) for the specified materials.

1.4.6.15 **Metallic Abrasive**

Provide manufacturer's certification of conformance to contract requirements and provide copies of test results.

1.4.7 **Protective Coating Specialist (PCS)**

The PCS must be considered a QC Specialist and must report to the QC
Manager, as specified in Section 01 45 00.00 10 01 45 00.00 20
01 45 00.00 40 QUALITY CONTROL. The PCS must approve all submittals prior
to submission to the QC Manager for approval or submission to the
government for approval.

1.4.8 Pre-Application Meeting

After approval of submittals but prior to the initiation of coating work, Contractor representatives, including at a minimum, project superintendent and QC manager, paint foreman, coating inspector, and PCS must have a pre-application coating preparatory meeting. This meeting must be in addition to the pre-construction conference. Specific items addressed must include: corrective action requirements and procedures, coating work plan, safety plan, coordination with other Sections, inspection standards, inspection requirements and tools, test procedures, environmental control system, safety plan, and test logs. Notify Contracting Officer at least ten days prior to meeting.

1.5 PRODUCT DATA

1.5.1 Roof Joint Sealant Instructions

Submit manufacturer's printed instructions including detailed mixing and application procedures, minimum and maximum application temperatures, and curing procedures. Include Safety Data Sheets (SDS) for materials to be used at the job site in accordance with 29 CFR 1926.59.

1.5.2 Coating System Instructions

Submit manufacturer's printed instructions including detailed mixing and application procedures, number and types of coats required, minimum and maximum application temperatures, and curing procedures. Include Safety Data Sheets (SDS) for materials to be used at the job site in accordance with 29 CFR 1926.59.

1.6 DELIVERY AND STORAGE

Ship, store, and handle materials in accordance with SSPC PA 1, and as modified in this Section. Maintain temperature in storage spaces between 5 and 29 degrees C 40 and 85 degrees F, and air temperature more than 3 degrees C 5 degrees F above the dew-point at all times. Inspect materials for damage prior to use and return non-compliant materials to manufacturer. Remove materials with expired shelf life from government property immediately and notify the Contracting Officer.

If materials are approaching shelf life expiration and an extension is desired, samples may be sent to the manufacturer, along with complete records of storage conditions, with a request for shelf life extension. If the manufacturer finds the samples and storage data suitable for shelf life extension, the manufacturer may issue an extension, referencing the product evaluation and the review of storage records.

1.7 COATING HAZARDS

**
NOTE: This specification section should be used
with Section 01 35 26 GOVERNMENTAL SAFETY
REQUIREMENTS.
**
Ensure that employees are trained in all aspects of the safety plan. Specified coatings may have potential health hazards if ingested or improperly handled. The coating manufacturer's written safety precautions must be followed throughout mixing, application, and curing of the coatings. During tank cleaning, cleanup, surface preparation, and paint application phases, ensure that employees are protected from toxic and hazardous chemical agents which exceed concentrations in 29 CFR 1910.1000. Comply with respiratory protection requirements in 29 CFR 1910.134. The CIH must approve work procedures and personal protective equipment.

1.8 WORK SEQUENCE

**
NOTE: Modify tank construction specification to indicate that floating pan will be installed over coated floor and that the coating should be fully protected during pan installation with protective mats. Any required repairs should be done according to paragraph PROCEDURE FOR HOLIDAY AND SPOT REPAIRS OF NEWLY APPLIED COATING.
**

[Coat tank interior following tank tightness testing.][Coat tank interior before installation of floating pan.][____].

1.9 JOB SITE REFERENCES

**
NOTE: Include any other job site related references that might be added during design.
**

Make available to the Contracting Officer at least one copy each of API Std 653, ASTM D3276, ASTM D3925, ASTM D4285, NACE SP0178 and companion visual comparator, NACE SP0188, SSPC SP COM, SSPC SP 1, SSPC 7/NACE No.4, SSPC SP 10/NACE No. 2, SSPC PA 1, SSPC PA 2, SSPC PA 17, SSPC Guide 12, SSPC VIS 1, SSPC CAS, SSPC C 14, SSPC QP 1, SSPC QS 1, and an SSPC Certified Contractor Evaluation Form where applicable (ISO 9001 where applicable) at the job site.

PART 2 PRODUCTS

2.1 ROOF JOINT SEALANT

Industrial grade, two component, minimum 95 percent solids by volume, polysulfide type caulking material that has a minimum history of 10 years acceptable service in fuel tanks. Sealant must be compatible with the coating and suitable for direct application to prepared steel surfaces. Sealant must contain no more than 0.06 percent by dry weight Lead, no more than 0.06 percent by dry weight Cadmium, and no more than 0.00 percent by dry weight Chromium.

2.2 COATING SYSTEM

**
NOTE: Include bracketed text for new construction only.
**
Alternate systems or products will not be considered. All coating materials must be supplied by one supplier. [The entire coating system is intended to be applied in the field. Alternatively, surface preparation may be accomplished in the shop, following all temperature, humidity, and testing requirements listed herein, followed by an application of a hold-primer. Upon completion of field fabrication, all shop-applied coatings must be removed, surfaces prepared to SSPC SP 10/NACE No. 2, and the specified coating system applied. Adjust all shop preparation to avoid conflicts with final surface preparation requirements.]

2.2.1 Coating Materials

Modified epoxy novolac polysulfide coating materials complying with Table I and Table II. The first and finish coat materials are identical except that the coats must be in contrasting colors to allow identification. Note that the qualification testing requires immersion testing for six months.

2.3 COATING SAMPLE COLLECTION AND SHIPPING KIT

Provide 2 kits that contains one liter quart can for the base and activator of each SZC material, an appropriately sized can for each activator, dipping cups for each component to be sampled, a shipping box sized for the samples to be shipped, and packing material. Extract 2 samples of each component, mark cans for the appropriate components including manufacturers name, address, batch numbers, batch size shipped to the project sight and date of manufacture. Store in QC Manager's office until completion of project. If unforeseen coating issues arise ship 1 complete sample (including base and activator) with all batch information to the pre-chosen approved Independent laboratory for evaluation. Include all pertinent information from the project. The QC Manager is to arrange pick-up and shipping to the approved coating testing laboratory.

2.4 ABRASIVE SAMPLE COLLECTION AND SHIPPING KIT

Provide a kit that contains one suitable plastic bag or container for each sample to be collected. Mark containers for the appropriate component. Provide shipping documents, including either pre-paid shipping or a shipper number that can be used by the QC Manager to arrange pickup, addressed to the approved coating testing laboratory.

2.5 TEST KITS

2.5.1 Test Kit for Measuring Chloride, Sulfate and Nitrate Ions on Steel and Coated Surfaces

Provide test kits called CHLOR*TEST CSN Salts, as manufactured by CHLOR*RID International Inc. of Chandler, Arizona (www.chlor-rid.com) or equal. An "equal" test kit must meet the following requirements:

a. Kit contains all materials, supplies, tools and instructions for field testing and on-site quantitative evaluation of chloride, sulfate and nitrate ions;

b. Kit extract solution is acidic, factory pre-measured, pre-packaged, and of uniform concentration;
c. Kit components and solutions are mercury free and environmentally friendly;

d. Kit contains new materials and solutions for each test extraction;

e. Extraction test container (vessel, sleeve, cell) creates a sealed, encapsulated environment during salt ion extraction;

f. Test extract container is suitable for testing the following steel surfaces: horizontal (up/down configuration), vertical, flat, curved, smooth, pitted, and rough;

g. All salt ion concentrations are directly measured in micrograms per square centimeter.

2.5.2 Test Kit for Measuring Chlorides in Abrasives

Provide test kits called CHLOR*TEST-A, as manufactured by CHLOR*RID International Inc. of Chandler, Arizona (www.chlor-rid.com), or equal. To be considered for approval as an "equal" test kit, each proposed test kit must:

a. Be a completely self-contained test kit with all materials, supplies, tools and instructions to take tests and identify results;

b. Use identifiable, consistent, factory pre-measured test extract solution;

c. Provide for testing equal volumes of abrasive and test solution;

d. Provide for taking direct measurements of the chloride ion in parts per million (PPM), without using conversion charts or tables;

e. Provide all new components for extraction and titration for each test;

f. Provide a factory sealed titration device for each test;

g. Use the extract sampling container as the titration container.

