PART 1 GENERAL

1.1 REFERENCES
1.2 SYSTEM DESCRIPTION
 1.2.1 Design Requirements
 1.2.2 Performance Requirements
 1.2.3 Submittal Requirement Details
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
1.5 DELIVERY, STORAGE, AND HANDLING
1.6 SCHEDULING
1.7 WARRANTY

PART 2 PRODUCTS

2.1 MATERIALS AND COMPONENTS
2.2 ELECTRICAL WIRING
2.3 BULLET-RESISTANT STEEL PERSONNEL DOORS
 2.3.1 Fire Rated Doors
 2.3.2 Sound Rated Doors
 2.3.3 Door and Frame Fabrication
 2.3.4 Sidelight Frames
 2.3.5 Preparation for Hardware
 2.3.6 Hardware
 2.3.6.1 Mortise Locks and Latchsets
 2.3.6.2 Hinges
 2.3.6.3 Electric Strikes
 2.3.6.4 Door Closers
 2.3.6.5 Door Stops and Holders
 2.3.7 Frame Anchors
 2.3.8 Weatherstripping
 2.3.9 Louvers for Doors
2.4 BULLET-RESISTANT LOUVERS
2.5 BULLET-RESISTANT STEEL BIFOLD DOORS, FRAMES, AND HARDWARE
 2.5.1 Testing
 2.5.2 Bifold Doors
2.5.3 Power Operators
 2.5.3.1 Pneumatic Operators
 2.5.3.2 Electric Operators
2.5.4 Safety Device
2.6 BULLET-RESISTANT STEEL WINDOWS
 2.6.1 Glazing Materials
 2.6.1.1 Laminated Glass
 2.6.1.2 Acrylic Plastic Sheets
 2.6.1.3 Polycarbonate Plastic Sheets
 2.6.1.4 Glass/Plastic Laminate Glazing
 2.6.1.5 Glass/Plastic Air-Gap Glazing
 2.6.2 Adhesive Interlayer Materials
 2.6.3 Sealants
 2.6.4 Deal Trays
2.7 BULLET-RESISTANT SPEAKING APERTURES
2.8 BULLET-RESISTANT GUNPORTS
2.9 BULLET-RESISTANT PASS-THROUGH DRAWER
2.10 BULLET-RESISTANT PREFABRICATED MODULAR ENCLOSURE
2.11 ACCESSORIES
2.12 LABELING
2.13 SHOP/FACTORY FINISHING
 2.13.1 Ferrous Metal
 2.13.2 Galvanizing
 2.13.3 Aluminum

PART 3 EXECUTION

 3.1 EXAMINATION
 3.2 FRAMED INSTRUCTIONS
 3.3 INSTALLATION
 3.4 FASTENERS
 3.5 CORROSION PROTECTION - DISSIMILAR MATERIALS
 3.6 ELECTRICAL WORK
 3.7 ADJUSTING/CLEANING

-- End of Section Table of Contents --
NOTE: This section covers requirements for bullet resistant components including doors, windows, louvers, gunports, pass drawers, deal trays, and speaking apertures.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature
to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**
The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL, INC. (AMCA)

AMCA 500-D (2018) Laboratory Methods of Testing Dampers for Rating

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

AAMA 611 (2014) Voluntary Specification for Anodized Architectural Aluminum

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2020) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM D542 (2014) Index of Refraction of Transparent Organic Plastics

ASTM D635 (2018) Standard Test Method for Rate of
Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position

ASTM D792 (2013) Density and Specific Gravity (Relative Density) of Plastics by Displacement

ASTM D882 (2012) Tensile Properties of Thin Plastic Sheetie

ASTM D905 (2008; E 2009) Strength Properties of Adhesive Bonds in Shear by Compression Loading

ASTM D1003 (2013) Haze and Luminous Transmittance of Transparent Plastics

ASTM D1922 (2015; R 2020) Propagation Tear Resistance of Plastic Film and Thin Sheeting by Pendulum Method

ASTM D3595 (2014) Polychlorotrifluoroethylene (PCTFE) Extruded Plastic Sheet and Film

Techniques of Ultraviolet-Visible Quantitative Analysis

ASTM E204 (1998; R 2007) Identification of Material by Infrared Absorption Spectroscopy, Using the ASTM Coded Band and Chemical Classification Index

ASTM E831 (2014) Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis

ASTM F428 (2019) Intensity of Scratches on Aerospace Glass Enclosures

ASTM F521 (2016) Standard Test Methods for Bond Integrity of Transparent Laminates

ASTM F791 (1996; R 2013) Stress Crazing of Transparent Plastics

ASTM F1233 (2008; R 2013) Security Glazing Materials and Systems

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.1 (2016) Butts and Hinges

ANSI/BHMA A156.4 (2013) Door Controls - Closers

ANSI/BHMA A156.5 (2020) Cylinder and Input Devices for Locks

ANSI/BHMA A156.8 (2015) Door Controls - Overhead Stops and Holders

ANSI/BHMA A156.13 (2017) Mortise Locks & Latches Series 1000

ANSI/BHMA A156.16 (2018) Auxiliary Hardware

ANSI/BHMA A156.18 (2016) Materials and Finishes
ANSI/BHMA A156.115 (2016) Hardware Preparation in Steel Doors and Steel Frames

GLASS ASSOCIATION OF NORTH AMERICA (GANA)

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

NAAMM HMMA 810 (2009) Hollow Metal Doors
NAAMM HMMA 820 (2008) Hollow Metal Frames
NAAMM HMMA 830 (2002) Hardware Selection for Hollow Metal Doors and Frames
NAAMM HMMA 840 (2007) Installation and Storage of Hollow Metal Doors and Frames
NAAMM HMMA 850 (2014) Fire Rated Hollow Metal Doors and Frames

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V
NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures
NEMA MG 1 (2018) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2020; ERTA 20-1 2020; ERTA 20-2 2020; TIA 20-1; TIA 20-2; TIA 20-3; TIA 20-4) National Electrical Code

NATIONAL INSTITUTE OF JUSTICE (NIJ)

NIJ Std 0108.01 (1985) Ballistic Resistant Protective Materials

NAVAL FACILITIES ENGINEERING AND EXPEDITIONARY WARFARE CENTER (NAVFAC EXWC)

SECTION 08 34 02 Page 7
1.2 SYSTEM DESCRIPTION

**

NOTE: In the event that the designer chooses to design and detail the component for shop fabrication, the materials and construction should be specified in Section 08 31 00 ACCESS DOORS AND PANELS.

Bullet-resisting ratings of metals shall be determined by ballistics tests in accordance with the threat specified in paragraph COMPONENT TEST REQUIREMENTS.

**

1.2.1 Design Requirements

Provide bullet resistant components conforming to the requirements specified for the particular items and, as much as possible, complete assemblies by a single manufacturer.

1.2.2 Performance Requirements

All items specified shall be bullet resistant to the threat specified. Movable and operable components shall operate smoothly and freely. When a reference for performance is listed, operation shall conform to referenced requirements.

