UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2019

SECTION TABLE OF CONTENTS

DIVISION 03 - CONCRETE

SECTION 03 37 29

CONCRETE FOR CONCRETE CUTOFF WALLS

11/09

PART 1 GENERAL

1.1 UNIT PRICES
 1.1.1 Coring Concrete in Completed Panels
 1.1.1.1 Payment
 1.1.1.2 Measurement
 1.1.2 Unit of Measure
1.2 REFERENCES
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
 1.4.1 Government Testing and Sampling
 1.4.2 Preconstruction Sampling and Testing
 1.4.2.1 Aggregates
 1.4.2.2 Cementitious Materials and Admixtures
 1.4.3 Construction Testing by the Government
 1.4.3.1 Chemical Admixtures Requirements
 1.4.3.2 Cement and Pozzolan
 1.4.3.2.1 Prequalified Cement Sources
 1.4.3.2.2 Prequalified Pozzolan Sources
 1.4.3.2.3 Nonprequalified Cement Sources
 1.4.3.2.4 Nonprequalified Pozzolan Sources
 1.4.3.3 Concrete Tests

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Maximum Water-Cement Ratio
 2.1.2 Cement Content
 2.1.3 Nominal Maximum-Size Coarse Aggregate
 2.1.4 Fine Aggregate
 2.1.5 Air Content
 2.1.6 Slump
 2.1.7 Responsibility of Mixture Proportioning
 2.1.8 Concrete Proportioning
2.2 MATERIALS
 2.2.1 Cementitious Materials
2.2.1.1 Portland Cement
2.2.1.2 Pozzolan, Other than Silica Fume
2.2.1.3 Ground Granulated Blast-Furnace (GGBF) Slag

2.2 Aggregates
2.2.2.1 Listed Sources
2.2.2.2 Concrete Aggregate Sources
 2.2.2.2.1 List of Sources
 2.2.2.2.2 Selection of Source
2.2.2.3 Quality
2.2.2.4 Fine Aggregate Grading and Moisture Content
2.2.2.5 Coarse Aggregate Grading and Moisture Content

2.2.3 Chemical Admixtures
2.2.3.1 Air-Entraining Admixture
2.2.3.2 Accelerating Admixture
2.2.3.3 Flowing Concrete Admixtures

2.2.4 Water

2.3 PLANT AND EQUIPMENT
2.3.1 Capacity
2.3.2 Batch Plant
 2.3.2.1 Batching Equipment
 2.3.2.2 Scales
 2.3.2.3 Batching Tolerances
 2.3.2.4 Moisture Control
2.3.3 Concrete Mixers
 2.3.3.1 Stationary Mixers
 2.3.3.2 Truck Mixers
2.3.4 Conveying Equipment
 2.3.4.1 Buckets
 2.3.4.2 Trucks
 2.3.4.3 Chutes
 2.3.4.4 Concrete Pumps

PART 3 EXECUTION

3.1 PLACING
3.1.1 Time Interval Between Mixing and Placing
3.1.2 Placing Temperature
3.1.3 Concrete Deposited in Cutoff Trench
3.1.4 Concrete Placement
3.1.5 Required Height of Concrete

3.2 CURING AND PROTECTION

3.3 TESTS AND INSPECTIONS
3.3.1 General
3.3.2 Testing and Inspection Requirements
 3.3.2.1 Fine Aggregate
 3.3.2.1.1 Grading
 3.3.2.1.2 Corrective Action for Fine Aggregate Grading
 3.3.2.1.3 Moisture Content Testing
 3.3.2.1.4 Moisture Content Corrective Action
 3.3.2.2 Coarse Aggregate
 3.3.2.2.1 Grading
 3.3.2.2.2 Corrective Action for Grading
 3.3.2.2.3 Coarse Aggregate Moisture Content
 3.3.2.2.4 Coarse Aggregate Moisture Corrective Action
 3.3.2.3 Quality of Aggregates
 3.3.2.3.1 Frequency of Quality Tests
 3.3.2.3.2 Corrective Action for Aggregate Quality
 3.3.2.4 Deleterious Substances
 3.3.2.4.1 Testing
3.3.2.4.2 Corrective Action for Deleterious Substances

3.3.2.5 Scales
 3.3.2.5.1 Accuracy
 3.3.2.5.2 Batching and Recording Accuracy
 3.3.2.5.3 Scales Corrective Action

3.3.2.6 Batch-Plant Control

3.3.2.7 Concrete Mixture
 3.3.2.7.1 Air Content Testing
 3.3.2.7.2 Air Content Corrective Action
 3.3.2.7.3 Slump Testing
 3.3.2.7.4 Slump Corrective Action
 3.3.2.7.5 Compressive Strength
 3.3.2.7.6 Temperature