2.5.3 Test Kit for Identifying Amine Blush on Epoxy Surfaces

Test kit must meet the following requirements:

a. Be a completely self-contained field test kit with all materials, supplies, tools and instructions to perform tests and indicate the presence of unreacted amines;

b. Use an identifiable, consistent, uniform, pre-packaged, factory pre-measured indicating solution;

c. Kit contains no mercury or lead and is environmentally friendly;

d. Kit contains a solution of an unreacted amine for the purpose of "self checking" the indicator solution;

2.6 ABRASIVE

The referenced abrasive specifications have maximum limits for soluble salts contamination, however, this maximum level of contamination does not
guarantee that contamination will not be transferred to the steel surface during abrasive blasting. Other factors such as on-site handling and recycling can allow contamination of abrasive. Contractors are cautioned to verify that the chosen abrasive, along with work and storage processes, allow the final surface cleanliness requirements to be achieved. Successful testing of chlorides in abrasive does not negate the final acceptance testing of steel surfaces.

**

NOTE: The following paragraph is mandatory for all PACNAVFACENGCOM projects. All other agencies may use it after checking applicability.

[Interpret SSPC AB 1 to include the meaning that abrasive material contains a maximum one percent by weight of any toxic substance listed in either Table Z-1, Z-2, or Z-3 or 29 CFR 1910-SUBPART Z, with the exception of inert or nuisance dust materials, arsenic, beryllium, cadmium, cobalt, lead, mercury, rhodium, silver, tellurium, thallium, and uranium.]

**

NOTE: Reduce allowable gross gamma radioactivity to 5 picocuries per gram for all PACDIV projects. Reduce in other areas if states or localities require.

**

2.6.1 Non-metallic Abrasive

Conform to SSPC AB 1, Class A except that:

[a. The gross gamma radioactivity must not exceed 5 picocuries per gram.

[b. The maximum allowable chloride content is 7 parts per million (ppm) as measured with the test kit described in the paragraph TEST KIT FOR MEASURING CHLORIDES IN ABRASIVES. Modify the requirements of SSPC AB 2 to substitute requirement for one chloride test for each "WATER SOLUBLE CONTAMINANTS" test required.

c. The maximum allowable Chromium and Cadmium content of the work mix must be less than 0.1 percent by wt. when tested in accordance with ASTM D3718 for Chromium and ASTM D3335 for Cadmium. Modify the requirements of SSPC AB 2 to add requirement for one Chromate test and one Cadmium test for each "LEAD" test required.

Use abrasive that is specifically selected and graded to provide a sharp, angular profile to the specified depth. Do not use ungraded abrasive. Make adjustments to processes or abrasive gradation to achieve specified surface profile. Recycled non-metallic abrasive must meet all requirements of the specification each time that it is placed in the blast pot.

2.6.2 Metallic Abrasive

2.6.2.1 New and Remanufactured Steel Grit

Conform to the chemical and physical properties of SSPC AB 3 Class 1 (Steel) only[, except that the gross gamma radioactivity must not exceed 5 picocuries per gram]. Class 2 (Iron) abrasive must not be used.
To develop a suitable work mix from new steel abrasive, a minimum of 200 to 400 recycles is required, therefore, it is advantageous for a Contractor to use remanufactured steel grit or grit reclaimed from a previous project. Such grit must be considered to conform if it can be traced to new grit conforming to SSPC AB 3 Class 1 and it meets all cleanliness requirements of SSPC AB 3 Class 1 when brought to the current jobsite. Submit one representative sample of this work mix to the laboratory for testing, along with samples of new material. Acceptance and use of this work mix must not be used to justify any deviation from surface preparation requirements.

2.6.2.2 Recycled Steel Grit

Abrasive media must conform to the chemical and physical properties of SSPC AB 2 except that:

a. The maximum allowable chloride content is 7 parts per million (ppm) as measured with the test kit described in article entitled "Test Kit for Measuring Chlorides in Abrasives." Modify the requirements of SSPC AB 2 to substitute requirement for one chloride test for each "WATER SOLUBLE CONTAMINANTS" test required.

b. The maximum allowable Chromium and Cadmium content of the work mix must be 0.1 percent by wt. when tested in accordance with ASTM D3718 for Chromium and ASTM D3335 for Cadmium. Modify the requirements of SSPC AB 2 to add requirement for one Chromate test and one Cadmium test for each "LEAD" test required.

PART 3 EXECUTION

Perform all work, rework, and repair in accordance with approved procedures in the Coating Work Plan.

[3.1 REMOVAL OF COATINGS CONTAINING HAZARDOUS MATERIALS]

**

NOTE: Include Section 02 83 00 LEAD REMEDIATION in any project specification that requires removal or disturbance of coating containing hazardous materials in conjunction with a coating project. Include a contractor qualification requirement similar to the paragraph QUALIFICATIONS OF COATING CONTRACTORS in Part 1 of this Section, except that the contractor must be qualified to SSPC QP 2, Category A. The removal of coatings containing hazardous materials and application of new coating system can be accomplished in a continuous operation if the contractor provides appropriate coordination of removal, cleaning, and coating application. It is specified as two separate operations to allow separate contractors to accomplish different phases of project. With the use of SSPC QP 1 and QP 2 requirements in contracts, the same contractor will generally be accomplishing both phases of work, and will probably want to perform both phases as a single operation to avoid preparing surfaces twice. To accomplish the coating removal and recoating in a continuous operation, the Contractor's plan must be
Coatings containing hazardous materials and identified for disturbance during surface preparation, including removal, must be handled in accordance with Section 02 83 00 LEAD REMEDIATION. Coordinate surface preparation requirements from Section 02 83 00 LEAD REMEDIATION with this Section.

3.2 DOOR SHEET ACCESS WAY

NOTE: Tanks should be evaluated during inspection and design for appropriateness of cutting out a door sheet. If there is a reason not to allow a door sheet to be cut into a particular tank, delete this paragraph and the related paragraph in Part 1.

A door sheet may be cut out of a tank to facilitate personnel and equipment access. The door sheet must be removed in accordance with API Std 653 and API Std 650, including all structural, welding, testing, and evaluation requirements. After completion of coating CEILING and SHELL and prior to preparation and coating of FLOOR, the door sheet must be installed, tested, and accepted. The door sheet and surrounding areas must be surfaced in accordance with Section 4 of NACE SP0178, and accompanying Visual Comparator, to the condition described and shown for NACE Weld Surface Preparation Designation "C" welds for interior surfaces and "D" Welds for exterior surfaces. The door sheet and the feathered areas of the SHELL must be prepared and coated with the FLOOR in accordance with all requirements of this Section. The Contractor is responsible for cutting out the door sheet, stabilizing the tank or openings while the door sheet is out, replacing the door sheet, and testing the replaced door sheet using qualified engineering and testing services. Perform tank tightness testing after coating where a door sheet access way was installed for this project.

3.3 COATING AND ABRASIVE SAMPLE COLLECTION AND TESTING

Sample and test materials delivered to the jobsite. Notify Contracting Officer three days in advance of sampling. The QC Manager, and either the PCS or coating inspector, must witness all sampling.

3.3.1 Coating Sample Collection

Provide 2 sample collection kits as required in paragraph COATING SAMPLE COLLECTION AND SHIPPING KIT. From each lot, obtain a one liter quart sample of each base material, and proportional samples of each activator based on mix ratio, by random selection from sealed containers in accordance with ASTM D3925. Prior to sampling, mix contents of each sealed container to ensure uniformity. As an alternative to collecting small samples from kits, entire kits may be randomly selected and shipped to laboratory, observing all requirements for witnessing and traceability. For purposes of quality conformance inspection, a lot is defined as that quantity of materials from a single, uniform batch produced and offered for delivery at one time. A batch is defined as that
quantity of material processed by the manufacturer at one time and identified by number on the label. Identify samples by designated name, specification number, batch number, project contract number, sample date, intended use, and quantity involved. The QC Manager will take possession of the packaged samples and hold until instructed to contact a shipping company to arrange for pickup, and relinquish the samples only to the shipping representative for shipment to the approved laboratory for testing as required by paragraph COATING SAMPLE TEST REPORTS.

