SECTION TABLE OF CONTENTS

DIVISION 08 - OPENINGS

SECTION 08 34 01

FORCED ENTRY RESISTANT COMPONENTS

08/09

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY ASSURANCE
1.4 DELIVERY, STORAGE, AND HANDLING
1.5 SEQUENCING AND SCHEDULING
1.6 WARRANTY

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
2.1.1 General Requirements
2.1.2 Other Submittal Requirements
2.2 COMPONENTS
2.3 FORCED ENTRY RESISTANT PERSONNEL DOOR AND FRAME ASSEMBLIES
2.3.1 Fire Rated Doors
2.3.2 Sound Rated Doors
2.3.3 Door and Frame Fabrication
2.3.4 Sidelight Frames and Door Glazing
2.3.5 Preparation for Hardware
2.3.6 Hardware
2.3.6.1 Locks and Latchsets
2.3.6.2 Hinges
2.3.6.3 Electric Strikes
2.3.6.4 Door Closers
2.3.6.5 Door Stops and Holders
2.3.7 Frame Anchors
2.3.8 Weatherstripping
2.3.9 Louvers for Doors
2.4 FORCED ENTRY RESISTANT LOUVERS
2.5 FORCED ENTRY RESISTANT WINDOW ASSEMBLIES
2.5.1 Deal Trays
2.5.2 Speaking Apertures
2.5.3 Forced Entry Resistant Glazing Material
2.5.3.1 Laminated Glass
2.5.3.2 Acrylic Plastic Sheets
2.5.3.3 Polycarbonate Plastic Sheets
2.5.3.4 Glass/Plastic Laminate Glazing
2.5.3.5 Glass/Plastic Air-Gap Glazing
2.5.4 Adhesive Interlayer Materials
2.5.5 Sealants
2.6 FORCED ENTRY RESISTANT PASS-THROUGH DRAWER
2.7 FORCED ENTRY RESISTANT PREFABRICATED GUARDHOUSES
2.8 ACCESSORIES
2.9 LABELING
2.10 SHOP/FACTORY FINISHING
 2.10.1 Ferrous Metal
 2.10.2 Galvanizing
 2.10.3 Aluminum

PART 3 EXECUTION

3.1 EXAMINATION
3.2 FABRICATION
3.3 FASTENERS
3.4 CORROSION PROTECTION - DISSIMILAR MATERIALS
3.5 INSTALLATION
3.6 MANUFACTURER'S FIELD SERVICES
3.7 ADJUSTING/CLEANING

-- End of Section Table of Contents --
UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2020

SECTION 08 34 01
FORCED ENTRY RESISTANT COMPONENTS
08/09

NOTE: This guide specification covers requirements for forced entry resistant door assemblies, window assemblies, louvers, pass-through drawers, and prefabricated guardhouses.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: The manuals listed below contain information on the forced entry tactic.

UFC 4-020-1 Security Engineering – Project Development

UFC 4-020-2FA Security Engineering – Concept Design

UFC 4-020-3FA Security Engineering – Final Design

These manuals are marked "For Official Use Only", and they may be ordered by Department of the Army agencies from the U.S. Army Publications Distribution Center, 2800 Eastern Blvd., Baltimore,
MD 21220-2896.

UFC 4-020-1 defines threats to military assets including the forced entry tactic in terms of weapons, tools, and explosives. The threat to an asset may be developed using the threat analysis procedure described in UFC 4-020-1. UFC 4-020-2FA and UFC 4-020-3FA contain guidance on design and protective measures to resist forced entry and other tactics. To be effective, a forced entry resistant component must be part of a forced entry resistant construction envelope that protects and asset. Refer to appendix C of UFC 4-020-2FA for a table of components and construction elements that are rated against various threat severity levels of the forced entry tactic. If a designer chooses to design components for shop fabrication, the materials should be specified in appropriate sections including Section 08 31 00 ACCESS DOORS AND PANELS.

At the time of preparation of this specification, manufacturers had not tested vehicle doors to the forced entry test standards covered herein. The designer may specify oversized swinging doors or specify a door for vehicle entry to meet a forced entry test standard as an alternate bid item, or under a separate bid request doors to be tested in accordance with the required test standard. If the latter is chosen, allow long lead time for the manufacturer to design, test, and receive approval of the door.

**

1.1 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

SECTION 08 34 01 Page 4
AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL, INC. (AMCA)

AMCA 500-D (2018) Laboratory Methods of Testing Dampers for Rating

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASM INTERNATIONAL (ASM)

ASM STFA (2001; 6th Ed) The Surface Treatment and Finishing of Aluminum and Its Alloys (2 Vol.)

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2019) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM D542 (2014) Index of Refraction of Transparent Organic Plastics

ASTM D792 (2013) Density and Specific Gravity (Relative Density) of Plastics by Displacement

ASTM D882 (2012) Tensile Properties of Thin Plastic Sheeting

ASTM D905 (2008; E 2009) Strength Properties of Adhesive Bonds in Shear by Compression Loading

ASTM D1003 (2013) Haze and Luminous Transmittance of Transparent Plastics

ASTM D3595 (2014) Polychlorotrifluoroethylene (PCTFE) Extruded Plastic Sheet and Film

ASTM E831 (2014) Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM F428</td>
<td>(2019) Intensity of Scratches on Aerospace Glass Enclosures</td>
</tr>
<tr>
<td>ASTM F521</td>
<td>(2016) Standard Test Methods for Bond Integrity of Transparent Laminates</td>
</tr>
<tr>
<td>ASTM F791</td>
<td>(1996; R 2013) Stress Crazing of Transparent Plastics</td>
</tr>
<tr>
<td>ASTM F1233</td>
<td>(2008; R 2013) Security Glazing Materials and Systems</td>
</tr>
</tbody>
</table>