3.3.2.8 Placing
 3.3.2.8.1 Preparation for Placing
 3.3.2.8.2 Placing
 3.3.2.8.3 Placing Corrective Action

3.3.2.9 Curing
 3.3.2.9.1 Moist-Curing Inspections
 3.3.2.9.2 Moist-Curing Correction Action

3.3.2.10 Mixer Uniformity
 3.3.2.10.1 Stationary Mixers
 3.3.2.10.2 Truck Mixers
 3.3.2.10.3 Mixer Uniformity Concrete Action

3.3.3 Reports

3.3.4 Concrete Coring
 3.3.4.1 Concrete Coring in Completed Panels
 3.3.4.2 Method of Drilling
 3.3.4.3 Equipment and Supplies
 3.3.4.4 Core Boxes
 3.3.4.5 Disposition of Core Samples
 3.3.4.6 Backfilling Core Holes

3.3.5 Evaluation and Acceptance

ATTACHMENTS:

concrete aggregates sources

-- End of Section Table of Contents --
SECTION 03 37 29
CONCRETE FOR CONCRETE CUTOFF WALLS
11/09

NOTE: This guide specification covers the requirements for concrete cutoff wall structures. This section was originally developed for USACE Civil Works projects.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: The content of this specification is such that guidance given in EM 1110-2-2000, "Standard Practice for Concrete", is applicable.

1.1 UNIT PRICES

NOTE: If Section 01 22 00.00 10 PRICE AND PAYMENT PROCEDURES is included in the project specifications, this paragraph title (UNIT PRICES) should be deleted from this section and the remaining appropriately edited subparagraphs below should be inserted into Section 01 22 00.00 10.
With the exception of coring concrete in completed panels, all costs in connection with this section, including all materials, will be included in the payment item(s) specified.

Core recovery percentage for each boring should be a high number such as 90 to 95, since it is expected that a competent concrete material is being cored. The deviation of the core hole should be in relation to the smallest dimension of the panels that will be produced for each jobsite.

1.1.1 Coring Concrete in Completed Panels

1.1.1.1 Payment

Payment will be made for costs associated with Coring Concrete in Completed Panels and backfilling the core holes. This price will constitute full compensation for mobilizing and demobilizing and furnishing all equipment and supplies necessary to perform all operations specified. No payment will be made for coring and backfilling at a location where the coring reveals the presence of "unacceptable concrete", as specified in paragraph UNACCEPTABLE CONCRETE IN COMPLETED PANELS in PART 3. All costs incurred, including the initial core boring and as many additional core borings as may be required to delineate the limits of the unacceptable concrete and the repair of the cutoff wall, shall be borne by the Contractor and shall not result in any additional cost to the Government.

1.1.1.2 Measurement

Coring Concrete in Completed Panels will be measured for payment from the top of the panel to the bottom of the core hole. If overall core recovery for a boring is less than [_____] percent or the boring deviates from the cutoff wall prior to reaching a depth of [_____] meters feet, the boring shall be redrilled and backfilled at no additional cost to the Government.

1.1.2 Unit of Measure

Unit of measure: per linear meter foot of cored hole.

1.2 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.
References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE (ACI)

ASTM INTERNATIONAL (ASTM)

and Friable Particles in Aggregates

ASTM C192/C192M (2016a) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory

ASTM C231/C231M (2017a) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

ASTM C31/C31M (2018b) Standard Practice for Making and Curing Concrete Test Specimens in the Field

ASTM C441/C441M (2017) Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C618</td>
<td>(2017a) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete</td>
</tr>
</tbody>
</table>

NATIONAL DRILLING ASSOCIATION (NDA)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
</table>

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST HB 44</td>
<td>(2018) Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices</td>
</tr>
</tbody>
</table>

NATIONAL READY MIXED CONCRETE ASSOCIATION (NRMCA)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRMCA CPMB 100</td>
<td>(2000; R 2006) Concrete Plant Standards</td>
</tr>
</tbody>
</table>