3.3.2 Abrasive Sample Collection

Provide a sample collection kit as required in paragraph ABRASIVE SAMPLE COLLECTION AND SHIPPING KIT. For purposes of quality conformance inspection, a lot must consist of all abrasive materials of the same type from a single, uniform batch produced and offered for delivery at one time. Obtain samples of each abrasive lot using the sampling techniques and schedule of the relevant SSPC AB standard reference. The addition of any substance to a batch must constitute a new lot. Identify samples by designated name, specification number, lot number, project contract number, sample date, intended use, and quantity involved. The QC Manager will take possession of the packaged samples, contact the shipping company to arrange for pickup, and relinquish the samples only to the shipping representative for shipment to the approved laboratory for testing as required by paragraph ABRASIVE SAMPLE TEST REPORTS.

3.3.3 Coating Sample Test Reports

Submit test results for each lot of coating material delivered to the jobsite. Test samples of coating material for compliance with requirements of Table I. Reject entire batch represented by samples that fail one or more tests, select new lots, and test samples.

3.3.4 Abrasive Sample Test Reports

Submit test results for each lot of abrasive delivered to the jobsite. Test samples of metallic abrasive to the requirements of paragraph REQUIREMENTS of SSPC AB 3, except paragraph 4.1.5 DURABILITY. Test samples of non-metallic abrasive to the requirements of paragraph REQUIREMENTS of SSPC AB 1. Reject entire lot represented by samples that fail one or more tests, select new lots, and test samples.

3.4 FUEL REMOVAL AND TANK CLEANING

Remove fuel and clean storage tanks in accordance with Section 33 01 50.55 CLEANING PETROLEUM STORAGE TANKS.

3.5 LIGHTING

Provide lighting for all work areas as prescribed in SSPC Guide 12.

3.6 ENVIRONMENTAL CONDITIONS

3.6.1 Tank Containment

NOTE: Delete this requirement where exterior containment is not required. Containment aids in maintaining environmental conditions by moderating extreme conditions.

Maintain exterior tank containment in full working condition during interior surface preparation, coating application, and initial curing to aid in maintaining interior environmental conditions.

3.6.2 Control System Requirements

Provide and utilize dehumidification and ventilation equipment to control humidity, temperature, and vapor levels in tank from beginning of abrasive blasting through coating application and for 16 hours after the last coating is applied. System must maintain vapor concentrations at or below 10 percent of Lower Explosive Limit (LEL). System may incorporate any combination of solid desiccant and direct expansion refrigeration equipment. No liquid, granular, calcium chloride, or lithium chloride drying systems will be accepted. Use only electric, indirect fired combustion, indirect friction, or steam coil auxiliary heaters. System must be compatible with removal of dust and solvent vapors, and must have fail-safe measures to ensure reliability during operations.

3.6.3 Automated Monitoring Requirements

Provide continuous monitoring of DH equipment, and temperature, relative humidity, and dew point data at pertinent points on the structure, during surface preparation, coating application, and initial cure. This data does not suffice for documentation of conformity to surface conditions during application and cure of coating. Locate sensors to provide pertinent data for the surface preparation and coat application being performed, as well as the temperature extremes on the structure. Describe the location plan, including required moves, in the Work Plan. Make data available to the Contracting Officer through Internet access. Provide monitoring equipment to perform as follows:

a. Data is collected in the field unit in one minute increments, and available for download (on-site) in a standard format. Contractor must collect this data and make available to the Contracting Officer;

b. Monitoring equipment must have backup power such that data collection and transmission to web server will be uninterrupted during the entire period of the dehumidification requirement;

c. Monitoring equipment must have capability to measure surface temperatures at a minimum of four locations anywhere on a structure, regardless of size of structure;

d. Monitoring equipment must have capability to measure interior and exterior dry bulb temperature (DB), relative humidity (RH), and dewpoint temperature (DP);

e. Data must be available continuously through secure Internet connection, using widely available web browsers;

f. Internet accessible data must be collected and stored in maximum 15 minute increments, and lag time between data collection and online availability must be no greater than 70 minutes;

g. Internet accessible data must be available for viewing online in tabular format, and graphical format using selected data;
h. Internet accessible data must be available for download in user-defined segments, or entire project to date, in a standard format usable by Microsoft Excel and other spreadsheet programs.

i. Internet-based controls must provide alerts to pre-designated parties through email messaging;

j. Internet-based controls must monitor data uploads from field unit and issue alert if data not initiated within 60 minutes of last upload;

k. Internet-based controls must monitor operation of DH equipment and issues alert when power remains off for more than 15 minutes, or if pre-determined temperature, RH, or DP conditions are exceeded;

There is no requirement for connectivity of the monitoring system to control the DH equipment, therefore, any combination of equipment having the required functionality will be accepted.

3.6.4 Humidity Control for Surface Preparation and First Coat Application

Provide and utilize dehumidification equipment to maintain relative humidity at appropriate level to prevent prepared steel surfaces from corroding at all times during abrasive blasting through coating application. Failure of humidity control system, or failure to maintain proper conditions, during surface preparation stage may allow surface rusting, which will be rejected and require rework. All surfaces to be coated must meet all requirements at time of coating application. Failure of humidity control system during coating application stage will be cause for removal and replacement of all materials applied and cured while conditions were not as prescribed above.

Note that reduction of relative humidity below approximately 25 percent may affect application and curing characteristics. Contact coating manufacturer for appropriate limitations on lower relative humidity levels.

3.6.5 Humidity Control for Application of Finish Coat and Initial Curing

Provide and utilize dehumidification equipment to maintain relative humidity at the coldest steel surface in tank below 55 percent at all times during coating application, and initial curing. This measurement is not the same as measuring the relative humidity of ambient air in the tank, and will require either electronic equipment to monitor relative humidity at the steel surface, or complex calculations to convert relative humidity of air in tank to relative humidity at steel surface. An approved alternative method of monitoring dehumidification that requires less sophisticated equipment or calculations is to maintain a minimum dew point depression of 10 degrees C 18 degrees F below coldest steel surface temperature. This is in lieu of specific relative humidity and dew point requirements in this Section. Failure to maintain specified humidity control during application may cause formation of condensation during the coating application stages prior to the indicated dry-hard period and will be cause for removal and replacement of all materials contacted by condensation.

3.7 EQUIPMENT USED IN TANK

Equipment used in the tank after surface preparation begins must not leave any oily residue from exhaust or other sources. Internal combustion driven equipment, other than that powered by natural or bottled gas, must
not be used.

3.8 SURFACES TO BE COATED

**
NOTE: See MIL-HDBK 1022 for guidance on which interior tank surfaces should be coated.
**

Prepare and coat interior tank surfaces, including [FLOOR][, SHELL][, CEILING][spot repair of [_____] spots of [_____] square meters square feet]. Remove interior piping to ensure complete coverage of floor and underside of pipe supports. [Do not coat aluminum floating pan.]

3.9 SURFACE PREPARATION

**
NOTE: When editing this specification for maintenance coating work for which SSPC WJ-x/NACE WJ-x Water Cleaning or Jetting surface preparation is to be allowed, include note for the contractor to use potable water, monitor the quality of the water, and adjust water quality to assure appropriate surface preparation and final surface requirements. There are many problems that might arise from both dissolved and suspended material. A common occurrence is water with high-chlorides, even in potable water, which may leave unacceptable contamination on cleaned surfaces, and may not be suitable for water jetting.
**

3.9.1 Abrasive Blasting Equipment

Use abrasive blasting equipment of conventional air, force-feed, or pressure type. Maintain a minimum pressure of 650 kPa 95 psig at nozzle. Confirm that air supply for abrasive blasting is free of oil and moisture when tested in accordance with ASTM D4285. Test air quality at each startup, but in no case less often than every five operating hours.

3.9.2 Operational Evaluation of Abrasive

Test abrasive for salt contamination and oil contamination as required by the appropriate abrasive specification daily at startup and every five operating hours thereafter.

