UNIFIED FACILITIES GUIDE SPECIFICATIONS

Preparing Activity: NASA

Superseding
UFGS-08 33 23 (August 2015)

References are in agreement with UMRL dated April 2020

SECTION TABLE OF CONTENTS

DIVISION 08 - OPENINGS

SECTION 08 33 23

OVERHEAD COILING DOORS

11/19

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY CONTROL
1.4 DELIVERY, STORAGE, AND HANDLING

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Design Requirements
 2.1.1.1 Overhead Coiling Door Detail Shop Drawings
 2.1.2 Performance Requirements
 2.1.2.1 Wind Loading
 2.1.2.2 Fire-Rated Doors, Frames, and Hardware
 2.1.2.3 Oversized Coiling Fire-rated Door Assemblies
 2.1.2.4 Operational Cycle Life

2.2 COMPONENTS
 2.2.1 Overhead Coiling Doors
 2.2.1.1 Curtain Materials and Construction
 2.2.1.2 Non-Insulated Curtains
 2.2.1.3 Insulated Curtains
 2.2.1.4 Curtain Bottom Bar
 2.2.1.5 Vision Lites
 2.2.1.6 Locks
 2.2.1.7 Weather Stripping
 2.2.1.8 Locking Devices
 2.2.1.9 Safety Interlock
 2.2.1.10 Slats

 2.2.2 Hardware
 2.2.2.1 Guides
 2.2.2.2 Hood

 2.2.3 Counterbalancing Mechanism
 2.2.3.1 Brackets
 2.2.3.2 Counterbalance Barrels
 2.2.3.3 Spring Balance
2.2.3.4 Torsion Rod for Counter Balance
2.2.3.5 Counterbalance Shaft Assembly
2.2.4 Manual Door Operators
 2.2.4.1 Manual Push-Up Door Operators
 2.2.4.2 Manual Chain-Hoist Door Operators
 2.2.4.3 Manual Crank-Hoist Door Operators
2.2.5 Electric Door Operators
 2.2.5.1 Door-Operator Types
 2.2.5.2 Electric Motors
 2.2.5.3 Motor Bearings
 2.2.5.4 Motor Starters, Controls, and Enclosures
 2.2.5.5 Control Enclosures
 2.2.5.6 Transformer
 2.2.5.7 Sensing-Edge Device
 2.2.5.8 Remote-Control Stations
 2.2.5.9 Speed-Reduction Units
 2.2.5.10 Chain Drives
 2.2.5.11 Brakes
 2.2.5.12 Clutches
 2.2.5.13 Weather/Smoke Seal Sensing Edge
2.2.6 Fire-Rated Door Assembly
 2.2.6.1 Fire Ratings
2.2.7 Surface Finishing
 2.2.7.1 Baked-Enamel or Powder-Coat Finish

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Field Painted Finish
3.2 ADJUSTING AND CLEANING
 3.2.1 Acceptance Provisions
 3.2.1.1 Maintenance and Adjustment
 3.2.1.2 Cleaning
3.3 CLOSEOUT ACTIVITIES
 3.3.1 Warranty
 3.3.2 Operation And Maintenance

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for manually-operated, power-operated overhead coiling doors, and overhead coiling counter doors.

Verify drawings indicate door location, opening dimensions, wall thickness, side room and headroom clearances, structural framing above the door track, jamb conditions, location and type of electrical service, and remote-control stations, elevations, sections, details, materials, finishes, conditions for anchorage and support of each door. For fire-rated pass doors, comply with NFPA 80, Section 5.2.3.1.