U.S. ARMY CORPS OF ENGINEERS (USACE)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE CRD-C 100</td>
<td>(1975) Method of Sampling Concrete Aggregate and Aggregate Sources, and Selection of Material for Testing</td>
</tr>
<tr>
<td>COE CRD-C 104</td>
<td>(1980) Method of Calculation of the Fineness Modulus of Aggregate</td>
</tr>
<tr>
<td>COE CRD-C 112</td>
<td>(1969) Method of Test for Surface Moisture in Aggregate by Water Displacement</td>
</tr>
<tr>
<td>COE CRD-C 143</td>
<td>(1962) Specifications for Meters for Automatic Indication of Moisture in Fine Aggregate</td>
</tr>
</tbody>
</table>
1.3 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Concrete Mixture Proportions; G[, [____]]
Batch Plant
Concrete Mixers
Capacity
Conveying Equipment
Plant and Equipment
Tests and Inspections
Vertical Construction Joints; G[, [_____]]
Curing and Protection; G[, [_____]]

SD-04 Samples
Cementitious Materials; G[, [_____]]
Admixtures; G[, [_____]]

SD-06 Test Reports
Aggregates
Quality of Aggregates; G[, [_____]]
Mixer Uniformity
Tests and Inspections
Unacceptable Concrete

SD-07 Certificates
Cementitious Materials; G[, [_____]]
Air-Entraining Admixture
Accelerators
Other Chemical Admixtures

1.4 QUALITY ASSURANCE

"Unacceptable Concrete" is concrete that is honeycomb, segregated, uncemented, or contains voids greater than the diameter of the core boring. When such concrete is encountered in any panel, the unacceptable concrete shall be replaced or repaired in accordance with paragraph CONCRETE PLACEMENT. Submit a copy of the records and Contractor tests, as well as the records of the corrective action taken where testing has determined that concrete in completed panels is unacceptable, as directed by the Contracting Officer.

1.4.1 Government Testing and Sampling

Provide facilities and labor as may be necessary for procurement of representative test samples. The Government will sample and test aggregates and concrete to determine compliance with the specifications. Samples of aggregates will be obtained at the point of batching in accordance with ASTM D75/D75M. Concrete will be sampled in accordance with ASTM C172/C172M.

1.4.2 Preconstruction Sampling and Testing

1.4.2.1 Aggregates

**
NOTE: The Designer should consult the appropriate DM, identify the sources for aggregates, and attach them to the end of this section. A Format Template for Aggregate Sources is located in the Template Menu of UFGS. Contact the Division Laboratory for
The aggregate sources listed at the end of this section have been tested and at the time testing was performed were capable of producing materials of a quality required for this project provided suitable processing is performed. The Contractor may furnish materials from a listed source or from a source not listed. Samples from any source of coarse aggregate and any source of fine aggregate selected by the Contractor, consisting of not less than [_____] [70 kg 150 pounds] of each size coarse aggregate and [_____] [35 kg 75 pounds] of fine aggregate taken under the supervision of the Contracting Officer in accordance with COE CRD-C 100 shall be delivered to [_____] within 15 days after notice to proceed. Sampling and shipment of samples shall be at the Contractor's expense. [_____] days will be required to complete evaluation of the aggregates. Testing will be performed by and at the expense of the Government in accordance with the applicable COE CRD-C or ASTM test methods. The cost of testing one source for each size of aggregate will be borne by the Government. If the Contractor selects more than one source for each aggregate size or selects a substitute source for any size aggregate after the original source was tested, the cost of that additional testing will be borne by the Contractor. Tests to which aggregate may be subjected are listed in paragraph QUALITY in PART 2. The material from the proposed source shall meet the quality requirements of this paragraph. The Government's test data and other information on aggregate quality of those sources listed at the end of this section are included in the DM and are available for review in the district office. Testing of aggregates by the Government does not relieve the Contractor of the requirements outlined in paragraph TESTS AND INSPECTIONS in PART 3.

1.4.2.2 Cementitious Materials and Admixtures

NOTE: EM 1110-2-2000, "Standard Practice for Concrete", provides guidance in selecting the options for Government or for Contractor testing.

At least 60 days in advance of concrete placement, notify the Contracting Officer of the source of materials, along with sampling location, brand name, type, and quantity to be used in the manufacture and/or curing of the concrete.

1.4.3 Construction Testing by the Government

[Sampling and testing will be performed by and at the expense of the Government except as otherwise specified. No material shall be used until notice has been given by the Contracting Officer that test results are satisfactory.] [The Government will sample and test chemical admixtures, curing compounds, and cementitious materials].