3.9.3 Surface Standard

Inspect surfaces to be coated, and select plate with similar properties and surface characteristics for use as a surface standard. Blast clean one or more 300 mm 1 foot square steel panels as specified in paragraph SURFACE PREPARATION. Record blast nozzle type and size, air pressure at nozzle and compressor, distance of nozzle from panel, and angle of blast to establish procedures for blast cleaning. Measure surface profile in accordance with SSPC PA 17. When the surface standard complies with all specified requirements, seal with a clearcoat protectant. Use the surface standard for comparison to abrasive blasted surfaces throughout the course of work.
3.9.4 Pre-Preparation Testing for Surface Contamination

Perform testing, abrasive blasting, and testing in the prescribed order.

3.9.4.1 Pre-Preparation Testing for Oil and Grease Contamination

a. Inspect all surfaces for oil and grease contamination using two or more of the following inspection techniques: 1) Visual inspection, 2) WATER BREAK TEST, 3) BLACK LIGHT TEST, and 4) CLOTH RUB TEST. Reject oil or grease contaminated surfaces, clean using a water based pH neutral degreaser in accordance with SSPC SP 1, and recheck for contamination until surfaces are free of oil and grease.

b. WATER BREAK TEST - Spray atomized mist of distilled water onto surface, and observe for water beading. If water "wets" surface rather than beading up, surface can be considered free of oil or grease contamination. Beading of water (water forms droplets) is evidence of oil or grease contamination.

c. BLACK LIGHT TEST - Inspect surfaces for oil and grease contamination using the light specified in paragraph BLACK LIGHT. Use light no more than 381 mm 15 inches from surface unless testing indicates that the specific oil or grease found in tank fluoresce at a greater distance. Use light in tank that is completely sealed from light infiltration, under a hood, or at night. Any fluorescing on steel surfaces is indication of petroleum oil/grease contamination. Use either WATER BREAK TEST or CLOTH RUB TEST to confirm both contaminated and non-contaminated areas detected by BLACK LIGHT TEST. The BLACK LIGHT TEST may not be used during inspection of prepared surfaces for oil and grease contamination unless proven to fluoresce the oil and grease found in the specific tank and documented during testing prior to abrasive blasting. Generally, only petroleum oil/grease will fluoresce, however, some may not fluoresce sufficiently to be recognized and other methods, such as the WATER BREAK TEST or CLOTH RUB TEST, must be used to confirm findings of the BLACK LIGHT TEST.

d. CLOTH RUB TEST - Rub a clean, white, lint free, cotton cloth onto surface and observe for discoloration. To confirm oil or grease contamination in lightly stained areas, a non-staining solvent may be used to aid in oil or grease extraction. Any visible discoloration is evidence of oil or grease contamination.

3.9.4.2 Pre-Preparation Testing for Soluble Salts Contamination

Test surfaces for soluble salts, and wash as required, prior to abrasive blasting. Soluble salt testing is also required in paragraph PRE-APPLICATION TESTING FOR SOLUBLE SALTS CONTAMINATION as a final acceptance test of prepared surfaces after abrasive blasting, and successful completion of this phase does not negate that requirement. This phase is recommended since pre-preparation testing and washing are generally more advantageous than attempting to remove soluble salt contamination after abrasive blasting. Effective removal of soluble salts will require removal of any barrier to the steel surface, including rust. This procedure may necessitate combinations of wet abrasive blasting, high pressure water rinsing, and cleaning using a solution of water washing and soluble salts remover. The soluble salts remover must be acidic,
biodegradable, nontoxic, noncorrosive, and after application, will not interfere with coating adhesion. Delays between testing and preparation, or testing and coating application, may allow for the formation of new contamination. Use potable water, or potable water modified with a soluble salt remover, for all washing or wet abrasive blasting. Test methods and equipment used in this phase are selected at the Contractor's discretion.

3.9.5 Abrasive Blasting

**

NOTE: The issue of maximum profile on new structures is an important one. Once a profile is established, it is nearly impossible to reduce it, therefore, the initial profile will dictate the profile for the life of the structure.

The specified 2-3 mil surface profile is the preferred depth for preparing for the coating system. On steel that was previously prepared to a deeper depth and coated, a depth of 6 to 8 mils can be tolerated, if necessary.

To validate contractor claims of pre-existing profile greater than allowed, test an appropriate number of representative spots with abrasive that removes paint but does not affect profile, such as bicarbonate of soda, or other soft abrasive, or waterblasting.

**

a. Prepare steel surfaces in accordance with SSPC PA 1 and as specified herein.

b. On new surfaces abrasive blast steel surfaces to near-white metal in accordance with SSPC SP 10/NACE No. 2. Prepared surfaces must conform to SSPC VIS 1 and must match the prepared test-panels. Provide a 50 to 75 micron 2 to 3 mil surface profile. Reject profile greater than 75 microns 3 mils, discontinue abrasive blasting, and modify processes and materials to provide the specified profile. Measure surface profile in accordance with SSPC PA 17, using Rmax as the measure of profile height. Record all measurements required in this standard. Measure profile at rate of three test areas for the first 100 square meters 1000 square feet plus one test area for each additional 100 square meters 1000 square feet or part thereof. When surfaces are reblasted for any reason, retest profile as specified. Following abrasive blasting, remove dust and debris by vacuum cleaning. Do not attempt to wipe surface clean.

c. On previously coated and prepared surfaces determine and establish the average blast profile existing. If existing blast profile is greater than the required 75 microns 3 mils established for new surfaces this average profile must be reported and a mutual agreement by the government and contractor at the pre-application meeting must be determined to not increase the existing profile. Abrasive blast the steel surfaces to near-white metal in accordance with SSPC SP 10/NACE No. 2 using abrasive and technique which does not increase the existing profile. Provide a minimum 75
microns 3 mils surface profile but no additional profile than that existing. Reject profile greater than existing, discontinue abrasive blasting, and modify processes and materials to provide the specified agreed existing profile. Prepared surfaces must conform to SSPC VIS 1 and must match the prepared test-panels. Measure surface profile in accordance with SSPC PA 17, using Rmax as the measure of profile height. Record all measurements required in this standard. Measure profile at rate of three test areas for the first 100 square meters 1000 square feet plus one test area for each additional 100 square meters 1000 square feet or part thereof. Provide two additional measurements for each non-compliant measurement. When surfaces are reblasted for any reason, retest profile as specified. Following abrasive blasting, remove dust and debris by vacuum cleaning. Do not attempt to wipe surface clean.

3.9.6 Disposal of Used Abrasive

Dispose of used abrasive off Government property in accordance with Federal, State and Local mandated regulations.

3.9.7 Pre-Application Testing For Surface Contamination

3.9.7.1 Pre-Application Testing for Oil and Grease Contamination

Ensure tank surfaces are free of contamination as described in paragraph PRE-PREPARATION TESTING FOR OIL AND GREASE CONTAMINATION.

3.9.7.2 Pre-Application Testing for Soluble Salts Contamination

**

NOTE: In new tanks, require 30 percent of tests to be accomplished at welds. In tanks that have been in service, corroded areas should be tested for high chlorides.

**

Test surfaces for chloride contamination using the Test Kit described in paragraph TEST KIT FOR MEASURING CHLORIDE, SULFATE AND NITRATE IONS ON STEEL SURFACES. Test all surfaces at rate of three tests for the first 100 square meters 1000 square feet plus one test for each additional 200 square meters 2000 square feet or part thereof. [Concentrate testing of bare steel at areas of coating failure to bare steel and areas of corrosion pitting.][Perform 30 percent of tests on bare steel at welds, divided equally between horizontal and vertical welds.] One or more readings greater than nondetectable for chlorides, sulfates, or nitrates is evidence of soluble salt contamination. Reject contaminated surfaces, wash as discussed in paragraph PRE-PREPARATION TESTING FOR SOLUBLE SALTS CONTAMINATION, allow to dry, and re-test until all required tests show allowable results. Reblast tested areas using vacuum equipped blast equipment. Label all test tubes and retain for test verification.