Coordinate the weight of the door with the structural engineer if additional framing is required.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).
PART 1 GENERAL

1.1 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASCE 7-16

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE FUN IP

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

ASME B29.400
(2001; (R 2008) (R 2013) (R 2018)) Combination, "H" Type Mill Chains, and Sprockets

ASTM INTERNATIONAL (ASTM)

ASTM A36/A36M

ASTM A47/A47M

ASTM A48/A48M

ASTM A53/A53M
(2018) Standard Specification for Pipe,
Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

ASTM A653/A653M (2019) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A666 (2015) Standard Specification for Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers,
1.2 SUBMITTALS

**

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that
the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Overhead Coiling Doors[; G[, [___]]]
Counterbalancing Mechanism[; G[, [___]]]
Manual Door Operators[; G[, [___]]]
Electric Door Operators[; G[, [___]]]
Bottom Bars[; G[, [___]]]
Guides[; G[, [___]]]
Mounting Brackets[; G[, [___]]]
Hood[; G[, [___]]]
Installation Drawings[; G[, [___]]]

SD-03 Product Data

Overhead Coiling Doors[; G[, [___]]]
Hardware[; G[, [___]]]
Counterbalancing Mechanism[; G[, [___]]]
Manual Door Operators[; G[, [___]]]
Electric Door Operators[; G[, [___]]]
Fire-Rated Door Assembly[; G[, [___]]]

SD-05 Design Data

Overhead Coiling Doors[; G[, [___]]]
Hardware; G[, [___]]
Counterbalancing Mechanism; G[, [___]]
Manual Door Operators; G[, [___]]
Electric Door Operators; G[, [___]]
Fire-Rated Door; G[, [___]]

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals; G[, [___]]
Materials; G[, [___]]
Devices; G[, [___]]
Procedures; G[, [___]]
Manufacturer's Brochures; G[, [___]]
Parts Lists; G[, [___]]

SD-11 Closeout Submittals

Warranty; G[, [___]]

1.3 QUALITY CONTROL

**

NOTE: Select the appropriate design and fire rating classification. Depending on the size of the fire door, labeling and oversize certificates and/or labels vary with the individual manufacturers. Generic installation of a rolling fire door, as shown in NFPA 80 is applicable to masonry type fire walls and the manufacturer's listed procedures, or the authority having jurisdiction. Other wall construction listings such as non-masonry (drywall) are accomplished per the individual manufacturer's listed procedures or as approved by the authority having jurisdiction. Manufacturer's catalogs should be consulted for required headroom and side room.

Class A is typically 3 hours; Class B is typically 1 1/2 hours.

**

Provide fire-rated door assemblies bearing the Underwriters Laboratories, Warnock Hersey, Factory Mutual or other nationally recognized testing laboratory label for [Class [_____] rating.] [the rating listed on the drawings.] Provide a permanent label for each door showing the manufacturer's name and address, and the model/serial number of the door.

Provide oversized fire-rated door assemblies with a listing agency oversize label, or a certificate signed by an official of the manufacturing company certifying that the door and operator are designed to meet the specified requirements.
1.4 DELIVERY, STORAGE, AND HANDLING

Deliver doors to the jobsite wrapped in a protective covering with the brands and names clearly marked thereon. Store doors in an adequately ventilated dry location that is free from dirt and dust, water, or other contaminants. Store in a manner that permits easy access for inspection and handling.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

**

NOTE: To provide maximum protection from the weather, exterior doors normally are installed on the interior face of the wall. Weather protection features should be considered for doors installed on the exterior face of the wall.

Indicate the following information on the project drawings:

a. Size of door openings.

b. Type and details of door frames or jambs plus side room, jamb loads and door curtain deflection under pressure load.

c. All wire and conduit from source of power to the operators and/or controls for electric power operated doors.

**

Provide overhead coiling doors, with interlocking slats, complete with anchoring and door hardware, guides, hood, and operating mechanisms, and designed for use on openings as indicated. Use grease-sealed or self-lubricating bearings for rotating members.

2.1.1 Design Requirements

2.1.1.1 Overhead Coiling Door Detail Shop Drawings

Provide installation drawings for overhead coiling door assemblies which show: elevations of each door type, shape and thickness of materials, finishes, details of joints and connections, details of guides and fittings, rough opening dimensions, location and description of hardware, anchorage locations, and counterbalancing mechanism and door operator details. Show locations of replaceable fusible links on wiring diagrams for power, signal and controls. Include a schedule showing the location of each door with the drawings.