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/BHMA A156.1</td>
<td>(2016) Butts and Hinges</td>
</tr>
<tr>
<td>ANSI/BHMA A156.4</td>
<td>(2013) Door Controls - Closers</td>
</tr>
<tr>
<td>ANSI/BHMA A156.5</td>
<td>(2014) Cylinder and Input Devices for Locks</td>
</tr>
<tr>
<td>ANSI/BHMA A156.8</td>
<td>(2015) Door Controls - Overhead Stops and Holders</td>
</tr>
<tr>
<td>ANSI/BHMA A156.13</td>
<td>(2017) Mortise Locks & Latches Series 1000</td>
</tr>
<tr>
<td>ANSI/BHMA A156.16</td>
<td>(2018) Auxiliary Hardware</td>
</tr>
<tr>
<td>ANSI/BHMA A156.18</td>
<td>(2016) Materials and Finishes</td>
</tr>
<tr>
<td>ANSI/BHMA A156.115</td>
<td>(2016) Hardware Preparation in Steel Doors and Steel Frames</td>
</tr>
</tbody>
</table>

GLASS ASSOCIATION OF NORTH AMERICA (GANA)

<table>
<thead>
<tr>
<th>Manual</th>
<th>Description</th>
</tr>
</thead>
</table>
1.2 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within
the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Installation; G[, [_____]]

SD-03 Product Data

Forced Entry Resistant Components
Installation
Components

SD-07 Certificates

Forced Entry Resistant Components; G[, [_____]]

1.3 QUALITY ASSURANCE

**

NOTE: The project forced entry threat must be identified before selection of test standard. The designer will then select the forced entry testing standard that most represents the threat, using Table I. The designer will then indicate the applicable test standard in paragraph COMPONENT TEST REQUIREMENTS or on the drawings in door, window, or other component schedule.
If project criteria includes more than one forced entry threat, each component will be correlated with the appropriate test standard it is required to meet.

Test standards should be selected based on the forced entry threat as defined in UFC 4-020-1 for a given asset. The forced entry tactic has associated with it five threat severity levels consisting of very low, low, medium, high, and very high.

There is no single uniform standard for forced entry resistance. Each testing agency has its own parameters. Variables include the tools used, the attack time, the attack team size, and the failure criteria. Some standards apply only to specific components. Verify that the test standard is applicable to components being specified.

Bullet and forced entry resistant window design. Refer to Section 08 34 02, BULLET-RESISTANT COMPONENTS, when specifying ballistic threats only. Where both forced entry and ballistic resistance are required, the designer must substantially alter and combine the pertinent parts of this UFGS and UFGS Section 08 34 02. Combined forced entry and ballistic testing procedures are included in SD Std-01.01 and ASTM F1233.

<table>
<thead>
<tr>
<th>Threat Severity Levels</th>
<th>Number of Attackers (where applicable)</th>
<th>Attack Times (minutes) (where applicable)</th>
<th>Very Low</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I - Equivalent Forced Entry Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forced Entry Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forced Entry Standard</th>
<th>Threat Severity Levels</th>
<th>Number of Attackers (where applicable)</th>
<th>Attack Times (minutes) (where applicable)</th>
<th>Very Low</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM F1233</td>
<td>Class IV</td>
<td>---</td>
<td>Variable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPW TP-0500.03</td>
<td>Class V</td>
<td>---</td>
<td>Variable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level II</td>
<td>---</td>
<td>Variable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level III</td>
<td>---</td>
<td>Variable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level IV</td>
<td>---</td>
<td>Variable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forced Entry Standard</td>
<td>Threat Severity Levels</td>
<td>Number of Attackers (where applicable)</td>
<td>Attack Times (minutes) (where applicable)</td>
<td>Very Low</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Level V</td>
<td>---</td>
<td>Variable</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD Std-01.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Minute Protection Level</td>
<td></td>
<td>2</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Minute Protection Level</td>
<td></td>
<td>2</td>
<td>15</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Minute Protection Level</td>
<td></td>
<td>2</td>
<td>60</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABBREVIATIONS:

- ASTM - American Society for Testing and Materials
- HPW - H. P. White Laboratories
- UL - Underwriters Laboratories, Inc.
- SD - U. S. Department of State

The forced entry test standards described below include both those developed and used by independent testing laboratories and those developed for specific application by other Government agencies. These standards differ in attack tools employed, the number of persons (if any) used in the attack force, the attack duration, and the failure criteria. Before specifying construction components to meet a standard, obtain the standard and become familiar with it. A brief description follows each standard and, when possible, the standard is equated to forced entry severity levels from UFC 4-020-1.

 a. "Standard Test Method for Security Glazing Materials and Systems," ASTM F1233. Acceptance of component is determined by one of the following: ballistics attack only; physical attack only to include blunt tool impacts, sharp tool impacts, thermal stress, and chemical deterioration; or ballistics attack followed by and in combination with physical attack. The physical attack tools used in the Class V testing sequence are similar to the "low forced entry severity level." The physical attack tools used in the Class IV testing sequence are similar to the "very low forced entry severity level." The use of power tools or devices requiring
more than two persons to transport or operate is specifically exempted from testing. This test method defines two factors (the tools employed and the techniques and methods used by the attackers) and allows a third factor (duration) to vary in order to establish severity levels of forced entry.

b. "Test Methods for Resistance of Window Assemblies to Forced Entry, Excluding Glazing", ASTM F588. This specification applies to window assemblies of various materials and types of construction. Five window types are classified. The tests are intended to establish a measure of resistance to attack by unskilled or opportunistic burglars. Tests include hand manipulation, tool manipulation, static load, and locking device strength resistance. This testing is at a level comparatively below the "very low forced entry severity level."