1.2.3 Submittal Requirement Details

The following shall be submitted:

a. Manufacturer's descriptive data and installation instructions. Descriptive data shall include cleaning instructions as recommended by the plastic sheet manufacturer.

b. Spare parts data for each bifold door, after approval of the related submittals, and not later than [_____] months prior to the date of beneficial occupancy. Include a complete list of parts and supplies, with current unit prices and supply source.

c. Air flow calculations for louvers and louvers in doors.

d. Lists including schedule of all components to be incorporated in the work with manufacturer's model or catalog numbers, specification and drawing reference numbers, warranty information, threat level certified, [fire ratings,] [sound transmission coefficient ratings,]
[insulation "U" value,] and number of items provided.

e. Evidence that standard products essentially duplicate items that have been satisfactorily in use for two years or more, including name of purchasers, locations of installations, dates of installations, and service organizations.

f. Manufacturer's certificates attesting that all components conform to the requirements on drawings and in specifications. Submittal shall include testing reports from independent testing laboratories indicating conformance to regulatory requirements.

[Six] [_____] copies of operation and [six] [_____] copies of maintenance manuals for the bifold doors furnished. The manuals shall be approved prior to beneficial occupancy.

1.3 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [Information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

**
NOTE: Submittals SD-03 and SD-10, are to be used only when bifold doors are part of the work. Edit out those paragraphs if no bifold doors are required in the work.
**

SD-02 Shop Drawings
Installation; G[, [______]]

SD-03 Product Data
Bullet Resistant Components
Bifold Doors

SD-07 Certificates
Bullet Resistant Components

SD-10 Operation and Maintenance Data
Bullet Resistant Components; G[, [______]]

1.4 QUALITY ASSURANCE

**
NOTE: The threat must be identified before selection of the applicable test standard from Table I. If project criteria includes more than one threat, each component will be correlated with the appropriate regulation or standard it is required to meet. Coordinate with the drawings.

The design threat must be determined based on the importance of the assets in the facility, facility location, history, a likelihood of attacks at the location, and many other factors. The process used to determine design criteria for applicable threat and design guidance to resist the threat is provided in the manuals listed below:

UFC 4-020-01 Security Engineering – Project Development

UFC 4-020-2FA Security Engineering – Concept Design

UFC 4-020-3FA Security Engineering – Final Design

These manuals are marked "For Official Use Only".

SECTION 08 34 02 Page 10
and they may be ordered by Department of the Army agencies from the U.S. Army Publications Distribution Center, 2800 Eastern Blvd., Baltimore, MD 21220–2896.

The identified threat criteria should be recorded in the Design Analysis for the project. The designer will indicate the applicable threats, selected from Table I below, under paragraph COMPONENT TEST REQUIREMENTS or in door, window, or other component schedules as appropriate.

There is no single, uniform standard for bullet resistance. Each testing agency has its own parameters. Variables include firing distance to the test component; number of shots fired and proximity to each other; and failure criteria, such as penetration, amount of spall or further operability of the item. Most ballistic threats are based on complete penetration by projectiles or fragments of projectiles through a construction material, or on spall of the material to the degree that injury would be caused to a person standing behind the material. Some standards require only material specimen testing rather than testing of complete assemblies. This enables a designer to specify materials as bullet resistant, but does not ensure that fasteners, anchors, frames, etc., are bullet resistant. Designer should:

(1) Verify criteria requirements, define threats using standards which test complete assemblies and specify threat accordingly, or

(2) Specify that all materials and connections be certified to resist the specified threat.

Some standards also include different temperature requirements depending upon whether the component is for indoor or outdoor installation. Verify testing requirements with specification of components.

Designer will also note adverse environmental conditions which require galvanized coatings on carbon steel, stainless steel, or criteria such as temperature, weather, humidity, ventilation, and illumination required for proper installation or application. If necessary, designer will explain existing conditions through statements or by references to documents where information such as existing structures or geophysical reports can be found.

Most bullet-resistant components are custom fabricated from manufacturer's standard designs. Coordinate installation details with adjacent construction.
<table>
<thead>
<tr>
<th>STANDARD THREAT LEVEL</th>
<th>CALIBER</th>
<th>WEAPON</th>
<th>BULLET WEIGHT & TYPE</th>
<th>VELOCITY (FT/SEC)/ NO. SHOTS RESISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIJ- TYPE I</td>
<td>.22</td>
<td>Handgun 6-6.5 in. Barrel</td>
<td>40 gr. LRHV Lead</td>
<td>1010-1090/5 Shots</td>
</tr>
<tr>
<td>and</td>
<td>.38 Special</td>
<td>Handgun 6-6.5 in. Barrel</td>
<td>158 gr. LRN</td>
<td>800-900/5 Shots</td>
</tr>
<tr>
<td>UL-MPSA</td>
<td>.38 Super</td>
<td>Pistol Automatic 5 in. Barrel</td>
<td>130 gr. FMJ</td>
<td>1152-1344/3 Shots</td>
</tr>
<tr>
<td>ASTM- Submachine Gun</td>
<td>9 mm. Parabellum</td>
<td>124 gr.</td>
<td>1350-1450/3 Shots</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>12 gauge 3 in. Magnum (adjunct)</td>
<td>No. 00 Buckshot</td>
<td>1265-1465/Variable</td>
<td></td>
</tr>
</tbody>
</table>

(UFC 4-020-01 Low Severity Level, Ballistics Tactic):

<table>
<thead>
<tr>
<th>HPW</th>
<th>Submachine Gun</th>
<th>115 gr. FMJ</th>
<th>1350-1450/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum and 1 each @ Standards Specified or SD Locations</td>
<td>Minimum Submachine Gun (S) and 12 gauge Shotgun No. 4 Buckshot</td>
<td>1275-1375/3</td>
<td></td>
</tr>
<tr>
<td>NIJ- TYPE IIA</td>
<td>.357 Magnum Handgun 4-4.75 in.</td>
<td>158 gr.</td>
<td>1200-1300/5 Shots</td>
</tr>
<tr>
<td>and</td>
<td>9 mm. Handgun 4-4.75 in.</td>
<td>124 gr.</td>
<td>1050-1130/5 Shots</td>
</tr>
<tr>
<td>STANDARD THREAT LEVEL</td>
<td>CALIBER</td>
<td>WEAPON & TYPE</td>
<td>VELOCITY (FT/SEC) / NO. SHOTS RESISTED</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Barrel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM-</td>
<td>.44 Magnum</td>
<td>.44 Magnum</td>
<td>240 gr.</td>
</tr>
<tr>
<td>Handgun (.44 Magnum)</td>
<td>and 12 gauge</td>
<td>3 in. Magnum (adjunct)</td>
<td>1265–1465/Variable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM-</td>
<td>.38 Super</td>
<td>.38 Super</td>
<td>130 gr.</td>
</tr>
<tr>
<td>Handgun (.38 Super)</td>
<td>and 12 gauge</td>
<td>3 in. Magnum (adjunct)</td>
<td>1265–1465/Variable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIJ-</td>
<td>.357 Magnum</td>
<td>.357 Magnum</td>
<td>158 gr.</td>
</tr>
<tr>
<td>TYPE II</td>
<td>Handgun</td>
<td>6–6.5 in.</td>
<td>JSP</td>
</tr>
<tr>
<td></td>
<td>and 9 mm.</td>
<td>Handgun</td>
<td>124 gr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4–4.75 in.</td>
<td>FMJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barrel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL-HPSA</td>
<td>.357 Magnum</td>
<td>.357 Magnum</td>
<td>158 gr.</td>
</tr>
<tr>
<td></td>
<td>Handgun</td>
<td>8.35 in.</td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>Barrel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIJ-</td>
<td>.44 Magnum</td>
<td>.44 Magnum</td>
<td>240 gr.</td>
</tr>
<tr>
<td>TYPE IIIA</td>
<td>Handgun</td>
<td>5.5–</td>
<td>Lead SWC</td>
</tr>
<tr>
<td></td>
<td>and 9 mm.</td>
<td>6.25 in.</td>
<td>Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barrel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Submachine</td>
<td>Submachine</td>
<td>124 gr.</td>
</tr>
<tr>
<td></td>
<td>Gun 9.5–</td>
<td>Gun 9.5–</td>
<td>FMJ</td>
</tr>
<tr>
<td></td>
<td>10.25 in.</td>
<td>10.25 in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barrel</td>
<td>Barrel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(UFC 4-020-01 Medium Severity Level, Ballistics Tactic):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL-SPSA</td>
<td>.44 Magnum</td>
<td>.44 Magnum</td>
<td>240 gr.</td>
</tr>
<tr>
<td></td>
<td>Handgun</td>
<td>6.5 in.</td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>Barrel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I - TABLE OF RELATIVE BALLISTIC STANDARDS