3.9.7.3 Pre-Application Testing for Surface Cleanliness

Apply coatings to dust free surfaces. To test surfaces, apply strip of 3M Scotch Magic Tape #810 to surface and rub with fingernail or rounded object until clear. Remove tape and apply to white paper. The tape should show little or no dust, blast abrasive, or other contaminant. Reject contaminated surfaces, clean by vacuum cleaning, and retest. Test surfaces at rate of three tests for the first 100 square meters 1000
square feet plus one test for each additional 100 square meters 1000 square feet or part thereof. Provide two additional tests for each failed test or questionable test. Attach test tapes to Daily Inspection Reports.

3.10 MIXING AND APPLICATION OF ROOF JOINT SEALANT AND COATING SYSTEM

Mix and apply in accordance with approved procedures, which may differ for each product. Do not mix partial kits or alter mix ratios.

3.10.1 Mixing Roof Joint Sealant and Coating Materials

Each of the products are a two-component material supplied in separate containers. Mix materials in same temperature and humidity conditions specified in paragraph DELIVERY AND STORAGE. Allow mixed material to stand for the required induction time.

3.10.1.1 Pot Life

Apply mixed products within stated pot life for each product. Stop applying when material becomes difficult to apply in a smooth, uniform wet film. Pot life is based on standard conditions at 21 degrees C 70 degrees F and 50 percent relative humidity. For every 10 degrees C 18 degrees F rise in temperature, pot life is reduced by approximately half, and for every 10 degrees C 18 degrees F drop, it is approximately doubled. Usable pot life depends on the temperature of the material at the time of mixing and the sustained temperature at the time of application. Other factors such as the shape of the container and volume of mixed material may also affect pot life. In hot climates, precooling or exterior icing of components for at least 24 hours to a minimum of 10 degrees C 50 degrees F will extend pot life.

3.10.1.2 Application Conditions and Recoat Windows

**

NOTE: These requirements are provided in an attempt to prevent the significant number of intercoat delamination failures that are frequently found on industrial structures. The requirements on application conditions and recoat windows may require work during abnormal hours, including weekends. Contractor work hours should allow for such during coating application.

**

NOTE: Cold-weather application is not covered by this specification. If a project is designed for coating in cold weather, then the enclosure and heating requirements may be significant. It is not intended that contractors be forced to apply coatings in cold weather, however, the underlying premise is that coatings must be applied within the specified temperature ranges. A cold-weather specification should not be used to simply save money, as the coating system will generally not have the same longevity as one applied within 16-48 degrees C 60-120 degrees F.

**

SECTION 09 97 13.15 Page 33
a. The application condition requirements for the coating system are time and temperature sensitive, and are intended to avoid the delamination problems frequently found on industrial structures. Plan coating application to ensure that specified temperature, humidity, and condensation conditions are met. If conditions do not allow for orderly application of sealant and coating materials, use appropriate means of controlling air and surface temperatures, as required. Partial or total enclosures, insulation, heating or cooling, or other appropriate measures may be required to control conditions to allow for orderly application of all required coats.

b. Maintain air and steel surface temperature between 16 and 48 degrees C 60 and 120 degrees F during application and the first four hours of cure.

c. Use Table entitled RECOAT WINDOWS to determine appropriate recoat windows for each coat after the initial coat. Apply each coat during appropriate RECOAT WINDOW of preceding coat. If a RECOAT WINDOW is missed, the minimum and maximum finish coat thickness may be adjusted to accommodate the total film thickness requirement, however, requirements for total coating thickness will not be modified. Missing more than one RECOAT WINDOWS may require complete removal of coating if maximum total coating thickness requirements cannot be achieved.

d. If coating is not applied during RECOAT WINDOW, or if surface temperature exceeds 49 degrees C 120 degrees F between applications, provide GLOSS REMOVAL, apply next coat within 24 hours. If next planned coat is finish coat, apply additional material to achieve the minimum and maximum total coating thickness requirement. Sanding or abrasive marks from GLOSS REMOVAL reflecting through finish coat will be considered as non-compliant. Apply finish coat within 24 hours of GLOSS REMOVAL.

<table>
<thead>
<tr>
<th>RECOAT WINDOWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature degrees C</td>
</tr>
<tr>
<td>16-21 22-27 28-32 33-38 39-43 44-49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECOAT WINDOWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature degrees F</td>
</tr>
<tr>
<td>60-70 71-80 81-90 91-100 101-110 111-120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All coats</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECOAT WINDOW (Hrs.)</td>
</tr>
<tr>
<td>36-336 36-240 24-168 24-96 16-48 16-48</td>
</tr>
</tbody>
</table>

The temperature ranges shown in the table above are for determining recoat windows. Choose recoat window based on the highest surface temperature that was sustained for one or more hours between coats. This applies to the entire time between coats. Measure and record air and surface temperatures on hourly basis to determine appropriate recoat windows. If surface temperature goes above 38 degrees C 120 degrees F, measure and record temperatures every half hour.
GLOSS REMOVAL - Where required, hand sand in a linear fashion to remove
gloss using 120-200 grit wet/dry sandpaper, vacuum-remove all dust, and
solvent wipe with a clean rag soaked with denatured alcohol. GLOSS
REMOVAL of the first coat is to scarify the surface and must consist of
removal of approximately 75-100 microns 3-4 mils of coating. If steel is
exposed during GLOSS REMOVAL, repair in accordance with paragraph
PROCEDURE FOR HOLIDAY AND SPOT REPAIRS OF NEWLY APPLIED COATING. GLOSS
REMOVAL of the first coat is to scarify the surface completely and may
include removal of up to 250 microns 10 mils of coating to avoid excess
thickness.

3.10.2 Amine Blush Testing of Coating Prior to Overcoating

Test coating surfaces prior to application of any subsequent coat, for
amine blush contamination using the Test Kit described in paragraph TEST
KIT FOR IDENTIFYING AMINE BLUSH ON EPOXY SURFACES. Test all surfaces at a
rate of three tests for the first 100 square meters 1000 square feet plus
one test for each additional 200 square meters 2000 square feet or part
thereof. If one or more tests show positive results for amine blush
contamination, either treat all surfaces using the approved amine blush
removal procedure or increase testing to ensure that all contamination is
located, and then treat identified contamination using the approved
procedure.

3.10.3 Application of Coating System and Roof Joint Sealant

a. Apply coatings in accordance with SSPC PA 1 and as specified
herein. Apply sealant and coatings to surfaces that meet all
stated surface preparation requirements.

b. After surface preparation and prior to application of each
subsequent coat, perform testing prescribed in paragraph
PRE-APPLICATION TESTING FOR SURFACE CONTAMINATION, as necessary,
to ensure minimal intercoat contamination. This testing may be
reduced to one half of the prescribed rate for bare steel if the
testing indicates no contamination when sampling is evenly
distributed over surfaces being tested. If contamination is found
between coats, revert to the specified testing rate. Generally,
oil and grease contamination and soluble salts contamination are
not encountered if subsequent coats are applied within specified
recoat windows and the quality of air entering tank is
controlled. Concern for intercoat contamination should be
continually prevalent, and spot testing should be accomplished to
verify satisfactory conditions. Where visual examination or spot
testing indicates contamination, perform sufficient testing to
verify non-contamination, or to define extent of contamination for
appropriate treatment.

c. Apply each coat in a consistent wet film, at 90 degrees to
previous coat. Ensure that coating "cold joints" are no less than
150 mm 6 inches from welds. Apply stripe coat by brush. For
convenience, stripe coat material may be delivered by spray if
followed immediately with brush-out and approved procedures
include appropriate controls on thickness. Apply all other coats
by spray application. Use appropriate controls to prevent
airborne coating fog from drifting beyond [[3][_____] meters
[15][_____] feet from the tank perimeter] [the tank berm]. The
cleanliness, temperature, recoat windows, and airborne paint
containment requirements may necessitate the use of portable shelters or other appropriate controls.

**

NOTE: The polysulfide modified novolac epoxy - PMNE coating used in this section does not develop typical high stresses of epoxy coatings, therefore, maximum thicknesses may be exceeded without adversely affecting the coating integrity. If a contract experiences excessive thicknesses, this should be addressed by Corrective Action, as excessive thickness costs the contractor more, and it will cost more to remove when required during a later project.