2. H. P. White Laboratories: "Transparent Materials and Assemblies for Use in Forced Entry or Containment Barriers," HPW TP-0500.03. This standard was developed by H. P. White Laboratories for commercial, governmental, or military application and generally is used in testing prison (forced exit resistant) components. This test method defines two of three factors (tools and techniques) and varies the third factor (time) to establish five levels of forced entry resistance. Levels I, II, III, IV, and V specify attack tools and sequences of attacks with the specified tools. Attack weapons and tools include hand tools, propane and acetylene torch, chemical solvents, and five levels of ballistic assault. The ballistic threats are considered integral to the forced entry rating in this standard and differ from those in other H. P. White standards. Tests are conducted on either a 915 x 1220 mm 3 x 4 foot specimen of transparent material or on a complete assembly.

3. International Code Council, "Tests for Window Assemblies," UBC 41.2. Describes the following tests which are related to security windows: hand manipulation, tool manipulation, static load, and locking device tests. This testing is at a level comparatively below the "very low forced entry severity level."

4. National Institute of Justice (NIJ). "Physical Security of Window Units," NIJ 0316.00-80. Use of the NIJ standard for Army application is limited because it describes construction types which have been demonstrated to have minimal penetration times against the more sophisticated threats. This specification describes four classes of physical security by describing the window types indicated below. This testing is at a level comparatively below the "very low forced entry severity level."
a. Class I (Grade 10)—minimum level: Regular glazing in commercial sash; double locks; wood frame acceptable.

b. Class II (Grade 20)—moderate level: Heavy-duty sash with laminated or polycarbonate glazing; wood sash must be reinforced or heavy.

c. Class III (Grade 30)—medium level: Heavy-duty sash with laminated glass over 6 mm 1/4 inch thick or polycarbonate glazing 6 mm 1/4 inch thick; locks should include two heavy-duty deadlocking bolts.

d. Class IV (Grade 40)—high level: Very heavy fixed frames with laminated glass over 6 mm 1/4 inch thick or security screen, bars, or shutters with special locking devices.

e. Window performance requirements include lock tests for stability (cycles of unlocking motion) and strength (loads ranging from 218 N 49 lb. force to 3350 N 753 lb. force; sash strength (218 N(49 lb. force) primary and secondary loads to 445 N 100 lb. force primary load, 3350 N 753 lb. force secondary load) and impact resistance (not applicable to Class I, Grade 10; other classes range from one impact at 50 J 37 ft-lb force to 10 at 100 J 74 ft-lb force); and glazing impact test (same as for sash impact).

5. Underwriters Laboratories Inc. (UL), "Standard for Burglary Resisting Glazing Material," UL 972, evaluates a glazing material's ability to withstand multiple impacts over a wide temperature range. Impact testing is standardized rather than subjecting the specimen to actual physical attack simulations by persons who can analyze and exploit the weaknesses of specimens. A steel ball is dropped a number of times from different heights. The intent of this standard is to replicate hit-and-run burglary attacks on commercial establishments. This testing is at a level below the "very low forced entry severity level."

6. U. S. Department of State (SD).

"SD Std-01.01. This standard was developed for determining the forced entry resistance of building components to be used in State Department facilities. The protection level is 5, 15, or 60 minutes. The tools are similar to the low forced entry severity level. This standard is for the testing of louvers, fixed windows and panels, and doors. Testing is performed by a two-member team for the 5-minute protection level and by a six-member team for the 15- and 60-minute protection levels. Penetration time is considered to be when an opening has been created which allows passage of either a solid, incompressible object 300 x 300 x
Qualify welding procedures, welders, and welding operators in accordance with AWS D1.1/D1.1M. Forced entry resistant components shall be certified as resistant to the forced entry test standards indicated herein. Forced entry resistant components shall be tested as specified below. The test results and certification thereof shall be approved by the Contracting Officer before delivery of the component to the job site.

<table>
<thead>
<tr>
<th>Component</th>
<th>Test Standard</th>
<th>Level Within Test Standard (If Any)</th>
<th>Minimum Attack Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[_____]</td>
<td>ASTM F1233</td>
<td>Class IV</td>
<td>Variable</td>
</tr>
<tr>
<td>[_____]</td>
<td>ASTM F1233</td>
<td>Class V</td>
<td>Variable</td>
</tr>
<tr>
<td>[_____]</td>
<td>HPW TP-0500.03</td>
<td>Prolonged</td>
<td>180</td>
</tr>
<tr>
<td>[_____]</td>
<td>HPW TP-0500.03</td>
<td>Level II</td>
<td>Variable</td>
</tr>
<tr>
<td>[_____]</td>
<td>HPW TP-0500.03</td>
<td>Level III</td>
<td>Variable</td>
</tr>
<tr>
<td>[_____]</td>
<td>HPW TP-0500.03</td>
<td>Level IV</td>
<td>Variable</td>
</tr>
<tr>
<td>[_____]</td>
<td>HPW TP-0500.03</td>
<td>Level V</td>
<td>Variable</td>
</tr>
<tr>
<td>[_____]</td>
<td>SD Std-01.01</td>
<td>5 Minute</td>
<td>5</td>
</tr>
<tr>
<td>[_____]</td>
<td>SD Std-01.01</td>
<td>15 Minute</td>
<td>15</td>
</tr>
<tr>
<td>[_____]</td>
<td>SD Std-01.01</td>
<td>60 Minute</td>
<td>60</td>
</tr>
</tbody>
</table>