<table>
<thead>
<tr>
<th>STANDARD THREAT LEVEL</th>
<th>CALIBER</th>
<th>WEAPON</th>
<th>BULLET WEIGHT & TYPE</th>
<th>VELOCITY (FT/SEC)/ NO. SHOTS RESISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL-HPR</td>
<td>.30-'06</td>
<td>Rifle Bolt Action 24 in. Barrel</td>
<td>220 gr. Soft Point</td>
<td>2169-2531/ 1 Shot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM-7.62x51 mm. Rifle (.308 Winchester) and 12 gauge 3 in. Magnum (adjunct)</td>
<td>M-80 Ball</td>
<td>2750-2850/ 3 Shots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIJ-TYPE III 7.62x51 mm. Rifle NATO</td>
<td>147 gr. Ball</td>
<td>2700-2800/ 5 Shots</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(SEM High Severity Level, Ballistics Tactic):

<table>
<thead>
<tr>
<th>HPW 5.56x45 mm. Rifle NATO Standard</th>
<th>55 gr.</th>
<th>3135-3235/ 1 @</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Locations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.62x51 mm. NATO Rifle</td>
<td>147 gr.</td>
<td>2700-2800/ 2 @</td>
</tr>
<tr>
<td>Specified Locations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 gauge Shotgun No. 4</td>
<td>1275-1375/ 3-6 @</td>
<td></td>
</tr>
<tr>
<td>Specified Locations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.56 mm. NATO Rifle Military</td>
<td>55 gr.</td>
<td>3135-3235/ 2</td>
</tr>
<tr>
<td>Minimum and 1 each @</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 08 34 02 Page 14
TABLE I - TABLE OF RELATIVE BALLISTIC STANDARDS

<table>
<thead>
<tr>
<th>STANDARD THREAT LEVEL</th>
<th>CALIBER</th>
<th>WEAPON</th>
<th>BULLET WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifle (R)</td>
<td>5.56 mm.</td>
<td>Rifle</td>
<td>63 gr.</td>
</tr>
<tr>
<td>Specified Locations</td>
<td>Optional</td>
<td>M-855</td>
<td>2950-3050</td>
</tr>
<tr>
<td></td>
<td>7.62 mm.</td>
<td>Rifle</td>
<td>147 gr.</td>
</tr>
<tr>
<td>Specified Locations</td>
<td>NATO</td>
<td>M-80</td>
<td>2700-2800/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25-1/2 in.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ball</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2750-2850/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 Shots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No. 4 shot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1275-1375/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(00 Buckshot)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 each @</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 gauge</td>
<td>Shotgun</td>
<td>No. 00</td>
</tr>
<tr>
<td>Specified Locations</td>
<td>2-3/4 in.</td>
<td></td>
<td>1265-1465/</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td></td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM-Rifle AP</td>
<td>.30-'06</td>
<td>M2AP</td>
<td>2725-2825/</td>
</tr>
<tr>
<td></td>
<td>and</td>
<td></td>
<td>3 Shots</td>
</tr>
<tr>
<td></td>
<td>12 gauge</td>
<td>No. 00</td>
<td>1265-1465/</td>
</tr>
<tr>
<td></td>
<td>3 in.</td>
<td>Buckshot</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>Magnum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(adjunct)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(SEM Very High Severity Level, Ballistics Tactic):

<table>
<thead>
<tr>
<th>VELOCITY (FT/SEC)/ NO. SHOTS RESISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2700-2800/</td>
</tr>
<tr>
<td>3-6 @</td>
</tr>
</tbody>
</table>
TABLE I - TABLE OF RELATIVE BALLISTIC STANDARDS

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>THREAT</th>
<th>LEVEL</th>
<th>CALIBER</th>
<th>WEAPON</th>
<th>BULLET WEIGHT</th>
<th>NO. SHOTS</th>
<th>VELOCITY (FT/SEC)/</th>
<th>RESISTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Locations</td>
<td>or</td>
<td>.30-'06</td>
<td>Rifle</td>
<td>165 gr.</td>
<td>M2 AP</td>
<td>2800-2900/</td>
<td>3.6 @</td>
<td></td>
</tr>
<tr>
<td>Specified Locations</td>
<td>and</td>
<td>12 gauge</td>
<td>Shotgun</td>
<td>No. 4 shot</td>
<td>Buckshot</td>
<td>1275-1375/</td>
<td>3.6 @</td>
<td></td>
</tr>
<tr>
<td>Specified Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD Rifle (AP)</td>
<td>.30-'06 (Optional)</td>
<td>Rifle</td>
<td>165 gr.</td>
<td>M2 AP</td>
<td>2750-2850/</td>
<td>1 each @</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 gauge 2-3/4 in. (Optional)</td>
<td>Shotgun</td>
<td>No. 4 shot (00 Buckshot)</td>
<td>1 each @</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFESC SAMIT (AP)</td>
<td>7.62x51 mm. NATO Machine gun Light</td>
<td>150 gr.</td>
<td>M61 AP</td>
<td>2800/</td>
<td>25 Shots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIJ- TYPE IV</td>
<td>.30-'06</td>
<td>Rifle</td>
<td>166 gr.</td>
<td>22 in. Barrel</td>
<td>2750-2850/</td>
<td>1 Shot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABBREVIATIONS:

AP - Armor Piercing
LRN - Lead Round Nose Bullet
FMJ - Full Metal Jacketed
MPSA - Medium Power Small Arms
HPR - High Power Rifle
HP SA - High Power Small Arms
SPSA - Super Power Small Arms
JSP - Jacketed Soft Point
US - United States
LRHV - Long Rifle High Velocity

BALLISTIC TESTING STANDARDS:

ASTM - American Society for Testing and Materials;

NFESC-SAMIT - Naval Facilities Engineering and
Expeditionary Warfare Center (NAVFAC EXWC),
Department of the Navy; NAVFAC EXWC CR 80.025
"Testing and Evaluation of Attack Resistance and
Hardening Retrofits of Marine Barrack Construction
Types to Small Arms Multiple Impact Threat (SAMIT)
1980.