**

Apply coatings at the following specified thickness:

<table>
<thead>
<tr>
<th>Coat</th>
<th>Minimum DFT (Microns)</th>
<th>Maximum DFT (Microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripe Coat (not included in total)</td>
<td>125</td>
<td>200</td>
</tr>
<tr>
<td>First coat</td>
<td>300</td>
<td>375</td>
</tr>
<tr>
<td>Finish coat</td>
<td>300</td>
<td>375</td>
</tr>
<tr>
<td>Total system</td>
<td>600</td>
<td>750</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coat</th>
<th>Minimum Mils DFT</th>
<th>Maximum Mils DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripe Coat (not included in total)</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>First coat</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Finish coat</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Total system</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

Measure coating thickness in accordance with SSPC PA 2 to confirm that coating application is within the specified range and within the tolerances of that standard. For non-compliant areas, increase number of test areas to identify all non-compliant application as required by SSPC PA 2.

3.10.3.1 Application of Roof Joint Sealant

Apply sealant to the roof-to-shell joint, to all roof plate lap joints, and to roof-to-rafter joints up to 25 mm 1 inch gap to exclude moisture from these marginally prepared crevice areas. Allow sealant to cure according to manufacturer's instructions prior to application of the
stripe coat.

3.10.3.2 Application of Stripe Coat

Apply stripe coat of finish coat material within RECOAT WINDOW of roof joint sealant. Apply stripe coat by brush, working the material into corners, crevices, pitted areas, and welds, and onto outside corners and angles. Where roof-to-rafter joints exceed 25 mm 1 inch gap and roof joint sealant was not applied, use appropriate application tools to provide "best effort" coating of all exposed steel surfaces in the gap. Mini-rollers or other tools may be required.

3.10.3.3 Application of First Coat

Apply first coat to all bare surfaces and stripe coat areas within RECOAT WINDOW of stripe coat.

3.10.3.4 Application of Finish Coat

Make all required repairs to first coat as specified in paragraph PROCEDURE FOR HOLIDAY AND SPOT REPAIRS OF NEWLY APPLIED COATING prior to applying finish coat. Apply finish coat within RECOAT WINDOW of first coat. Touch-up blemishes and defects within recoat window of finish coat.

3.10.4 Holiday Testing

No sooner than 24 hours after application of the first coat, and normally 36 hours, perform holiday testing in accordance with the low voltage wet sponge method of NACE SP0188, with no added surfactants. Repair holidays per paragraph PROCEDURE FOR HOLIDAY AND SPOT REPAIRS OF NEWLY APPLIED COATING. Do not allow moisture from sponge to remain on the coated surfaces more than ten minutes. Remove excess moisture with a clean rag.

3.10.5 Procedure for Holiday and Spot Repairs of Newly Applied Coating

Repair coating film defects at the earliest practicable time, and before application of the succeeding coat. Any Holiday found should have a coat brush applied in the area prior to application of the finish coat. Observe all requirements for soluble salts contamination, cleanliness between coats, and application conditions. Any signs of steel corrosion must be prepared in accordance with SSPC SP 10/NACE No. 2, to leave 150 mm 6 inches of each succeeding coat feathered and abraded. Protect adjacent areas from damage and overspray. Remove dust and solvent wipe the prepared area plus any additional 150 mm 6 inches beyond the prepared area with clean denatured alcohol. Apply each coat within RECOAT WINDOW of preceeding coat. Apply first coat to prepared steel within four hours of preparation and feather onto prepared coating. Apply each repair coat to approximate thickness of surrounding coating system.

3.10.6 Tank Occupancy After Coating Application

Verify the coating has reached a cured state that will allow foot traffic. Use clean canvas, or other approved, shoe covers when walking on coated surfaces, regardless of curing time allowed. Provide cushioned mats for all traffic areas.

3.10.7 Extended Cure of Coating System Prior to Immersion Service

Allow a cure time of at least 14 days after the final coating material has
been applied before introducing water or fuel into tank. [Allow a cure time of 12 days after the final coating material has been applied before beginning installation of the floating pan.]

3.11 PROJECT IDENTIFICATION

At the completion of the tank work, stencil the following information on the exterior of the tank adjacent to the main manway opening in 3/4 to one inch Helvetica style letters of contrasting color using acrylic stencil paint:

- Date Interior Coated:
- Project Number:
- Contractor:
- Address:
- Coating System
 - Surface Prep: SSPC SP __ Profile: ___
 - First Coat: __________ Thickness: ___
 - Finish Coat: __________ Thickness: ___
 - Total Thickness: ___

3.12 FIELD QUALITY CONTROL

Project documentation, including inspection and testing records, must be used to determine the Contractor's compliance with contract requirements and approved procedures. The Contractor's certifications of completion, for both invoices and for project completion, must be based on documented evidence of compliance with all requirements and approved Coating Work Plan procedures. Track inspections and tests in the Test Plan & Log.

3.12.1 Coating Inspector

The coating inspector must be considered a QC Specialist and must report to the QC Manager, as specified in Section 01 45 00.00 10 01 45 00.00 20 01 45 00.00 40 QUALITY CONTROL. The Coating Inspector must be present during all pre-preparation testing, surface preparation, coating application, initial cure of the coating system, during all coating repair work, and during completion activities as specified in Section 01 45 00.00 10 01 45 00.00 20 01 45 00.00 40 QUALITY CONTROL. The Coating Inspector must provide complete documentation of conditions and occurrences on the job site, and be aware of conditions and occurrences that are potentially detrimental to the coating system. The requirements for inspection listed in this Section are in addition to the QC inspection and reporting requirements specified in Section 01 45 00.00 10 01 45 00.00 20 01 45 00.00 40 QUALITY CONTROL.

3.12.2 Field Inspection

3.12.2.1 Inspection and Documentation Requirements

b. Provide all tools and instruments required to perform the required testing, as well as any tools or instruments that the inspector considers necessary to perform the required inspections and tests. Document each inspection and test, including required hold points and other required inspections and tests, as well as those inspections and
tests deemed prudent from on-site evaluation to document a particular process or condition, as follows:

(1) Location or area;
(2) Purpose (required or special);
(3) Method;
(4) Criteria for evaluation;
(5) Results;
(6) Determination of compliance;
(7) List of required rework;
(8) Observations.

c. Collect and record Environmental Conditions as described in ASTM D3276 on a 24 hour basis, as follows:

(1) During surface preparation, every hour or when changes occur;
(2) During coating application and the first four days of initial cure, every hour or when changes occur;
(3) Note location, time, and temperature of the highest and lowest surface temperatures each day;
(4) Use a non-contact thermometer to locate temperature extremes, then verify with contact thermometers.

d. NOTE: Data collected on Environmental conditions in paragraph AUTOMATED MONITORING REQUIREMENTS may be used for overnight data, however, the data must be constantly verified as to location of sensors and validity of data with respect to the coating work being accomplished.

e. Document all equipment used in inspections and testing, including manufacturer, model number, serial number, last calibration date and future calibration date, and results of on-site calibration performed. Work documented using data from equipment found to be out of calibration must be considered as non-compliant since last calibration or calibration check, as required.

3.12.2.2 Inspection Report Forms

Develop project-specific report forms as required to report measurement and test results and observations being complete and compliant with contract requirements. This includes all direct requirements of the contract documents and indirect requirements of referenced documents. Show acceptance criteria with each requirement and indication of compliance of each inspected item. Annotation of non-compliance must be conspicuous so as to facilitate identification and transfer to the Rework Log. Report forms must include requirements and acceptance and rejection criteria, and must be legible and presented so that entered data can be quickly compared to the appropriate requirement.