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver Components to the job site with the manufacturer's name, and model number clearly marked thereon. Components shall be delivered, stored, and handled so as not to be damaged or deformed and shall be in accordance with ASTM D3951. Components shall be handled carefully to prevent damage to the faces, edges, corners, ends, and glazing where applicable. Abraded, scarred, or rusty areas shall be cleaned, repaired, or replaced immediately upon detection of the damage. Replace damaged components that cannot be restored. Components and equipment shall be stored in a dry location on platforms or pallets that are ventilated adequately, free of dust, water, and other contaminants, and stored in a manner which permits easy access for inspection and handling. Submit lists including schedule of components to be incorporated in the work with manufacturer's model or catalog numbers, specification and drawing reference numbers, warranty information, threat level designated, [fire ratings,] [sound transmission coefficient ratings,] [insulation "U" value,] and number of items provided. Listing of similar products that have been satisfactorily in
use for two years or more, including name of purchasers, locations of installations, dates of installations, and service organizations.

1.5 SEQUENCING AND SCHEDULING

When testing of a previously untested component is specified, allow sufficient lead time so that testing will not delay construction. The test results and component shall be approved by the Contracting Officer before delivery of the component to the job site.

1.6 WARRANTY

**
NOTE: A warranty for all glazings should be specified. The designer will determine availability of warranty.
**

Manufacturer's warranty for [_____] [5] years shall be furnished for glazing materials. Warranty shall provide for replacement and installation of glazing if delamination, discoloration, or cracking or crazing occurs.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

**
NOTE: This specification is to be used for components identified as forced entry resistant. The designer will clearly distinguish on the drawings, such as on door, window, and louver schedules, which components are to be forced entry resistant.
**

2.1.1 General Requirements

Components covered in this specification are designed to resist forced entry attacks with increasing severity levels of hand, power, and thermal tools and weapons and explosives. The components include forced entry resistant [personnel door/frame assemblies] [louvers] [windows] [glazing for doors] [pass-through drawers] [prefabricated guardhouses]. Each type of forced entry resistant component shall be a complete assembly produced by a single manufacturer. Movable and operable components shall operate smoothly and freely. Items for exterior installation shall be designed to resist water and vapor penetration or entrapment. Submit manufacturer's descriptive data, installation instructions, and certificate and test report showing compliance with the specified forced entry test standard as specified in paragraph COMPONENT TEST REQUIREMENTS for all components. [Following approval of manufacturer's descriptive data, submit a schedule listing the items and components to be furnished.] Manufacturer's certificate shall be submitted indicating that compliance with the installation instructions [and drawings] will provide the specified degree of forced entry resistance.

2.1.2 Other Submittal Requirements

The following shall be submitted:
a. Manufacturer's descriptive data and finish samples.

b. The forced entry resistant door lock functions, for selection by the Contracting Officer.

c. Airflow calculations for louvers.

d. Manufacturer's certificates attesting that components conform to the requirements on drawings and in specifications.

e. Testing reports from independent testing laboratories indicating conformance to regulatory requirements.

f. Certificate, in lieu of a label, for fire rated doors.

g. Certificate indicating compliance with the requirements for doors of the type and fire rating class.

h. Manufacturer certification that compliance with the installation instructions and/or drawings will provide the specified degree of forced entry resistance.

2.2 COMPONENTS

Each type of forced entry resistant component shall be the standard product of a manufacturer regularly engaged in the manufacture of such products and shall duplicate items that have been tested and approved in accordance with the forced entry test standard specified in paragraph COMPONENT TEST REQUIREMENTS.

2.3 FORCED ENTRY RESISTANT PERSONNEL DOOR AND FRAME ASSEMBLIES

Doors and frames shall be factory fabricated assemblies of indicated sizes. Doors shall be of steel, hardened steel, or be reinforced internally with steel shapes and clad with aluminum. Interior composition and reinforcement shall be determined by the manufacturer. Rubber silencers shall be installed on door frames. Exterior doors shall have top edges closed flush and sealed against water penetration, be insulated, and provided with weatherstripping and thresholds. Locks and hinges shall be the same or equal in performance and number as the hardware used on the tested door. Lock and hardware shall be provided by the manufacturer as a complete assembly. Frames shall be furnished by the door fabricator, with anchorage to wall construction completely specified as to number of anchors, anchor size, material, and length.

2.3.1 Fire Rated Doors

Provide fire rated doors at locations indicated. Door assemblies shall comply with the forced entry test standard specified and shall bear the listing identification label of the Underwriters' Laboratories, Inc. or a nationally recognized testing laboratory that is qualified to perform tests of fire door assemblies in accordance with UL 10B, and that has a listing service for the tested assemblies. Door assemblies include door, hardware, frame, closers, and glazing. A certificate indicating that the units were inspected in accordance with NFPA 80 and NFPA 80A may be furnished in lieu of label. For oversized doors, a certificate from Underwriters' Laboratories, Inc. or a nationally recognized testing laboratory may be furnished in lieu of label. The certificate shall state
that oversized doors are manufactured in compliance with the requirements for doors of the type and fire rating class. Manufacturer's descriptive data shall be submitted.