NIJ - National Institute of Justice; NIJ Standard
0108.01, "Ballistic Resistant Protective Materials,
1985.

SD - Department of State; SD Std-01.01 Rev F,
"Certification Standard Forced Entry and Ballistic
Resistance of Structural Systems Test Procedures,

UL - American National Standards
Institute/Underwriters Laboratories, Inc.; ANSI/UL

**

Provide Bullet-resistant components at locations shown on the drawings.
Bullet-resistant components [where indicated] [_____] shall be in
accordance with [[NIJ Type I] [NIJ Type IIA] [NIJ Type II] [NIJ Type IIIA]
of NIJ Std 0108.01.] [[UL MPSA] [UL HPSA] [UL SPSA] [UL HPR] of UL 752.]
[[ASTM Submachine Gun] [ASTM Handgun (.44 Magnum)] [ASTM Handgun (.38
Super)] [ASTM Rifle (.44 Magnum)] [ASTM Rifle (AP)] of ASTM F1233.] [[HPW
Minimum Standard] [HPW Rifle Standard] [HPW Rifle AP Standard].] [[SD
Submachine Gun (S)] [SD Military Rifle (R)] [SD Rifle (AP)] of SD Std-01.01.]
[the test requirement of [NFESC SAMIT] [NFESC SAMIT (AP)] of
NAVFAC EXWC CR 80.025.]

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver components to the job site with the brand, name, and model number
clearly marked thereon. All components shall be delivered, stored and
handled so as not to be damaged or deformed, and in accordance with
ASTM D3951. Doors, windows, and louvers shall be handled carefully to
prevent damage to the faces, edges, corners, ends, and glazing. Abraded,
scarred, or rusty areas shall be cleaned, repaired, or replaced
immediately upon detection. Replace damaged components that cannot be
restored to like-new condition. Components and equipment shall be stored
in a dry location on platforms or pallets that are ventilated adequately,
free of dust, water, and other contaminants, and stored in a manner which
permits easy access for inspection and handling.

SECTION 08 34 02 Page 17
1.6 SCHEDULING

Glazing of bullet-resistant windows, except factory-glazed units, shall occur only after all concrete, masonry, ceiling, electrical, mechanical, plumbing and adjacent finish work has been completed to avoid damage to the glazing material. Cover factory-glazed windows to protect them from damage during adjacent finish work.

1.7 WARRANTY

Manufacturer's warranty for [_____] [5] years shall be furnished for glazing materials. Warranty shall provide for replacement and installation of glazing if delamination, discoloration, or cracking, or crazing occurs.

PART 2 PRODUCTS

2.1 MATERIALS AND COMPONENTS

Provide materials and components which are the standard products of a manufacturer regularly engaged in the manufacture of such products, unless otherwise indicated and detailed on the drawings, and that essentially duplicate items that have been in satisfactory use for at least two years prior to bid opening. Components shall be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site, or by the manufacturer. Where components are detailed on the drawings and do not conform to a manufacturer's standard product, components shall be constructed of manufacturer's standard materials which conform to the specified ballistic standard or test. Bullet-resistant component assemblies shall be of size and type indicated and shall be provided at locations shown. All items included for exterior installation shall be designed to resist water penetration or entrapment.

2.2 ELECTRICAL WIRING

Provide electrical wiring and conduit as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.3 BULLET-RESISTANT STEEL PERSONNEL DOORS

Door/frame assemblies shall be factory fabricated units, designed to be bullet resistant to the specified threat level, and shall conform to applicable requirements of NAAMM HMMA 810, NAAMM HMMA 820, NAAMM HMMA 862, this section, and requirements indicated on drawings. Frames shall be furnished by the door fabricator. Door silencers shall be provided to cushion the impact of the door on the frame so that steel to steel contact is not made during closing. Exterior doors shall be completely weatherstripped, weatherproof, and fully insulated. Exterior doors shall close at flush top and bottom edges. Tops of doors shall be sealed against water penetration.

2.3.1 Fire Rated Doors

Provide fire rated doors at locations shown on the drawings. Door assemblies shall bear the identifying label of the Underwriters Laboratories, or a nationally recognized testing agency qualified to perform certificate programs, indicating that the units conform to the
requirements for Special Purpose Type Fire Doors in accordance with NFPA 80. Construct fire rated doors in accordance with NAAMM HMMA 850. Certificate may be furnished in lieu of label. For oversized fire doors, certificate shall state that doors are manufactured in compliance with the requirements for doors of this type and class, and have been tested and meet the requirements for the class indicated.

2.3.2 Sound Rated Doors

Provide sound rated doors at locations shown on the drawings. Door assemblies shall consist of door, hardware, frame, threshold, and adjustable gaskets. The assembly shall have a Sound Transmission Class (STC) rating [of] [_____] [as shown on the drawings] when tested in accordance with ASTM E90. [Manufacturer's descriptive data, and certificate or test report showing compliance with the specified requirements shall be submitted.] [Perform a field test on the door assembly to determine if the STC is within 2 points of the equivalent laboratory tested product. If the test reveals a less than acceptable STC, replace the door assembly and test the new assembly to provide an acceptable rating.]

2.3.3 Door and Frame Fabrication

Exercise special care during welding to prevent warping. Design of stiffeners and attachment method of interior armor plates shall be such that heat-affected areas, which result from welding, do not allow a potential ballistic leak in product construction. The subsurfaces shall be flat, parallel, and plumb after fabrication. Construct doors and frames of [bullet-resistant steel] [or] [hollow metal with internal armoring] and the completed assembly shall meet the specified regulatory requirements. Doors shall be reinforced [and fully insulated] in accordance with manufacturer's design. Steel door frames shall be mitered or coped and welded at the corners with all welds ground smooth. Corner assemblies shall be designed to eliminate ballistic penetrable seams. Where structural channel frames are used, stops shall be made of 38 mm 1-1/2 inch by 16 mm 5/8 inch bars welded or top screwed to the frame at not more than [150] [300] mm [6] [12] inch centers. Screws shall be countersunk. Stops shall be so placed that full contact with the frame will be assured. Any necessary reinforcements shall be made and the frames shall be drilled and tapped as required for the hardware. Frame channels shall be mitered or coped and welded at corners with full penetration groove welds. Exposed welds shall be dressed smooth.