3.12.2.3 Daily Inspection Reports

Submit one copy of daily inspection report completed each day when performing work under this Section, to the Contracting Officer. Note all non-compliance issues, and all issues that were reported for rework in accordance with QC procedures of Section 01 45 00.00 10 01 45 00.00 20 01 45 00.00 40 QUALITY CONTROL. Each report must be signed by the coating inspector and the QC Manager. Submit hardcopy report within 24 hours of date recorded on the report.
3.12.2.4 Inspection Logbook

A continuous record of all activity related to this Section must employ the electronic reporting program TruQC or equivalent as outlined in Table III and be maintained on a daily basis. The computer / software package must be used to record all information provided in the Daily Inspection Reports, as well as other pertinent observations and information including photo documentation where appropriate. The designated Government Representative for the project is assigned the highest level Administrator privileges and only the Administrator must be able to modify reports.

In areas where photography is not allowed the computer must come with verification that the camera / photo capability has been removed. Alternatively, a continuous record of all activity related to this Section must be maintained in an Inspection Logbook on a daily basis. The logbook must be hard or spiral bound with consecutively numbered pages, and must be used to record all information provided in the Daily Inspection Reports, as well as other pertinent observations and information. The Coating Inspector's Logbook that is sold by NACE is satisfactory. Submit the original Inspection Logbook to the Contracting Officer upon completion of the of the project and prior to final payment.

3.12.3 Inspection Equipment

All equipment must be in good condition, operational within its design range, and calibrated as required by the specified standard for use of each device.

3.12.3.1 Black Light

Use a black light having a 365 nanometer intensity of 4,000 microwatts per square centimeter minimum at 380 mm 15 inches. The Spectroline BIB-150P from Spectronics Corporation satisfies this requirement.

3.13 FINAL CLEANUP

Following completion of the work, remove debris, equipment, and materials from the site. Remove temporary connections to Government or Contractor furnished water and electrical services. Restore existing facilities in and around the work areas to their original condition.
<table>
<thead>
<tr>
<th>Test</th>
<th>Component A</th>
<th>Component B</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity, Brookfield, mPa-s (cp) (ASTM D2196), Test Method A, 20 rpm, Spindle 5</td>
<td>6000</td>
<td>18000</td>
<td>11000</td>
</tr>
<tr>
<td>Weight (ASTM D1475)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilograms / liter</td>
<td>1.09</td>
<td>1.26</td>
<td>1.38</td>
</tr>
<tr>
<td>Pounds / gallon</td>
<td>9.10</td>
<td>10.50</td>
<td>11.50</td>
</tr>
<tr>
<td>Dry Time (ASTM D1640), at 23 degrees C 73 degrees F</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Set to touch, hours</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dry-hard time, hours</td>
<td>---</td>
<td>---</td>
<td>36</td>
</tr>
<tr>
<td>Fineness of grind, Hegman (ASTM D1210)</td>
<td>5</td>
<td>5</td>
<td>---</td>
</tr>
<tr>
<td>Sag resistance (ASTM D4400)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrometers</td>
<td>---</td>
<td>---</td>
<td>508</td>
</tr>
<tr>
<td>Mils</td>
<td>---</td>
<td>---</td>
<td>20</td>
</tr>
<tr>
<td>Pot life, minutes</td>
<td>---</td>
<td>---</td>
<td>30</td>
</tr>
<tr>
<td>Color of dry film Approximate SAE AMS-STD-595A Off White, and be no darker than color 27778</td>
<td>---</td>
<td>---</td>
<td>Conform</td>
</tr>
<tr>
<td>Contrast ratio, White (ASTM D2805) at 127 micrometers, 5 mils DFT</td>
<td>---</td>
<td>---</td>
<td>0.97</td>
</tr>
<tr>
<td>DFT Gloss, (ASTM D523) 60 degree specular</td>
<td>---</td>
<td>---</td>
<td>85</td>
</tr>
<tr>
<td>VOC * (ASTM D3960)</td>
<td></td>
<td></td>
<td>< 50</td>
</tr>
<tr>
<td>Grams / liter</td>
<td></td>
<td></td>
<td><.42</td>
</tr>
<tr>
<td>Total Lead & Cadmium (ASTM D3335)</td>
<td></td>
<td></td>
<td><.0006 percent</td>
</tr>
<tr>
<td>Total Chromium (ASTM D3718)</td>
<td></td>
<td></td>
<td><.0006 percent</td>
</tr>
<tr>
<td>Fourier transform infrared spectroscopy (FTIR)</td>
<td></td>
<td></td>
<td>Conform +/- 10 percent</td>
</tr>
<tr>
<td>Test</td>
<td>Component A</td>
<td>Component B</td>
<td>Mixed</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Match Manufacturer's Qualification FTIR test scans to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component "A" Liquid (ASTM D7588)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component "B" Liquid (ASTM D7588)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II

COATING QUALIFICATION INSPECTION REQUIREMENTS

Polysulfide Modified Novolac Epoxy Coating System

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, by weight (ASTM D2369), Method E</td>
<td>100 percent</td>
</tr>
<tr>
<td>Mix Ratio (by volume) (Components A and B)</td>
<td>1:1</td>
</tr>
<tr>
<td>Pigment content, percent wt (ASTM D2698)</td>
<td></td>
</tr>
<tr>
<td>Component A</td>
<td>25.0 max.</td>
</tr>
<tr>
<td>Component B</td>
<td>24.0 min.</td>
</tr>
<tr>
<td>Total Components A and B</td>
<td>35.0 max.</td>
</tr>
<tr>
<td>Titanium dioxide content, percent of pigment, Type IV, V (ASTM D476)</td>
<td>> 80</td>
</tr>
<tr>
<td>Volatiles, percent wt (ASTM D2369)</td>
<td></td>
</tr>
<tr>
<td>Component A</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Component B</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Mixed</td>
<td>0.4 max.</td>
</tr>
<tr>
<td>Non-volatile vehicle, percent wt</td>
<td></td>
</tr>
<tr>
<td>Component A</td>
<td>93.0 min.</td>
</tr>
<tr>
<td></td>
<td>98.0 max</td>
</tr>
<tr>
<td>Component B</td>
<td>66.0 min.</td>
</tr>
<tr>
<td></td>
<td>71.0 max</td>
</tr>
<tr>
<td>Coarse particles, percent (ASTM D185)</td>
<td></td>
</tr>
<tr>
<td>Component A & B</td>
<td>0.3 max.</td>
</tr>
<tr>
<td>Pot Life (600 grams at 73 degrees F), Minimum (via x2 viscosity)</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Sag resistance, minimum (ASTM D4400)</td>
<td></td>
</tr>
<tr>
<td>Micrometers</td>
<td>508</td>
</tr>
<tr>
<td>Mils</td>
<td>20</td>
</tr>
<tr>
<td>Color of dry film</td>
<td>Conform</td>
</tr>
<tr>
<td>Approximate SAE AMS-STD-595A Off White, and be no darker than color 27778</td>
<td></td>
</tr>
<tr>
<td>Contrast ratio, White (ASTM D2805) at 127 micrometers, 5 mils</td>
<td>0.97 +/- .01</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>Acceptance Criteria</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Gloss, ((\text{ASTM D523})) at 127 micrometers, 5 mils DFT</td>
<td>85 min.</td>
</tr>
<tr>
<td>Flash Point, Components A & B, Degrees F, (Degrees C), by one of the following methods: ((\text{ASTM D3278}), (\text{ASTM D93})) or ((\text{ASTM D56}))</td>
<td>(>200) (93.3)</td>
</tr>
<tr>
<td>VOC * ((\text{ASTM D3960}))</td>
<td></td>
</tr>
<tr>
<td>Grams / liter</td>
<td>< 50 max.</td>
</tr>
<tr>
<td>Pounds / gallon</td>
<td>(< .42) max.</td>
</tr>
<tr>
<td>Viscosity, Brookfield mPa-s (cp) ((\text{ASTM D2196})), Test Method A, 20 rpm, Spindle 5</td>
<td></td>
</tr>
<tr>
<td>Component A at 77 degrees F (25 degrees C)</td>
<td>6000 - 18000</td>
</tr>
<tr>
<td>Component B at 77 degrees F (25 degrees C)</td>
<td>3000 - 15000</td>
</tr>
<tr>
<td>Mixed (Components A and B) at 77 degrees F (25 degrees C)</td>
<td>2000 - 11000</td>
</tr>
<tr>
<td>Total Lead & Cadmium ((\text{ASTM D3335}))</td>
<td>(< .0006) percent</td>
</tr>
<tr>
<td>Total Chromium ((\text{ASTM D3718}))</td>
<td>(< .0006) percent</td>
</tr>
<tr>
<td>Weight ((\text{ASTM D1475}))</td>
<td></td>
</tr>
<tr>
<td>Component A, Kilograms / liter</td>
<td>1.09 - 1.26</td>
</tr>
<tr>
<td>Component B, Kilograms / liter</td>
<td>1.18 - 1.56</td>
</tr>
<tr>
<td>Mixed, Kilograms / liter</td>
<td>1.18 - 1.38</td>
</tr>
<tr>
<td>Component A, Pounds per gallon</td>
<td>9.1 - 10.5</td>
</tr>
<tr>
<td>Component B Pounds per gallon</td>
<td>9.8 - 13.0</td>
</tr>
<tr>
<td>Mixed, Pounds per gallon</td>
<td>9.8 - 11.5</td>
</tr>
<tr>
<td>Dry Time, ((\text{ASTM D1640})), at 23 degrees C, 73 degrees F</td>
<td></td>
</tr>
<tr>
<td>Set to touch, hours</td>
<td>16 max.</td>
</tr>
<tr>
<td>Dry-hard time, hours</td>
<td>36 max.</td>
</tr>
<tr>
<td>Fineness of grind, Hegman ((\text{ASTM D1210}))</td>
<td></td>
</tr>
<tr>
<td>Component A</td>
<td>5 min.</td>
</tr>
</tbody>
</table>
Table II