2.3.2 Sound Rated Doors

Provide sound rated doors at locations indicated. Door assemblies shall comply with the forced entry test standard specified and shall consist of door, hardware, frame, threshold, and adjustable gaskets. The assembly shall have a laboratory Sound Transmission Class (STC) rating [of [_____]] [as indicated] when tested in accordance with ASTM E90. Submit manufacturer's descriptive data, test report, and certification of the test report showing compliance with the specified requirements.

2.3.3 Door and Frame Fabrication

The subsurfaces shall be flat, parallel, and plumb after fabrication. Doors shall be reinforced [and fully insulated] in accordance with manufacturer's design. Door frames shall be anchored as specified by the door manufacturer. Coordinate the door manufacturer's requirements for welding to wall reinforcement or casting frame embedments into wall before wall is placed. Steel door frames shall be mitered or coped and welded at the corners with welds ground smooth. Where structural channel frames are used the size, weight, stops, welding, and anchorage into surrounding construction shall be specified and tested along with the door as an assembly. Any necessary reinforcements in the door and the frame shall be made in the factory. Door and frame shall be drilled and tapped as required for the specified hardware. Frame channels shall be mitered or coped and welded at corners with full penetration groove welds. Exposed welds shall be dressed smooth. Hollow metal doors and frames shall be manufactured in accordance with NAAMM HMMA 801, NAAMM HMMA 802, NAAMM HMMA 810, and NAAMM HMMA 820 as a standard of quality, and shall meet the specified forced entry testing standard.

2.3.4 Sidelight Frames and Door Glazing

**
NOTE: Designers should avoid sidelights because they make the door assembly more susceptible to prying and jamb spreading. When they are used, reinforce side jambs with heavy structural steel anchored at the top and bottom.
**

Construct sidelight frames using forced entry resistant door frame sections. For glazing in door or sidelight, stop height and rabbet depth shall be as required to accommodate the glazing material that is resistant to the forced entry test standard specified. The assembly shall be tested with the specified glazing and stops installed. Exterior (attack side) glazing stops shall be welded or integral to the frame. Interior (protected side) glazing stops shall be removable stops attached with high-strength alloy steel machine screws with tamper-resistant heads or as required by the manufacturer. Glazing is specified in paragraph Forced Entry Resistant Glazing Materials.

2.3.5 Preparation for Hardware

Prepare doors and frames for hardware in accordance with [NAAMM HMMA 830] [manufacturer's instructions]. Surface applied hardware shall be drilled
and tapped in the field.

2.3.6 Hardware

**
NOTE: Panic hardware on a forced entry rated door renders the door more susceptible to compromise. If panic hardware is required, use a push pad type which has a flush-mounted bar. Locks and hinges are an integral part of the forced entry resistance of a door assembly.

The following hardware guidance refers to single and pairs of swinging personnel doors, up to 1.22 x 2.44 m 4 x 8 feet per leaf. The locks and hinges listed below provide minimum levels of protection only. The locks and hinges for forced entry resistant door assemblies should be a tested part of a door manufacturer's assembly. For other door hardware, extra-heavy-duty standard commercial hardware is suitable.

**
Hardware for forced entry resistant door assemblies shall be provided by the door assembly manufacturer to ensure a complete forced entry resistant assembly. Where test standard requires hardware to be tested with the door assembly, locks and hinges shall be included in the labeling and/or test certification. Locks and hinges shall be the same or equal in performance, quality, grade, and quantity as used on the successfully tested door assembly in accordance with the specified forced entry testing standard. Provide certification that the locks, latches, and hinges provide the same degree of forced entry resistance as required by the specified forced entry testing standard. Keying shall be as specified in Section 08 71 00 DOOR HARDWARE.

2.3.6.1 Locks and Latchsets

**
NOTE: Most forced entry resistant door assemblies require two or more specialty locks severely limiting lock functions. Coordinate with codes for fire exiting and safety. Hardware for doors located in a means of egress must comply to the requirements of NFPA 101, Life Safety Code. Add specialized requirements for locking, keying, and opening to this paragraph.

**
The door manufacturer shall submit available lock functions for selection of function by the Contracting Officer. Mortise lock and latchsets shall be, as a minimum, series 1000, operational Grade 1, Security Grade 1 or 1A, and shall conform to ANSI/BHMA A156.13. Strikes for mortise locks and latches (including deadbolt locks), as a minimum, shall conform to ANSI/BHMA A156.115 except strikes shall be rectangular (without curved lip). Mortise-type locks and latches for doors 45 mm 1-3/4 inches thick and over shall have adjustable bevel fronts or otherwise conform to the shape of the door. Mortise locks shall have armored fronts. Mortise locks and latches shall have full escutcheon, through-bolted, extruded stainless steel trim. Lock finish shall be [630] [639] [652] in
accordance with ANSI/BHMA A156.18.