2.1.2 Performance Requirements

**

NOTE: The IBC establishes criteria for buildings in hurricane-prone locations.

**
2.1.2.1 Wind Loading

Design and fabricate door assembly to withstand the wind loading pressure of at least [_____] kilopascal pounds per square foot. Provide test data showing compliance with ASTM E330/E330M. Sound engineering principles may be used to interpolate or extrapolate test results to door sizes not specifically tested. Ensure that the complete assembly meets or exceeds the requirements of ASCE 7-16.

2.1.2.2 Fire-Rated Doors, Frames, and Hardware

Provide fire-rated doors, frames, and hardware that are tested, rated, and labeled in accordance with Underwriters Laboratories, Factory Mutual or Warnock Hersey. Indicate on the labels the rating in hours, per NFPA 80, of fire exposure duration. Additionally, ensure a letter follows the hourly rating to designate the location for which the assembly is designed and the temperature rise on the unexposed door face at the end of 30 minutes of fire exposure is required.

Provide and attach metal UL labels to the bottom bar.

2.1.2.3 Oversized Coiling Fire-rated Door Assemblies

Where fire-rated doors and frames exceed the size for which testing and labeling services are offered, furnish certificates of inspection from either UL, Factory Mutual or Warnock Hersey. State within certificates that except for size; doors, frames, and hardware are identical in design, materials, and construction to a door that has been tested and rated.

2.1.2.4 Operational Cycle Life

**

NOTE: The particular needs of the project are those that will be used to determine frequency of usage. The normal operating frequency for overhead coiling doors is 10 cycles per day. Typical rolling doors are designed for 15,000–20,000 spring cycles. If doors are expected to operate at a significantly higher frequency, the number of cycles per day or hour should be specified.

**

Design all portions of the door, hardware and operating mechanism that are subject to movement, wear, or stress fatigue to operate through a minimum number of [10] cycles per [day] [hour]. One complete cycle of door operation is defined as when the door is in the closed position, moves to the fully open position, and returns to the closed position.

2.2 COMPONENTS

2.2.1 Overhead Coiling Doors

2.2.1.1 Curtain Materials and Construction

[Provide curtain slats fabricated from Grade A steel sheets conforming to ASTM A653/A653M, with the additional requirement of a minimum yield point of 228 Megapascal 33,000 psi. Provide sheets, galvanized in conformance with ASTM A653/A653M and ASTM A924/A924M.}
Provide curtain slats fabricated from Type 304 stainless steel sheets conforming to ASTM A666; sheet thickness as required by the size of the door to meet the required windload.

Provide curtain slats fabricated from aluminum sheets conforming to ASTM B209M ASTM B209, or ASTM B221M ASTM B221 extrusions, alloy and tempering standard from the manufacturer for type of use and finish indicated; with a thickness as required by the size of the door to meet the required windload.

Fabricate doors from interlocking cold-rolled slats, with section profiles as specified, designed to withstand the specified wind loading. Ensure the provided slats are continuous without splices for the width of the door.

Provide slats filled with manufacturer's standard thermal insulation, complying with the maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, according to ASTM E84. Enclose the insulation completely within the slat faces on the interior surface of the slats.

2.2.1.2 Non-Insulated Curtains

**

NOTE: Where physical abuse of the doors may be a problem, the minimum decimal thickness of material (bare metal) should be specified for the various door widths. If physical abuse is not a factor, the decimal thickness of material may be determined by wind pressure alone and delete the references to door width. The referenced bare metal thicknesses do not include galvanization or paint coating thicknesses.

**

Form curtains from the manufacturer's standard shapes of interlocking slats.

2.2.1.3 Insulated Curtains

**

NOTE: Several manufacturers can provide insulated slats that comply with all specified requirements. Check manufacturers' literature for information on R-value. At least one manufacturer makes an oversize slat that provides increased insulation.