2.3.4 Sidelight Frames

Construct sidelight frames using door frame sections as shown on the drawings. Stop height and rabbet depth shall be as required to accommodate the bullet-resistant glazing material specified. Exterior (attack side) glazing stops shall be welded or integral to the frame. Interior (protected side) glazing stops shall be removable stops attached with high-strength alloy steel machine screws with tamper-resistant heads.

2.3.5 Preparation for Hardware

Prepare doors and frames for hardware in conformance with Section 08 71 00 DOOR HARDWARE, and NAAMM HMMA 830. Drilling and tapping of frames for surface applied hardware shall be performed in the field.
2.3.6 Hardware

**
NOTE: The hardware options listed below apply only to those bullet resistant door assemblies for which extra-heavy-duty standard commercial hardware is suitable. This includes the following types of doors:

(1) Single and pairs of swinging personnel doors, up to 1.2 m 4 feet - 0 inches by 2.44 m 8 feet - 0 inches per leaf.

(2) Bullet-resistant threat levels up to maximum listed in paragraph COMPONENT TEST REQUIREMENTS.

(3) Bullet-resistant only or combined bullet and fire resistive, manual or powered opening.

For the following assemblies, custom or specially designed hardware should be specified (with manufacturer's guidance):

(1) Oversized single and pairs of swinging doors, such as those for vehicle entry.

(2) Sliding doors of all types.

(3) Folding doors of all types.

(4) Upward moving doors of all types.

(5) Bullet-resistant threat levels above the maximum listed in paragraph COMPONENT TEST REQUIREMENTS.

(6) Bullet-resistant doors of any type with additional forced entry blast, missile or pressure resistive requirements.

For sound rated doors rated for STC 52 or more with cypher lock requirements, designers should specify electronic cypher locks rather than mechanical locks.

Where balanced magnetic switches (BMS) are required on door/frames, specify shop drilled hardware preparation and installation of magnets.

**

Hardware for bullet-resistant door assembly shall be provided by the door assembly manufacturer to ensure a complete bullet resistant assembly. Where test standard requires hardware to be tested with the door assembly, hardware shall be included in the labeling and/or test certification. Keying shall be as specified in Section 08 71 00 DOOR HARDWARE.

2.3.6.1 Mortise Locks and Latchsets

Mortise lock and latchsets shall be series 1000, operational Grade 1, Security Grade 1 or 1A, functions as indicated in the Hardware Schedule,
and shall conform to ANSI/BHMA A156.13. Strikes for all mortise locks and latches, including deadlocks, shall conform to ANSI/BHMA A156.115 except strikes for security doors shall be rectangular, without lip. Mortise-type locks and latches for doors 44 mm 1-3/4 inches thick and over shall have adjustable bevel fronts or otherwise conform to the shape of the door. Mortise locks shall have armored fronts. Mortise locks and latches shall have full escutcheon, thru-bolted, extruded stainless steel trim.

2.3.6.2 Hinges

All 2.1 m 7 feet - 0 inch high doors shall be equipped with a minimum of three Grade 1 hinges in accordance with ANSI/BHMA A156.1, minimum size 125 mm 5 inches high, heavy, double or triple weight as required for weight of door, or a single, continuous extra-heavy-duty piano-type hinge sized to carry the weight of the door without sagging. For each additional 300 mm 12 inches of door height beyond 2.1 m 7 feet - 0 inch, provide minimum of one more hinge shall be provided. Doors greater than 2.1 m 7 feet - 0 inches shall be equipped with a minimum of four hinges. Hinges shall be full mortise, half mortise, full surface or half surface design as recommended by manufacturer for frame and door design, and shall be tamperproof or mounted on the inside face of the door. Provide hinge manufacturer's certification that the hinge supplied meets all applicable test requirements of ANSI/BHMA A156.1, type, number of hinges specified, and that the hinge is suitable for the size and weight of the door assembly on which it will be utilized. If continuous piano-type hinges are provided with door, furnish independent laboratory reports covering both the door weight capacity and a 2,500,000-cycle testing to match ANSI/BHMA A156.1 Grade 1 requirements. Interior door hinges shall be furnished in steel, prime coated. Exterior door hinges shall be nonferrous metal or stainless steel.

2.3.6.3 Electric Strikes

Provide electric strikes conforming to ANSI/BHMA A156.5, Grade 1. Furnish strike boxes with dead bolt and latch strikes for Grade 1.

2.3.6.4 Door Closers

**

NOTE: Due to the excessive weight of bullet-resistant doors, they will present a safety hazard if allowed to close unchecked. Coordinate with manufacturers to ensure selection of proper size and types of closers.

**

Closers shall be extra heavy duty of size and type recommended by manufacturer, and shall be Grade 1 in accordance with ANSI/BHMA A156.4. Door closer finish shall be [600] [689] [690] [691] [692] in accordance with ANSI/BHMA A156.18.

2.3.6.5 Door Stops and Holders

**

NOTE: Due to the excessive weight of bullet-resistant doors, they will present a safety hazard if allowed to have an uncontrolled opening cycle, particularly exterior out-swinging doors
subject to wind pressure. Coordinate with manufacturers to ensure selection of proper size and type of stops and holders. If hold-open feature is not required or permitted (fire doors) specify equal grade stop without hold-open feature.

Door stops [and holders] shall be extra heavy duty, [Type C08511 in accordance with ANSI/BHMA A156.8] [[Type L11251] [and] [Type L11271] in accordance with ANSI/BHMA A156.16] [____].

2.3.7 Frame Anchors

Provide jamb anchors with door/frame assembly conforming to manufacturer's recommendations to ensure complete bullet-resistant assemblies. Make provisions to stiffen the top member of all spans over 900 mm 3 feet. The bottom of the frames shall extend below the finish floorline and shall be secured to the floor slab by means of angle clips and expansion bolts. Floor clips are not required for installation in pre-built or existing openings.

2.3.8 Weatherstripping

Provide head and jamb with compression-type neoprene bulb or closed-cell neoprene adjustable-type weatherstripping. Door stops shall be weatherstripped with a surface-mounted sponge neoprene strip in bronze housing not less than 1.78 mm 0.070 inch thick installed to make contact with the door. Install weatherstripping in conformance with the manufacturer's directions after completion of finish painting.

2.3.9 Louvers for Doors

NOTE: Due to louver thickness and heavy weight, designers should avoid louvers in doors. If used, place louvers in inactive leaf of door pair where possible.

Where indicated, provide doors with full louvers or louver section. Louvers shall be certified resistant to the same ballistic threat level as the rest of the door assembly. Louvers shall be sightproof type inserted into the door. Pierced louvers shall not be used. Inserted louvers shall be stationary and shall be nonremovable from the outside of exterior doors or the threat side of interior doors. [Insect screens shall be removable type with 18 by 16 mesh aluminum or bronze cloth.] [Where required by test standard, louvers shall be provided with a spall-resistant screen of fine stainless steel mesh.] The free area of the total square meters feet of the louver shall be [17 percent for channel style louvers] [39 percent for chevron style louvers (inverted angles at 25 mm 1 inch on center)] [____%]. Louver submitted shall have been tested in accordance with AMCA 500-D airflow test, minimum airflow shall be [____%] for channel style [____%] for chevron style [____%]. Submit airflow calculations and test data showing compliance.