2.3.6.2 Hinges

Steel doors and frames required to resist the "very low" or "low" threat severity level that are up to and including 2.13 m 7 feet 0 inches high shall, as a minimum, be equipped with three Grade 1 hinges in accordance with ANSI/BHMA A156.1, minimum size 125 mm 5 inches high, heavy, double, or triple weight as required for weight of door. For each additional 300 mm 12 inches of door height beyond 2.13 m 7 feet 0 inches, provide a minimum of one more hinge. Hinges shall be full mortise, half mortise, full surface, or half surface design as recommended by the manufacturer for frame and door design and shall be tamperproof unless mounted on the protected side of the door. Hinges shall have [pins as recommended by the manufacturer] [nonremovable pins] [security pins] [and be equipped with a safety stud]. Spot welding of hinge pin will not be acceptable. Provide hinge manufacturer's certification that the hinge supplied meets applicable test requirements for ANSI/BHMA A156.1 type number of hinge specified and that the hinge is suitable for the size and weight of the door assembly on which it will be utilized. Continuous extra heavy-duty piano-type hinge sized to carry the weight of the door without sagging is permitted. If continuous piano-type hinges are provided with the door, independent laboratory reports covering both the door weight capacity and a 2,500,000 cycle testing to match the ANSI/BHMA A156.1 Grade 1 requirements shall be furnished by the Contractor. Interior door hinges shall be furnished in prime coated steel. Exterior door hinges shall be furnished in nonferrous metal or stainless steel.

2.3.6.3 Electric Strikes

**
NOTE: Use of an electric strike makes the door assembly more susceptible to compromise, especially on doors swinging into a protected area.
**

Where required, provide electric strikes conforming to ANSI/BHMA A156.5 Grade 1. Furnish strike boxes with deadbolt and latch strikes for Grade 1. Strikes shall be [fail secure] [fail safe].

2.3.6.4 Door Closers

**
NOTE: Excessively heavy doors require coordination with manufacturers to ensure selection of proper sizes and types of closers.
**

Closers shall be extra heavy duty of size and type recommended by the manufacturer and shall be Grade 1 conforming to ANSI/BHMA A156.4. Door closer finish shall be [600] [689] [690] [691] [692] in accordance with ANSI/BHMA A156.18.

2.3.6.5 Door Stops and Holders

**
NOTE: Excessively heavy doors require coordination with manufacturers to ensure selection of proper sizes and types of stops and holders.
**
Door stops [and holders] shall be extra heavy duty, conforming to [ANSI/BHMA A156.8, Type C08511 overhead surface mounted type] [ANSI/BHMA A156.16, Type L11251 for floor mounted installation] [ANSI/BHMA A156.16, Type L11271 for wall mounted installation] [_____]..

2.3.7 Frame Anchors

NOTE: Some manufacturers require frame anchors to be built or cast into the surrounding construction.

Provide jamb and head anchors with door/frame assembly as specified by the manufacturer and forced entry resistant to the same degree as the component. Coordinate concrete work with component manufacturers when the manufacturer specifies frame anchors to be embedded into a concrete or concrete masonry unit surface during construction.

2.3.8 Weatherstripping

Provide head and jambs of exterior doors with compression-type neoprene bulb or closed-cell neoprene adjustable type weatherstripping. Door stops shall be weatherstripped with a surface-mounted sponge neoprene strip in bronze housing not less than 1.78 mm 0.070 inch thick installed to make contact with the door. Install weatherstripping in conformance with the manufacturer's directions after completion of finish painting.

2.3.9 Louvers for Doors

NOTE: Due to louver thickness and heavy weight, designers should avoid louvers in doors. If used, place louvers in inactive leaf of door pair where possible.

Where indicated, provide doors with full louvers or louver section. Louvers shall be sightproof type inserted into the door. Pierced louvers shall not be used. Inserted louvers shall be stationary and shall be nonremovable from the attack side of forced entry resistant doors. [Insect screens shall be removable type with 18 by 16 mesh aluminum or bronze cloth.] The free area of the total square meters square feet of the louver shall be [17 percent for channel style louvers] [39 percent for chevron style louvers (inverted angles at 25 mm 1 inch on center)] [_____] percent. Louvers shall be in accordance with AMCA 500-D airflow test; minimum airflow shall be [_____] percent for channel style] [_____] percent for chevron style] [_____] percent. Submit airflow calculations and test data showing compliance.

2.4 FORCED ENTRY RESISTANT LOUVERS

Fabricate louvers and frames from steel shapes to the opening dimensions indicated. The free area of the total square meters square feet of the louver shall be [17 percent for channel style louvers] [39 percent for chevron style louvers (inverted angles at 25 mm 1 inch on center)] [_____] percent. Louver submitted shall have been tested in accordance with AMCA 500-D airflow test; minimum airflow shall be [_____] percent
for channel style] [_____] percent for chevron style] [_____] percent. Submit airflow calculations and test data showing compliance.

2.5 FORCED ENTRY RESISTANT WINDOW ASSEMBLIES

**

NOTE: Forced entry resistant glazing materials may be glass, plastic, or composites. Specify glazing only at the "very low" or "low" threat severity levels. Do not specify glazing thickness.

**

Forced entry resistant window assemblies shall be constructed using forced entry resistant frame sections. Frames shall be welded units of sizes and shapes indicated with minimum frame face dimensions of 50 mm 2 inches. Frame anchorage shall be as specified by the manufacturer and forced entry resistant to the same degree as the component. Top height and rabbet depth shall be as required to accommodate the glazing material resistant to the forced entry test standard specified. Exterior (attack side) glazing stops shall be welded to or integral to the frame. Interior (protected side) glazing stops shall be removable stops attached with high-strength alloy steel machine screws with tamper-resistant heads, or as required by the manufacturer.

2.5.1 Deal Trays

**

NOTE: Install in windows only; do not use in doors.

**

Deal tray shall provide nominal 325 mm 12-3/4 inch wide by 40 mm 1-5/8 inch high opening in sill of window frame[and shall include a 165 mm 6-1/2 inch steel writing ledge on exterior side of window][and shall be provided with a weatherproof closure]. Deal tray shall be of the same materials and finish, shall be a welded subassembly of the window assembly, and shall conform to specified forced entry requirements for the entire window assembly.