DO NOT specify insulated slats for fire doors.

**

Form curtains from manufacturer's standard shapes of interlocking slats. Supply a slat system with a minimum R-value of 4 [_____] when calculated in accordance with ASHRAE FUN IP. Slats to consist of a [urethane] [polystyrene] core not less than 17 mm 11/16 inch thick, completely enclosed within metal facings. Slat steel thickness as required by the size of the door to meet specified performance requirements. The insulated slat assembly requires a flame spread rating of not more than 25 and a smoke development factor of not more than 50 when tested in accordance with ASTM E84.
2.2.1.4 Curtain Bottom Bar

Install curtain **bottom bars** as pairs of angles or using extrusions from the manufacturer's standard steel, stainless and aluminum extrusions not less than 50 by 50 millimeter by 4.8 millimeter 2.0 by 2.0 inches by 0.188 inch. Ensure steel extrusions conform to ASTM A36/A36M. Stainless steel extrusions conforming to ASTM A666, Type 304. Aluminum extrusions conforming to ASTM B221M ASTM B221. Galvanize angles and fasteners in accordance with ASTM A653/A653M and ASTM A924/A924M. Coat welds and abrasions with paint conforming to ASTM A780/A780M.

[Provide two minimum 50 mm by 50 mm by 3.2 mm 2 inch by 2 inch by 1/8 inch structural steel angles.]

2.2.1.5 Vision Lites

**
NOTE: Indicate on drawings the size and location of vision panels.
**

Provide complete manufacturer's standard vision panels assembly consisting of clear acrylic glazing panels or fire-rated glass as required for the type door.

2.2.1.6 Locks

Provide end and/or wind locks of Grade B cast steel conforming to ASTM A47/A47M, galvanized in accordance with ASTM A153/A153M. Secure locks at every other curtain slat.

2.2.1.7 Weather Stripping

Provide a hood baffle inside the hood that is a minimum 1.6 millimeter 1/16 inch thick sheet of vinyl, neoprene rubber or equivalent. Provide guide weather stripping that is a minimum 1.6 millimeter 1/16 inch thick sheet of vinyl, neoprene rubber, or equivalent.

Provide bottom bar weather-stripping that is a minimum 1.6 millimeter 1/16 inch thick sheet of vinyl, neoprene rubber, or equivalent.

2.2.1.8 Locking Devices

Ensure that the slide bolt engages through slots in tracks for locking by padlock, located on both left and right jamb sides, operable from coil side.

Provide a locking device assembly which includes cylinder lock, operating handle, cam plate, and adjustable locking bars to engage through slots in tracks.

[Provide a chain lock keeper suitable for a standard padlock.]

2.2.1.9 Safety Interlock

Equip power-operated doors with a safety interlock switch to disengage power supply when the door is locked, or provide an operator with an internal lock sensing device to prevent the door opening when the door is locked.
2.2.10 Slats

[22][20][18] gauge, Grade 40 steel, ASTM A653/A653M galvanized steel zinc coating.

2.2.2 Hardware

Ensure that all hardware conforms to ASTM A153/A153M, ASTM A307, and ASTM F568M.

2.2.2.1 Guides

**

NOTE: Indicate on drawings jamb-guide anchorage details.
**

Fabricate curtain jamb guides from the manufacturer's standard angles or channels of same material and finish as curtain slats unless otherwise indicated. Provide guides with sufficient depth and strength to retain curtain, and to withstand loading. Ensure curtain operates smoothly. Slot bolt holes for track adjustment.

Ensure guides are roll-formed steel channel bolted to angle or structural grade, three angle assembly of [steel][stainless steel][aluminum] to form a slot of sufficient depth to retain curtains in guides to achieve 13.8 kilopascals 20 psf windload standard. Guides may be provided with integral windlock bars and removable bottom bar stops.