2.4 BULLET-RESISTANT LOUVERS

Fabricate louvers and frames from steel shapes to the opening dimensions indicated. Provide factory fabricated louver units designed to be
bullet-resistant to the specified test standard in paragraph COMPONENT TEST REQUIREMENTS. Submit manufacturer's descriptive data, certificate, and test report showing compliance with the specified forced entry standard. The free area of the total square meters feet of the louver shall be [17 percent for channel style louvers] [39 percent for chevron style louvers (inverted angles at 25 mm 1 inch on center)] [[_____] percent]. Louver submitted shall have been tested in accordance with AMCA 500-D airflow test. Minimum airflow shall be [[_____] percent for channel style] [[_____] percent for chevron style] [[_____] percent]. Submit airflow calculations and test data showing compliance.

2.5 BULLET-RESISTANT STEEL BIFOLD DOORS, FRAMES, AND HARDWARE

Provide bifold doors consisting of two leaves per door, four per opening, as indicated on the drawings. Hardware shall allow easy manual movement of doors. Doors and hardware shall be either entirely jamb-supported or jamb-supported with floor rollers to reduce bearing load on hinges. Steel hinges shall be of ample length to prevent sagging, and shall be through-bolted in accordance with manufacturer's instructions. Operators and all installation hardware shall be the product of a manufacturer which specifically designs and produces hardware for heavy-duty industrial-type doors. Door surfaces shall be factory primed for painting and reinforced and prepared for hardware installation. [Bifold doors shall be manually securable from the protected side through actuation of surface-mounted cane bolt or similar device as recommended by manufacturer.] Maximum clearance at bottom of doors shall be 25 mm 1 inch. Exterior doors shall be provided with weather seals at jambs, head, and sill.

2.5.1 Testing

Subject bullet-resistant bifold door to testing by manufacturer to demonstrate appropriate design, strength, and application and operation of all hardware, both manual and electric. Perform door tests to replicate actual installation to the maximum extent possible. Coordinate arrangements with Contracting Officer as to time and location of tests. Tests shall be witnessed and results subjected to approval by representatives of the Contracting Officer prior to delivery of the doors to the job site.

2.5.2 Bifold Doors

Furnish bullet-resistant bifold doors complete with [pneumatic operators] [electric operators] [and other] accessories specified. Design the operator so that the motor may be removed without affecting emergency auxiliary operators. [Provide a manual operator of crank-gear or chain-gear mechanism to allow manual operation in case of power failure. Provide a device for locking the chain or crank.] Submit a copy of the instructions proposed to be framed and posted.

2.5.3 Power Operators

Power operators shall be [pneumatic] [electric] type conforming to NFPA 80 and the requirements specified herein. Provide readily adjustable limit switches to automatically stop the door in its full open or closed position. [All operating devices shall be suitable for the hazardous Class, Division, and Group shown, as defined in NFPA 70.]
2.5.3.1 Pneumatic Operators

**
NOTE: Designer will coordinate with the drawings to ensure compressed air is available at door locations.
**

Provide pneumatic operators, heavy-duty industrial type designed to operate the door at not less than 0.2 nor more than 0.3 m/second 8 inches nor more than one foot/second with air pressure of [_____] kPa psi. Provide pressure regulator if operator is not compatible with previously specified air pressure. Provide dryer, filter, filter alarm, pneumatic piping up to connection with building compressed air, but not more than 6 m 20 feet from door jambs. Operators shall have provision for immediate emergency manual operation of the door in case of failure. The operator shall open, close, start, and stop the door smoothly. Control shall be [electric, conforming to NEMA ICS 2 and NEMA ICS 6; enclosures shall be Type 12 (industrial use), Type 7 or 9 in hazardous locations, or as otherwise indicated] [pneumatic] with [push button wall switches] [ceiling pull switches] [rollover floor treadle] as indicated.

2.5.3.2 Electric Operators

Provide electric operators, heavy-duty industrial type designed to operate the door at not less than 0.2 nor more than 0.3 m/second 8 inches nor more than 1 foot/second. Electrical controls shall be [push button wall switches] [ceiling pull switches] [rollover floor treadle] as indicated. Provide electric power operators complete with electric motor, brackets, controls, limit switches, magnetic reversing starter, and all other accessories necessary. Design the operator so that the motor may be removed without disturbing the limit-switch timing and without affecting the emergency operator. Provide the power operator with a slipping clutch coupling to prevent stalling of the motor. Operators shall have provisions for immediate emergency manual operation of the door in case of electrical failure. Where control voltages differ from motor voltage, provide a control voltage transformer in and as part of the starter. Control voltage shall be 120 volts or less.

a. Motors: Drive motors shall conform to NEMA MG 1, with high-starting torque, reversible type, and of sufficient horsepower and torque output to move the door in either direction from any position at the required speed without exceeding the rated capacity. Provide motors suitable for operation on [_____] volts, [60] [_____] hertz, [single] [three] phase, and suitable for across-the-line starting. Design all motors to operate at full capacity over a supply voltage variation of plus or minus 10 percent of the motor voltage rating.

b. Controls: Each door motor shall have an enclosed reversing across-the-line type magnetic starter having thermal overload protection, limit switches, remote control switches and conforming to NEMA ICS 2; enclosures shall be NEMA ICS 6, Type 12 (industrial use), Type 7 or 9 in hazardous locations, or as otherwise indicated. Each wall control station shall be of the three-button type, with the controls marked and color coded: OPEN - white; CLOSE - green; and STOP - red. When the door is in motion and the "STOP" control is pressed, the door shall stop instantly and remain in the stop position; from the stop position, the door shall be operable in either direction by the "OPEN" or "CLOSE" controls. Controls shall be of the full-guarded type to prevent accidental operation.
2.5.4 Safety Device

The leading edge of doors shall have a safety device that will immediately reverse the door movement upon contact with an obstruction and cause the door to return to its full open position. The safety device shall not substitute for a limit switch. Provide exterior doors with a combination weather seal and safety device on the leading edge.

2.6 BULLET-RESISTANT STEEL WINDOWS

**

NOTE: Bullet-resisting glazing materials may be glass, plastic, or composite of the two. Edit out all inappropriate items. Do not specify thickness of glazing. Selection of no-spall criteria generally requires use of plastic or composite glazing materials. Therefore, if these options are edited out, use low-spall criteria. Verify that glass glazing, where required, is available to meet low-spall criteria for threat specified.

**

Fabricate window assemblies from [bullet-resistant steel shapes] [or] [hollow metal with internal armoring] and bullet-resistant glazing materials specified herein; the entire assembly shall meet or exceed the specified regulatory requirements. Frames shall be welded units of sizes and shapes indicated on the drawings with minimum frame face dimensions of 50 mm 2 inches. Furnish glazing material with window assembly for onsite installation, or windows shall be factory glazed units. Entire assembly shall be furnished by same manufacturer. Exterior (attack side) glazing stops shall be welded or integral to frame. Interior (protected side) glazing stops shall be removable stops attached with high-strength alloy steel machine screws with tamper-resistant heads.