2.5.2 Speaking Apertures

Fabricate speaking apertures to allow passage of voice at normal speaking volume without distortion, and to resist the referenced forced entry resistant standard for [outdoor] [indoor] use. Speaking aperture shall be a welded subassembly of the window assembly and shall conform to the specified requirements for the entire window assembly.

2.5.3 Forced Entry Resistant Glazing Material

Glazing material shall be [glass,] [plastic,][or][composite] and shall conform to applicable requirements ASTM C1036, ASTM E1300, and ASTM C1048. Glazing materials shall be tested in accordance with the applicable sections of the following test procedures: ASTM D905, ASTM D1003, ASTM F428, ASTM F548, ASTM D4093, and ASTM F520. Plastic glazing shall be acrylic plastic sheets, polycarbonate plastic sheets, or approved equal. Plastic glazing shall be smooth and clear on both sides. [Glazing material shall be factory installed.] Factory-glazed components shall be covered to protect them from damage during adjacent finish work.
2.5.3.1 Laminated Glass

Laminated glass shall be all glass laminated construction conforming to applicable sections of ASTM C1172. The adhesive interlayer material for bonding glass to glass shall be chemically compatible with surfaces which are to be bonded. Materials selected for lamination purposes shall be tested in accordance with the following testing procedures: ASTM D905, ASTM D1044, ASTM F735, ASTM D4093, ASTM F521, ASTM F520, and ASTM D1003. Glass plies used in the lamination shall be [annealed float glass conforming to Type I, quality q3, Class 1, ASTM C1036] [or] [heat-strengthened or fully heat-tempered float glass, Condition A, Type I, quality q3, Class 1, ASTM C1048].

2.5.3.2 Acrylic Plastic Sheets

Acrylic plastic glazing sheets shall be for use "as cast" and in stretching operations with improved moisture absorption resistance conforming to ASTM D4802. Acrylic materials shall be tested in accordance with the applicable sections of the following testing procedures: ASTM D256, ASTM D5420, ASTM D542, ASTM D570, ASTM D635, ASTM D638, ASTM D696, ASTM D792, ASTM D1003, ASTM E831, ASTM F791, and ASTM G155.

2.5.3.3 Polycarbonate Plastic Sheets

Polycarbonate plastic sheet shall be laminated or solid, ultraviolet stabilized [flame resistant] [high abrasion resistant] sheets shall conform to ASTM D3595. Polycarbonate materials shall be tested in accordance with the applicable sections of the following testing procedures: ASTM D256, ASTM D5420, ASTM D792, ASTM F735, ASTM D1003, ASTM D635, ASTM D638, ASTM D1044, ASTM D882, ASTM D1922, ASTM D570, ASTM F520, ASTM E169, ASTM G155, and ASTM F791. Polyvinyl butyral shall not be used in contact with polycarbonate because its plasticizer may craze polycarbonate.

2.5.3.4 Glass/Plastic Laminate Glazing

Glass/plastic laminated glazing materials shall be glass/plastic laminated construction or glass-clad plastic "sandwich" construction conforming to applicable sections of ASTM C1172.

2.5.3.5 Glass/Plastic Air-Gap Glazing

Forced entry resistant glass/plastic air-gap glazing shall consist of an assembly in which glass forms the exterior [and interior (protected side)] layer, separated by an air space from the laminated plastic plies. Glass plies shall be [annealed float glass conforming to Type I, quality q3, Class 1, ASTM C1036] [or] [heat-strengthened or fully heat-tempered float glass, Condition A, Type I, quality q3, Class 1, ASTM C1048]. Plastic plies shall consist of laminated ultraviolet stabilized polycarbonate sheets, conforming to paragraph Polycarbonate Plastic Sheets and/or acrylic sheets for use "as cast" and in stretching operations with improved moisture absorption resistance conforming to paragraph Acrylic Plastic Sheets.

2.5.4 Adhesive Interlayer Materials

Adhesive interlayer material for bonding laminates (glass-glass, glass-plastic, or plastic-plastic bonds) shall be chemically compatible with the surfaces bonded. Interlayer materials may be polyvinyl butyral,
cast-in-place urethane, proprietary materials, sheet from urethane and other materials. Polyvinyl butyral shall not be used to bond polycarbonate. Adhesives shall conform to ASTM D905 and the manufacturer's recommendations.

2.5.5 Sealants

Sealants for glazings shall be chemically compatible with the glazing materials they are in contact with and shall have no deleterious effects to the glazing materials or to the adhesives used in glazing laminates. Sealants shall conform to the glazing manufacturer's recommendations and the requirements of GANA Glazing Manual.

2.6 FORCED ENTRY RESISTANT PASS-THROUGH DRAWER

Fabricate pass-through drawer of steel and of the size indicated. Assembly shall provide a weather resistant opening. Attachment to wall assembly shall be in accordance with the manufacturer's recommendations. Finish shall be [primed for painting] [satin stainless steel] [____].

2.7 FORCED ENTRY RESISTANT PREFABRICATED GUARDHOUSES

Provide guardhouse consisting of prefabricated, forced entry resistant, modular wall [and] [ceiling] [and floor] panels insulated to R-value of [____] with [doors] [windows] [louvers] [gunports] and necessary connecting posts, hardware, and accessories. Submit complete enclosure. Components shall be factory painted with rust inhibitive primer unless indicated otherwise. Exposed welds shall be dressed smooth. Workmanship shall be rigid, neat in appearance, and free from defects. Guardhouse shall be [of rain and weatherproof design.] [designed to be relocatable by [crane] [forklift].] Electrical work shall be in accordance with local codes.