Fabricate with [structural steel][stainless steel][aluminum] angles. Provide windlock bars of same material when windlocks are required to meet specified wind load. Flare the top of inner and outer guide angles outwards to form bellmouth for smooth entry of curtain into guides. Provide removable guide stoppers to prevent over travel of curtain and bottom bar.

2.2.2.2 Hood

Provide a hood with a minimum [24-gauge][aluminum 22-gauge B&S][galvanized][stainless steel] sheet metal, flanged at top for attachment to header and flanged at bottom to provide longitudinal stiffness. The hood encloses the curtain coil and counterbalance mechanism.

Provide intermediate support brackets as required to prevent excessive sag.

2.2.3 Counterbalancing Mechanism

Counterbalance doors by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted, around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed or self-lubricating bearings for rotating members.

2.2.3.1 Brackets

Provide the manufacturer's standard mounting brackets with one located at each end of the counterbalance barrel conforming to ASTM A36/A36M. Provide brackets of hot-rolled steel.
Brackets will be of [5 mm 3/16 inch][6.35 mm 1/4 inch] minimum thick steel plates, with permanently sealed ball bearings. Designed to enclose ends of coil and provide support of counterbalance pipe at each end.

2.2.3.2 Counterbalance Barrels

Fabricate spring barrel of manufacturer's standard hot-formed, structural-quality, welded or seamless carbon-steel pipe, conforming to ASTM A53/A53M or equivalent. Ensure the barrel is of sufficient diameter and wall thickness to support rolled-up curtain without distortion of slats. Limit barrel deflection to not more than 2.5 mm per meter 0.03 inch per foot of span under full load.

a. Barrel

Provide steel pipe capable of supporting curtain load with maximum deflection of 0.03 inches per foot 2.5 mm per meter of width.

b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of door. Ensure that effort to operate manually operated units does not exceed 110 N 25 lbs. Provide wheel for applying and adjusting spring torque.

2.2.3.3 Spring Balance

**
NOTE: Delete the paragraph heading and the following paragraphs if Metal Rolling Counter Doors are not being used.
**

Install one or more oil-tempered, heat-treated steel helical torsion springs within the barrel, capable of producing sufficient torque to assure easy operation of the door curtain. Provide and size springs to counterbalance weight of curtain, with uniform adjustment accessible from outside barrel. Secure ends of springs to barrel and shaft with cast-steel barrel plugs.

2.2.3.4 Torsion Rod for Counter Balance

Fabricate rod from the manufacturer's standard cold-rolled steel, sized to hold fixed spring ends and carry torsional load.

2.2.3.5 Counterbalance Shaft Assembly

[a. Barrel

Provide steel pipe capable of supporting the curtain load with maximum deflection of 2.5 mm per meter 0.03 inches per foot of width.

][b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of door. Ensure that maximum effort to operate does not exceed 110 Newtons 25 pounds. Provide wheel for applying and adjusting spring torque.
2.2.4 Manual Door Operators

**

NOTE: Select desired method of manual operation paragraph from the following three paragraphs and delete the remaining two paragraphs.

**

[2.2.4.1 Manual Push-Up Door Operators

Equip door with manufacturer's recommended lifting handles, locks, and latches. Adjust counterbalance mechanisms so that the required lift or pull for operation does not exceed 11 kilogram 25 pounds unless another type of door operator is indicated.

[2.2.4.2 Manual Chain-Hoist Door Operators

Provide door operators which consist of an endless steel hand chain, chain-pocket wheel, guard, and a geared reduction unit [of at least a 3 to 1 ratio] [with a maximum lifting force of [111 N 25 lbf] [133 N 30 lbf]]. Required pull for operation cannot exceed 16 kilogram 35 pounds.

Provide chain hoists with a mechanism allowing the curtain to be stopped at any point in its upward or downward travel and to remain in that position until moved to the fully open or closed position. Provide hand chains of cadmium-plated alloy steel. Ensure that the yield point of the chain is at least three times the required hand-chain pull.