2.6.1 Glazing Materials

Glazing material shall be factory fabricated units designed to be bullet-resistant to the specified test standard in paragraph COMPONENT TEST REQUIREMENTS. Glazing material shall be [glass,] [plastic,] [or] [composite] with a [no-spall] [low-spall] protected (interior) face. [Low-spall interior face shall meet or exceed requirements for spall resistance defined in UL 752.] Glazing material shall conform to applicable requirements contained in ASTM C1036, ASTM C1048, and ASTM E1300. Test glazing materials in accordance with the applicable sections of the following testing procedures: ASTM D905, ASTM D1003, ASTM F428, ASTM F548, ASTM D4093, and ASTM F520. All plastic glazing exposed to the interior or exterior environment shall have an applied hardcoat.

2.6.1.1 Laminated Glass

Bullet-resistant laminated glass shall be all glass laminated construction conforming to applicable sections of ASTM C1172. The adhesive interlayer material for bonding glass to glass shall be chemically compatible with the surfaces which are to be bonded. Test materials selected for lamination purposes in accordance with the following testing procedures: ASTM D905, ASTM D1044, ASTM F735, ASTM D4093, ASTM F521, ASTM F520, and ASTM D1003. Glass plies used in the lamination shall be [annealed float glass conforming to Type I, quality q3 Class 1, in accordance with
2.6.1.2 Acrylic Plastic Sheets

Bullet-resistant acrylic plastic glazing sheets shall be for use "as cast" and in stretching operations with improved moisture absorption resistance conforming to ASTM D4802. Test acrylic materials in accordance with the applicable sections of the following testing procedures: ASTM D256, ASTM D5420, ASTM D542, ASTM D570, ASTM D635, ASTM D638, ASTM D696, ASTM D792, ASTM D1003, ASTM E831, ASTM F791, and ASTM G155. Plastic glazing sheets shall be clear and smooth on both sides.

2.6.1.3 Polycarbonate Plastic Sheets

Bullet-resistant laminated polycarbonate sheets, ultraviolet stabilized, [flame resistant] [high abrasion resistant] sheets shall conform to ASTM D3595. Test polycarbonate materials in accordance with the applicable sections of the following testing procedures: ASTM D256, ASTM D5420, ASTM D792, ASTM F735, ASTM D1003, ASTM D635, ASTM D638, ASTM D1044, ASTM D882, ASTM D1922, ASTM D570, ASTM F520, ASTM E169, ASTM E204, ASTM G155, and ASTM F791. Polyvinyl butyral shall not be used in contact with polycarbonate because its plasticizer may craze polycarbonate.

2.6.1.4 Glass/Plastic Laminate Glazing

Bullet-resistant glass/plastic laminated glazing materials shall be glass/plastic laminated construction or glass-clad plastic "sandwich" construction conforming to applicable sections of ASTM C1172. Polycarbonate shall be ultraviolet stabilized.

2.6.1.5 Glass/Plastic Air-Gap Glazing

Bullet-resistant glass/plastic air-gap glazing shall consist of an assembly in which glass forms the exterior [and interior (protected side)] layer, separated by an air space from the laminated plastic plies. Exterior glass plies shall be [annealed float glass conforming to Type I, quality q3 Class 1, in accordance with ASTM C1036] [or] [heat-strengthened or fully heat tempered, float glass, Condition A, Type I, q3 Class 1, in accordance with ASTM C1036] [or] [heat-strengthened or fully heat tempered, float glass, Condition A, Type I, q3 Class 1, in accordance with ASTM C1048]. [Interior (protected side) glass plies shall be [annealed float glass conforming to Type I, quality q3 Class 1, in accordance with ASTM C1036] [or] [heat-strengthened or fully heat tempered, float glass, Condition A, Type I, q3 Class 1, in accordance with ASTM C1048].] [Where annealed glass is used on the protected side of the window, a sheet of 0.102 mm 4 mil thick clear mylar fragment retention film shall be applied to the interior surface in accordance with film manufacturer's instructions. Film that wraps around the edges of the glass shall be applied prior to glazing the window.] Plastic plies shall consist of laminated ultraviolet stabilized polycarbonate sheets, conforming to paragraph Polycarbonate Plastic Sheets and/or acrylic sheets for use "as cast" and in stretching operations with improved moisture absorption resistance conforming to applicable requirements of paragraph Polycarbonate Plastic Sheets.
2.6.2 Adhesive Interlayer Materials

Adhesive interlayer materials for bonding laminates (glass-glass, glass-plastic, or plastic-plastic bonds) shall be chemically compatible with the surfaces being bonded. Interlayer materials may be polyvinyl butyral, cast-in-place urethane, proprietary materials, sheet form urethane and other materials. Polyvinyl butyral shall not be used to bond polycarbonate. Adhesives shall be in accordance with ASTM D905 and manufacturer's recommendations.

2.6.3 Sealants

Sealants for glazings shall be chemically compatible with the glazing materials they contact with no deleterious effects to the glazing materials or to the adhesives used in laminates. Sealants shall be in accordance with glazing manufacturer's recommendations and GANA Glazing Manual.

2.6.4 Deal Trays

Deal tray shall provide nominal 325 mm 12-3/4 inch wide by 40 mm 1-5/8 inch high opening in sill of window frame [and shall include a 165 mm 6-1/2 inch steel writing ledge on exterior side of window]. Provide deal tray welded subassembly of window assembly conforming to specified requirements for entire window assembly. Opening configuration of deal tray shall prevent ballistic penetration or spall from the threat weapon, and shall resist lead spray from a shotgun blast. Tray opening shall prevent insertion of the muzzle of a firearm.

2.7 BULLET-RESISTANT SPEAKING APERTURES

Fabricate speaking apertures to allow passage of voice at normal speaking volume without distortion, to resist the specified threat level for [outdoor] [indoor] use, and designed to prevent direct aim by the insertion of the muzzle of any firearm. Finish shall match [window] [door] construction in which aperture is installed.

2.8 BULLET-RESISTANT GUNPORTS

Gunport shall operate only from the protected side of the barrier, with a protected side shutter that closes automatically and is lockable from the protected side. Fabricate gunport from bullet resistant steel shapes and the entire assembly shall meet or exceed the specified regulatory requirements. Size gunport for operation using submachine guns and rifles. [Provide assembly with a weather resistant opening.] Shutter shall be hinged or pivoted and shall not obstruct operation when in open position. Attachment to wall assembly shall be in accordance with manufacturer's recommendations. All aspects of gunport assembly, including hardware and method of anchorage to wall, shall be included in labeling or test certification. Finish shall be [primed for painting] [satin stainless steel]. Gunport shall not be operable from exposed side.