2.8 ACCESSORIES

Provide accessories for the installation of components into the surrounding structure. Anchorage shall be forced entry resistant to the same degree as the component. Installation shall be in accordance with the manufacturer's recommended instructions. Materials, parts, bolts, anchors, supports, braces, fasteners, and connections necessary for completion of the work.

2.9 LABELING

Forced entry resistant components shall be plainly and permanently labeled as to the applicable forced entry test standard and level within the test standard under which the component was tested and approved. Label shall be visible only from the protected side after component installation and shall include the following information: (1) manufacturer's name or identifying symbol; (2) model number, control number, or equivalent; (3) date of manufacture with the week, month or quarter, and year (this may be abbreviated or be in a traceable code such as the lot number); (4) correct mounting position (by removable label); and (5) forced entry resistant rating by indicating the test standard, level within the test standard (if any), and minutes of attack time withstood (if variable in the standard).

2.10 SHOP/FACTORY FINISHING

Unless otherwise specified, all factory or manufactured components shall
be shop finished as indicated below.

2.10.1 Ferrous Metal

Surfaces of ferrous metal, except galvanized and stainless steel surfaces, shall be cleaned and factory primed for painting. Finish painting shall be in accordance with Section 09 90 00 PAINTS AND COATINGS. Prior to shop painting, clean surfaces with solvents to remove grease and oil and with power wire-brushing or sandblasting to remove loose rust, loose mill scale, and other foreign substances. Surfaces of items to be embedded in concrete shall not be shop painted.

2.10.2 Galvanizing

Items specified to be galvanized shall be hot-dip processed after fabrication. Galvanizing shall be in accordance with ASTM A123/A123M or ASTM A653/A653M.

2.10.3 Aluminum

Unless otherwise specified, aluminum items shall be standard mill finish. When anodic coatings are specified, coatings shall conform to ASM STFA, with treatment to a coating thickness not less than that specified for protective and decorative type finish in AA DAF45. Items to be anodized shall receive a polished satin finish pretreatment and a clear lacquer overcoat conforming to the above-referenced standard.

PART 3 EXECUTION

3.1 EXAMINATION

Field verify dimensions of rough openings for components and that surfaces of openings are level, plumb, and provide required clearances. Components shall be examined for racking, twisting, and other malformation and corrected prior to installation. Replace damaged components that cannot be corrected. Protect surrounding work prior to installation of forced entry resistant components. Surrounding work, which is damaged as a result of the installation of forced entry resistant components, shall be repaired in an approved manner prior to acceptance. Protect glazed units from damage during adjacent work.

3.2 FABRICATION

Components shall be constructed, assembled, welded, and equipped with all hardware and accessories required to complete the assembly in the shop of a competent fabricator.

3.3 FASTENERS

Fasteners exposed to view shall match in color and finish and shall harmonize with the material to which fasteners are applied. Holes for bolts and screws shall be drilled or neatly punched. Poor matching of holes shall be cause for rejection of the work. Fasteners shall be concealed where practicable. Unless otherwise specified, fasteners shall conform to Section 08 31 00 ACCESS DOORS AND PANELS.

3.4 CORROSION PROTECTION - DISSIMILAR MATERIALS

Contact surfaces between dissimilar metals and aluminum surfaces in
contact with concrete, masonry, pressure-treated wood, or absorptive materials subject to wetting shall be given a protective coating in accordance with Section 09 90 00 PAINTS AND COATINGS.

3.5 INSTALLATION

The finished work shall be free from defects. Install components plumb and level and secure rigidly in place. Install components in accordance with approved manufacturer's recommended instructions. Test operable parts of components for smooth operation in the presence of the Contracting Officer. Coordinate frame embedments into the construction where required by the component manufacturer. Replace or repair materials which incur damage as a result of adjacent finish work as specified above. Window assemblies, which are not specified as factory glazed, shall have glazing installed in accordance with GANA Glazing Manual and the manufacturer's recommended instructions. Field glazing shall occur only after concrete, masonry, ceiling, electrical, mechanical, plumbing and adjacent finish work has been completed. Properly install forced entry resistant door assemblies so that operating clearances and bearing surfaces conform to the manufacturer's instructions. Secure the bottom of door frames to the floor slab in accordance with the manufacturer's recommendations. Weatherstripping and thresholds shall be installed at exterior door openings to provide a weathertight installation. Submit Drawings showing (1) anchorage of components and appurtenances into the actual surrounding construction, (2) clearances for operation, and (3) hardware location and installation details. Submit complete drawings for forced entry resistant prefabricated guardhouses. Submit a copy of installation instructions and recommended cleaning and maintenance instructions.

3.6 MANUFACTURER'S FIELD SERVICES

**
NOTE: Designer will only use this paragraph when justified.
**

The manufacturer shall provide the services of a manufacturer's representative who is experienced in the installation, adjustment, and operation of the component specified. At the request of the Contracting Officer, the representative shall supervise the installation, adjustment, and operation (if operable) of the component. The representative shall be onsite [1] [2] [_____] working days.

3.7 ADJUSTING/CLEANING

Make adjustments to assure smooth operation. Units shall be weathertight when closed and locked. Clean components in accordance with manufacturer's instructions. Use only cleanser recommended by the manufacturer to clean polycarbonate, plastic, and applied hardcoats.

-- End of Section --