Provide chain sprocket wheels of cast iron conforming to ASTM A48/A48M.

[2.2.4.3 Manual Crank-Hoist Door Operators

Provide door operators which consist of crank and crank gearbox, steel crank drive shaft, and gear-reduction unit with a maximum [111 N 25 lbf] [133 N 30 lbf] force to turn crank. Fabricate gearbox to be oil tight and to completely enclose operating mechanism.

2.2.5 Electric Door Operators

**

NOTE: Delete the paragraph heading and the following paragraphs if electric door operation is not required.

Refer to DIVISION 26 ELECTRICAL, for electrical requirements and equipment with a fire-protection system.

**

Provide electrical wiring and door operating controls conforming to the applicable requirements of NFPA 70 and UL 325.

Electric door-operator assemblies needs to be the sizes and capacities recommended and provided by the door manufacturer for specified doors. Furnish complete assemblies with electric motors and factory-prewired motor controls, starter, gear reduction units, solenoid-operated brakes, clutch, remote-control stations, manual or automatic control devices, and accessories as required for proper operation of the doors.
Design the operators so that motors may be removed without disturbing the limit-switch adjustment and affecting the emergency auxiliary operators.

Provide a manual operator of crank-gear or chain-gear mechanisms with a release clutch to permit manual operation of doors in case of power failure. Arrange the emergency manual operator so that it may be put into and out of operation from floor level, and its use does not affect the adjustment of the limit switches. Provide an electrical or mechanical device that automatically disconnects the motor from the operating mechanism when the emergency manual operating mechanism is engaged.

2.2.5.1 Door-Operator Types

[Provide an operator mounted to the right or left door head plate with the operator on top of the door-hood assembly and connected to the door drive shaft with drive chain and sprockets. Headroom is required for this type of mounting.

][Provide an operator mounted to the right or left door head plate with the operator on coil side of the door-hood assembly and connected to the door drive shaft with drive chain and sprockets. Front clearance is required for this type of mounting.

][Provide an operator mounted to the inside front wall on the left or right side of door and connected to door drive shaft with drive chain and sprockets. Side room is required for this type of mounting. Wall mounted operator can also be mounted above or below shaft; if above shaft, headroom is required.

][Provide a bench mounted operator mounted to the right or left door head plate and connected to the door drive shaft with drive chain and sprockets. Side room is required for this type of mounting.

][Provide a through-wall operator which is mounted on other side of wall from coil side of door.

2.2.5.2 Electric Motors

Provide motors which are the high-starting-torque, reversible, constant-duty electrical type with overload protection of sufficient torque and wattage horsepower to move the door in either direction from any position. Ensure they produce a door-travel speed of not less than 0.2 nor more than 0.3 meter or 8 nor more than 12 inches per second without exceeding the wattage horsepower rating.

Provide motors which conform to NEMA MG 1 designation, temperature rating, service factor, enclosure type, and efficiency to the requirements specified.

[Certify and label explosion-proof motors to indicate conformance to the following:

[UL 674, Class I, Groups C and D]

[UL 674, Class II, Groups F and G]
2.2.5.3 Motor Bearings

Select bearings with bronze-sleeve or heavy-duty ball or roller antifriction type with full provisions for the type of thrust imposed by the specific duty load.

Pre-lubricate and factory seal bearings in motors less than 375 watts 1/2 horsepower.

Equip motors coupled to worm-gear reduction units with either ball or roller bearings.

Equip bearings in motors 375 watts 1/2 horsepower or larger with lubrication service fittings. Fit lubrication fittings with color-coded plastic or metal dust caps.

In any motor, bearings that are lubricated at the factory for extended duty periods do not need to be lubricated for a given number of operating hours. Display this information on an appropriate tag or label on the motor with instructions for lubrication cycle maintenance.