2.9 BULLET-RESISTANT PASS-THROUGH DRAWER

Fabricate pass-through drawer from bullet-resistant steel shapes; the entire assembly shall meet or exceed the specified regulatory requirements. Pass-through drawer shall be of size indicated on the drawings and designed to prohibit forcible entry or direct aim by the insertion of the muzzle of a firearm from exterior side when drawer is in
the open position. [Assembly shall provide a weather resistant opening.] Attachment to wall assembly shall be in accordance with manufacturer's recommendations. All aspects of the assembly, including hardware and method of anchorage to wall, shall be included in the labeling or test certification. Finish shall be [primed for painting] [satin stainless steel].

2.10 BULLET-RESISTANT PREFABRICATED MODULAR ENCLOSURE

**

NOTE: Prefabricated enclosures, as specified herein, are intended for use primarily as hardlines on the interior of a facility, i.e., bullet-resistant partitions. Develop separate specifications if bullet resistant guards houses, control towers, etc., are required. Coordinate this specification with other disciplines where electrical work, plumbing, or HVAC are required.

**

Provide enclosure consisting of prefabricated, bullet-resistant, modular [insulated] wall [and] [ceiling] [and floor] panels with [doors,] [windows,] [louvers,] [gunports,] [and] all necessary connecting posts, hardware and accessories. Complete enclosure shall be of minimum dimensions shown on the drawings. [Doors,] [windows,] [louvers,] [and] [gunports] shall be in accordance with the requirements specified in those respective paragraphs. Components shall be factory-welded assemblies. All metal components shall be factory painted with rust inhibitive primer unless indicated otherwise. All exposed welds shall be dressed smooth. Workmanship shall be rigid, neat in appearance, and free from defects. [Enclosure shall be designed to be relocatable by [crane] [forklift].]

2.11 ACCESSORIES

Provide all accessories for the installation or erection of above components into the surrounding structure. Anchorage shall be as strong and bullet-resistant as the components. Installation/erection shall be in accordance with manufacturer's recommended instructions.

2.12 LABELING

**

NOTE: Model numbers and rating labels advertise the level of threat which the component is capable of resisting. Require removable labels where possible. Where this information cannot be removable, specify that it must be on the protected side or concealed from view by casual observers.

**

Bullet-resistant equipment shall be plainly [and permanently] labeled in accordance with regulatory requirements. Label shall be compatible with plastic or coating, visible only on protected side, after installation, including the following information:

a. Manufacturer's name or identifying symbol

b. [Model Number, Control Number, or equivalent]
c. Date of manufacture by week, month or quarter and year. This may be
abbreviated or be in a traceable code such as the lot number.

d. Correct mounting position including threat side and secure side (by
removable label on glazing material).

e. Code indicating bullet-resistant rating and test standard used (by
removable label on glazing material).

2.13 SHOP/FACTORY FINISHING

Furnish all ferrous metal components, except stainless steel, primed for
painting unless indicated otherwise. Finish painting shall be in
accordance with Section 09 90 00 PAINTS AND COATINGS, unless otherwise
indicated. When anodic coatings are specified, the coatings shall conform
to AAMA 611, with coating thickness not less than that specified for
protective and decorative type finish in AA DAF45. Items to be anodized
shall receive a polished satin finish pretreatment and a clear lacquer
overcoat. All factory or manufactured components shall be shop finished
as indicated.

2.13.1 Ferrous Metal

Surfaces of ferrous metal, except galvanized and stainless steel surfaces,
shall be cleaned and shop coated with the manufacturer's standard
protective coating other than a bituminous protective coating, compatible
with finish coats. Prior to shop painting, clean surfaces with solvents
to remove grease and oil, and with power wire-brushing or sandblasting to
remove loose rust, loose mill scale and other foreign substances.
Surfaces of items to be embedded in concrete shall not be shop painted.

2.13.2 Galvanizing

Items specified to be galvanized shall be hot-dip processed after
fabrication. Galvanizing shall be in accordance with ASTM A123/A123M or
ASTM A653/A653M as applicable.

2.13.3 Aluminum

Unless otherwise specified, aluminum items shall be standard mill finish.
For anodic coatings see paragraph SHOP/FACTORY FINISHING above.

PART 3 EXECUTION

3.1 EXAMINATION

Field verify dimensions of rough openings for components, and that
surfaces of openings are plumb, true, and provide required clearances.
Protect surrounding work prior to installation of bullet-resistant
components. Surrounding work which is damaged as a result of the
installation of bullet-resistant components shall be restored to like-new
condition prior to acceptance of the work described herein. Examine
existing work to ensure that it is ready for installation or erection of
the components. Components shall be checked and corrected for racking,
twisting, and other malformation prior to installation. Set frames true,
plumb and aligned for proper installation. Examine all surfaces and
connections for damage prior to installation.
3.2 FRAMED INSTRUCTIONS

Framed instructions, under glass or in plastic with all edges laminated, including wiring and control diagrams showing the complete layout of each bifold door unit, shall be posted where directed. Condensed operating instructions explaining preventive maintenance procedures, methods of checking for normal safe operation, and procedures for safely starting and stopping shall be prepared in typed form, framed as specified above and posted beside the diagrams. Post the framed instructions before acceptance testing.

3.3 INSTALLATION

The finished work shall be rigid, neat in appearance and free from defects. Install equipment plumb, level, and secured rigidly in place. Installation of doors and frames shall conform to NAAMM HMMA 840. Install doors, frames, and hardware in strict compliance with approved printed instructions and detail drawings provided by the manufacturer. The Contractor is responsible for proper installing of the door assembly so that operating clearances and bearing surfaces conform to manufacturer's instructions. Install weatherstripping and thresholds at exterior door openings to provide a weathertight installation. All other components shall be installed in accordance with approved manufacturer's recommended instructions. Test all operable parts of components for smooth, trouble-free operation, in the presence of the Contracting Officer. Submit Drawings containing complete wiring and schematic diagrams, where appropriate, and any other details required to demonstrate that the system has been coordinated and will properly function as a unit. Drawings shall show proposed layout and anchorage of components and appurtenances, and relationship to other parts of work including clearances for operation and maintenance. Drawings shall be sufficient to show conformance to all requirements, including fabrication details, sizes, thickness of materials, anchorage, finishes, hardware location and installation.

3.4 FASTENERS

Fasteners exposed to view shall match in color and finish and shall harmonize with the material to which fasteners are applied. Fasteners shall be in accordance with Section 08 31 00 ACCESS DOORS AND PANELS.

3.5 CORROSION PROTECTION - DISSIMILAR MATERIALS

Contact surfaces between dissimilar metals and aluminum surfaces in contact with concrete, masonry, pressure-treated wood or absorptive materials subject to wetting, shall be given a protective coating in accordance with Section 09 90 00 PAINTS AND COATINGS.

3.6 ELECTRICAL WORK

Perform all electrical work in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Flexible connections between doors and fixed supports shall be made with extra flexible type SO cable, except in hazardous locations where wiring shall conform to NFPA 70. The cable shall have a spring-loaded automatic take up reel, or an equivalent and approved device.

3.7 ADJUSTING/CLEANING

Adjustments shall be made to doors and pass-thru drawers to assure smooth
operation. Units shall be weathertight when closed and locked. All components shall be cleaned in accordance with manufacturer’s instructions.

-- End of Section --