COATING QUALIFICATION INSPECTION REQUIREMENTS

Polysulfide Modified Novolac Epoxy Coating System

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component B</td>
<td>5 min.</td>
</tr>
<tr>
<td>Tensile Strength (psi) (ASTM D2370)</td>
<td>> 800</td>
</tr>
<tr>
<td>Elongation at break (ASTM D2370)</td>
<td>> 50</td>
</tr>
<tr>
<td>Hardness (Shore D), 14 Days Cure (ASTM D2240)</td>
<td>> 30</td>
</tr>
<tr>
<td>Adhesion, Steel (ASTM D4541), Test Method E, psi</td>
<td>> 2,000</td>
</tr>
<tr>
<td>Direct Impact Resistance, in/lbs (ASTM D2794)</td>
<td>> 100</td>
</tr>
<tr>
<td>Contact Angle (ASTM D7334), degrees</td>
<td>>= 90</td>
</tr>
<tr>
<td>Distilled Water</td>
<td></td>
</tr>
<tr>
<td>Immersion Testing</td>
<td>Conform</td>
</tr>
<tr>
<td>Per IMMERSION TESTING PROCEDURES shown below</td>
<td></td>
</tr>
</tbody>
</table>

FTIR - upon confirmation of product conformity to requirements, produce a set of three FTIR scans to be used to assess conformity of all subsequent batches of this material, as follows:
(1) Component A Liquid, (ASTM D7588)
(2) Component B Liquid, (ASTM D7588)
(3) Mixed (Components A and B) Dry Film
 (0.01 - 0.03g coating in 0.5 g KBr)
IMMERSION TESTING PROCEDURE

Perform Immersion Test in accordance with NACE TM0174, revised as follows:

- Use Procedure B
- Test solutions - 1/3 reagent, 1/3 water, 1/3 air, by volume
- Constant-temperature bath at 60 degrees C 140 degrees F
- Pre-exposure conditioning - cure coating at 25 degrees C 77 degrees F for 14 days
- Exposure period - 6 months with inspections at 90 Days and 180 Days
- Panels - two panels for each test - one for test and one for control
 - Carbon steel approximately 13 cm 5.0 in. long, 3 cm 2.0 in. wide and a minimum of 5 mm 0.25 in. thick.
 - Round edges to minimum 1.6 mm 0.063 in. radius.
 - SSPC SP 10/NACE No. 2 "Near White Blast Profile" with a 50 to 75 micron 2 to 3 mil surface profile.
 - Two coats of coating at approx. 12 to 15 mils, total 24 mils minimum, 30 mils maximum.

Inspection
- Initial inspection before testing - per NACE TM0174, paragraph 6.1 and record weight of each panel in grams
- Interim and final inspections - Condition panels per NACE TM0174, paragraph 6.2.1, 6.2.1.1, 6.2.1.2, 6.2.2, 6.2.2.1, 6.2.2.1.1, 6.2.2.1.2, 6.2.2.2, and ASTM D714, and record weight of each panel in grams

Report - per NACE TM0174, Section 7

Acceptance criteria
- Allowable weight gain/loss is +/- 5 percent
- Allowable blistering - ASTM D714, No. 10 (no visible blisters)
- Allowable color change - see following table

List of test solutions and allowable color change

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Type Water</th>
<th>Allowable Color Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP-5 w/.20 percent deicing</td>
<td>Deionized water</td>
<td>Discoloration</td>
</tr>
<tr>
<td>JP-5 w/.20 percent deicing</td>
<td>Seawater</td>
<td>Discoloration</td>
</tr>
<tr>
<td>JP-8 w/.20 percent deicing</td>
<td>Deionized water</td>
<td>Discoloration</td>
</tr>
<tr>
<td>JP-8 w/.20 percent deicing</td>
<td>Seawater</td>
<td>Discoloration</td>
</tr>
<tr>
<td>F-76</td>
<td>Deionized water</td>
<td>Discoloration</td>
</tr>
<tr>
<td>F-76</td>
<td>Seawater</td>
<td>Discoloration</td>
</tr>
</tbody>
</table>

Deicing Agent - Diethylene Glycol Monomethyl Ether

Synthetic seawater (Sea H2O) (ASTM D1141), Formula A, Table X1.1, Section 6

* The Volatile Organic Compound (VOC) content must be determined in accordance with ASTM D3960. Multi-Component coatings will be blended together in the specified mixing ratios prior to testing.
Any products may be qualified by providing independent testing results to the requirements in this table. Coating Systems that currently meet these requirements and do not require COATING QUALIFICATION INSPECTION testing until January 31, 2016 include the following products only:

Premier Coating Systems, Inc (904) 824-1799 Phone, (904) 403-6113 Cell
PCS-#1100 Modified Epoxy Novolac Polysulfide Coating

Polyspec-Thiokol (281) 397-0033 Phone, (281) 703-8417 Cell
Thiokol FNEC 2515 Flexible Novolac Epoxy

Table III
QA/QC Reporting Program Requirements

Administrative Controls:

Administrators must be able to turn on and off unique access to specific jobs and contracts.

Administrators must be able to remotely enable / disable access for users.

All enabled users must view the same active report in real time. There must be no opportunity for multiple versions of the same report to exist.

Administrators must be able to setup unique approval processes for each project and promote or remove unique people from this process at any time.

Administrators must be able to associate contract specific documents and specification limits quickly and easily.

Administrators must be able to associate PDS, SDS, blueprints, scope of work and contracts uniquely to each job.

Objectivity Controls:

Data Entry fields must be by multi-selectable choices, numeric keypads, pickers and skip logic to ensure repeatable data entry in a way that makes running analytics and metrics easy and objective.

The program / hardware package must be able to communicate with inspection devices that provide (batch) data export capability such as Elcometer and Defelsko gages.

Must automatically time, date and GPS stamp all reports without input or interference from the inspector.

Real Time Syncing:

Forms must be available for approved associates to view at all times.

Retrievable storage must be provided for all job related reports and documents for a minimum time of 5 years from completion of the job or project. Archiving of the documents after 5 years will be the responsibility of the Government.

Document Library:

All reports must be in searchable and annotatable PDF format.
The Administrator must be able to upload and annotate job specific reports in real time. Examples include but not limited to Safety Data Sheets, Product Data Sheets and Blueprints.

Annotations / modifications must be locked and associated with the document. Only the Administrator has rights to modify or delete annotations or allow modifications to the document library especially all related inspection reports.

Customization:

The program must be capable of being customized to specific jobs, contracts or specifications.

-- End of Section --