2.2.5.4 Motor Starters, Controls, and Enclosures

Provide each door motor with: a factory-wired, unfused, disconnect switch; a reversing, across-the-line magnetic starter with thermal overload protection; 24-volt operating coils with a control transformer limit switch; and a safety interlock assembled in a NEMA ICS 6 type enclosure as specified herein. Ensure control equipment conforms to NEMA ICS 2.

Provide adjustable switches, electrically interlocked with the motor controls and set to stop the door automatically at the fully open and fully closed position.

2.2.5.5 Control Enclosures

Provide control enclosures that conform to NEMA ICS 6 for [NEMA Type 4][NEMA Type 4X][general purpose NEMA Type 1]. [oil-tight and dust-tight NEMA Type 12.] [explosion-proof, NEMA Type 7, group as indicated.] [explosion-proof NEMA Type 9, group as indicated.]

2.2.5.6 Transformer

Provide starters with 230/460 to 115 volt control transformers with one secondary fuse when required to reduce the voltage on control circuits to 24volts or less. Provide a transformer conforming to NEMA ST 1.

2.2.5.7 Sensing-Edge Device

**
NOTE: Coordinate location of devices on drawing elevations.
**

Provide each door with a pneumatic or electric sensing device that meets UL 325, extends the full width of the door, and is located within a U-section neoprene or rubber astragal, mounted on the bottom rail of the bottom door section. Device needs to immediately stop and reverse the door upon contact with an obstruction in the door opening during downward travel and cause the door to return to full-open position. A sensing
device is not a substitute for a limit switch.

Connect sensing device to the control circuit through a retracting cord and reel.

2.2.5.8 Remote-Control Stations

[Provide interior remote control stations that are full-guarded, momentary-contact three-button, heavy-duty, surface-mounted NEMA ICS 6 type enclosures as specified. Mark buttons "OPEN," "CLOSE," and "STOP." Ensure the "CLOSE" button requires a constant pressure to maintain the closing motion of the door. When the door is in motion and the "STOP" button is pressed, ensure the door stops instantly and remains in the stopped position. From the stopped position, the door may then be operated in either direction.

][Provide exterior control stations that are full-guarded, momentary-contact three-button standard-duty, surface-mounted, weatherproof type, NEMA ICS 6, Type 4 enclosures, key-operated, with the same operating functions as specified herein for interior remote-control stations.

]2.2.5.9 Speed-Reduction Units

Provide speed-reduction units consisting of hardened-steel worm and bronze worm gear assemblies or planetary gear reducers running in oil or grease and inside a sealed casing, coupled to the motor through a flexible coupling. Drive shafts need to rotate on ball- or roller-bearing assemblies that are integral with the unit.

Provide minimum ratings of speed reduction units in accordance with AGMA provisions for class of service.

Ground worm gears to provide accurate thread form; machine teeth for all other types of gearing. Surface harden all gears.

Provide antifriction type bearings equipped with oil seals.

2.2.5.10 Chain Drives

Provide roller chains that are a power-transmission series steel roller type conforming to ASME B29.400, with a minimum safety factor of 10 times the design load.

Heat-treat or otherwise harden roller-chain side bars, rollers, pins, and bushings.

Provide high-carbon steel chain sprockets with machine-cut hardened teeth, finished bore and keyseat, and hollow-head setscrews.

2.2.5.11 Brakes

Provide 360-degree shoe brakes or shoe and drum brakes. Ensure the brakes are solenoid-operated and electrically interlocked to the control circuit to set automatically when power is interrupted.

2.2.5.12 Clutches

Ensure clutches are friction type or adjustable centrifugal type.
2.2.5.13 Weather/Smoke Seal Sensing Edge

Provide automatic stop control by an automatic sensing switch within neoprene astragal extending the full width of door bottom bar.

Provide an electric sensing edge device. Ensure the door immediately stops downward travel when contact occurs before door fully closes. Provide a self-monitoring sensing edge connection to the motor operator.

2.2.6 Fire-Rated Door Assembly

Provide fire-rated door assemblies with the dimensions, fire rating, and operating type indicated with electric operators and assemblies that do not interfere with manufacturer's standard interconnecting fusible links.

[Provide the door manufacturer's standard interconnecting fusible links for door assemblies on both sides of the wall opening.]

2.2.6.1 Fire Ratings

Provide fire-rated door assemblies complying with NFPA 80 Standard for Fire Doors and Other Opening Protectives.

2.2.7 Surface Finishing

Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. Noticeable variations in the same metal component are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved samples and are assembled or installed to minimize contrast.

2.2.7.1 Baked-Enamel or Powder-Coat Finish

**
NOTE: Baked-Enamel is less expensive than a Powder-Coat Finish. The benefits of powder coatings are a smoother, more durable finish and availability in a variety of colors.
**

Manufacturer's standard baked-on finish consisting of prime coat and thermosetting topcoat. Comply with the coating manufacturer's written instructions for cleaning, pretreatment, application, and minimum dry film thickness.

PART 3 EXECUTION

3.1 INSTALLATION

Install overhead coiling door assembly, anchors and inserts for guides, brackets, motors, switches, hardware, and other accessories in accordance with approved detail drawings and manufacturer's written instructions. Upon completion of installation, ensure doors are free from all distortion.

Install overhead coiling doors, motors, hoods, and operators at the mounting locations as indicated for each door in the contract documents and as required by the manufacturer.
Install overhead coiling doors, switches, and controls along accessible routes in compliance with regulatory requirements for accessibility and as required by the manufacturer.

3.1.1 Field Painted Finish

Ensure field painted steel doors and frames are in accordance with Section 09 90 00 PAINTS AND COATINGS and the manufacturer's written instructions. Protect the weather stripping from paint. Ensure that the finishes are free of scratches or other blemishes.

3.2 ADJUSTING AND CLEANING

3.2.1 Acceptance Provisions

After installation, adjust the hardware and moving parts. Lubricate bearings and sliding parts as recommended by manufacturer to provide smooth operating functions for ease movement, free of warping, twisting, or distortion of the door assembly.

Adjust seals to provide a weather-tight fit around entire perimeter.

Engage a factory-authorized service representative to perform startup service and checks according to the manufacturer's written instructions.

Test the door opening and closing operation when activated by controls[or alarm-connected fire-release] system. Adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Reset the door-closing mechanism after a successful test.

Test and make final adjustment of new doors at no additional cost to the Government.

3.2.1.1 Maintenance and Adjustment

Not more than 90 calendar days after completion and acceptance of the project, examine, lubricate, test, and re-adjust doors as required for proper operation.

3.2.1.2 Cleaning

**
NOTE: Delete the paragraph heading and the following paragraph if Metal Rolling Counter Doors are not being used.
**

Clean [aluminum][stainless steel] doors in accordance with manufacturer's approved instructions.

3.3 CLOSEOUT ACTIVITIES

3.3.1 Warranty

Furnish a written guarantee that the helical spring and counterbalance mechanism are free from defects in material and workmanship for not less than [two] [_____] years after completion and acceptance of the project.

Warrant that upon notification by the Government, any defects in material,
workmanship, and door operation are immediately correct within the same
time period covered by the guarantee, at no cost to the Government.

3.3.2 Operation And Maintenance

Submit [6] copies of the Operation and Maintenance Manuals 30
calendar days prior to testing the Overhead Coiling Door Assemblies. Update and resubmit data for final approval no later than 30 calendar days prior to contract completion.

Submit Operation and Maintenance Manuals for Overhead Coiling Door Assemblies, including the following items:

- **Materials**
- **Devices**
- Manual Door Operators
- Electric Door Operators
- Hood
- Counterbalancing Mechanism
- Painting
- **Procedures**
- Manufacturer's Brochures
- Parts Lists

Provide operation and maintenance manuals which are consistent with manufacturer's standard brochures, schematics, printed instructions, operating procedures, and safety precautions. Provide test data that is legible and of good quality.

-- End of Section --