1.4.3.1 Chemical Admixtures Requirements

Chemical admixtures that have been in storage at the project site for longer than 6 months or that have been subjected to freezing shall be retested at the expense of the Contractor when directed by the Contracting Officer and shall be rejected if test results are not satisfactory. Chemical admixtures will be accepted based on compliance with paragraph CHEMICAL ADMIXTURES of PART 2.
1.4.3.2 Cement and Pozzolan

**
NOTES: Delete this paragraph if materials are to be accepted on the basis of a manufacturer's certification of compliance and mill test reports, and the optional sentence in paragraph SUBMITTALS, SD-07 Certificates, will be used. See the appropriate DM or consult the Materials Engineer to select prequalified sources, subparagraphs "a" and "b" below, or sealed bins, subparagraphs "c" and "d" below, or both options, subparagraphs "a" and "b" and "c" and "d". Selection of the sealed bin method, subparagraphs "c" and "d", must be fully justified in the appropriate DM.

In subparagraph "c" below, to fill in the blank for cost of testing excess cement, contact the Structures Laboratory, Concrete Technology Division, WES.

**

If cement or pozzolan is to be obtained from more than one source, the initial notification shall state the estimated amount to be obtained from each source and the proposed schedule of shipments.

[1.4.3.2.1 Prequalifed Cement Sources

Cement shall be delivered and used directly from a mill of a producer designated as a qualified source. Samples of cement for check testing will be taken at the project site or concrete-producing plant by a representative of the Contracting Officer for testing at the expense of the Government. A list of prequalified cement sources is available from Director, U.S. Army Corps of Engineers, Waterways Experiment Station, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, ATTN: CEWES-SC.

][1.4.3.2.2 Prequalified Pozzolan Sources

Pozzolan shall be delivered and used directly from a producer designated as a qualified source. Samples of pozzolan for check testing will be taken at the project site by the Contracting Officer for testing at the expense of the Government. A list of prequalified pozzolan sources is available from the Director, U.S. Army Corps of Engineers, Waterways Experiment Station, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, ATTN: CEWES-SC.

][1.4.3.2.3 Nonprequalified Cement Sources

Cement, if not from a prequalified source, will be sampled at the source and stored in sealed bins pending completion of testing. Sampling, testing, and the shipping inspection from the point of sampling, when the point is other than at the site of the work, will be made by or under the supervision of the Government and at its expense. No cement shall be used until notice has been given by the Contracting Officer that test results are satisfactory. In the event of failure, the cement may be resampled and tested at the request and expense of the Contractor. When the point of sampling is other than at the site of the work, the fill gates of the sampled bin and conveyances used in shipment will be sealed under Government supervision and kept sealed until shipment from the bin has been...
completed. If tested cement is rehandled at transfer points, the extra cost of inspection shall be at the Contractor's expense. The cost of testing cement excess to project requirements shall also be at the expense of the Contractor. The charges for testing cement at the expense of the Contractor will be deducted from the payments due the Contractor at a rate of [_____] dollars per ton of cement represented by the tests.

1.4.3.2.4 Nonprequalified Pozzolan Sources

Pozzolan, if not from a prequalified source, will be sampled at the source and stored in sealed bins pending completion of certain tests. Pozzolan will also be sampled at the site when determined necessary. All sampling and testing will be by and at the expense of the Government. Release for shipment and approval for use will be based on compliance with 7-day lime-pozzolan strength requirements and other physical and chemical and uniformity requirements for which tests can be completed by the time the 7-day lime-pozzolan strength test is completed. Release for shipment and approval for use on the above basis will be contingent on continuing compliance with the other requirements of the specifications. If a bin fails, the contents may be resampled and tested at the Contractor's expense. In this event, the pozollan may be sampled as it is loaded into cars, trucks, or barges provided they are kept at the source until released for shipment. Unsealing and resealing of bins and sealing of shipping conveyances will be by or under the supervision of the Government. Shipping conveyances will not be accepted at the site of the work unless received with all seals intact. If pozollan is damaged in shipment, handling, or storage, it shall be promptly removed from the site of the work. Pozzolan that has not been used within 6 months after testing shall be retested at the expense of the Contractor when directed by the Contracting Officer and shall be rejected if the test results are not satisfactory. If tested pozollan is rehandled at transfer points, the extra cost of inspection shall be at the Contractor's expense. The cost of testing excess pozollan shall be at the Contractor's expense at a rate of [_____] cents per ton. The amount will be deducted from payment to the Contractor.

1.4.3.3 Concrete Tests

Provide facilities and labor as necessary for procurement of representative test samples. The Government will sample and test concrete to determine compliance with the specifications. Concrete will be sampled in accordance with ASTM C172/C172M. Slump and air content will be determined in accordance with ASTM C143/C143M and ASTM C231/C231M, respectively. Compression test specimens will be made and laboratory cured in accordance with ASTM C31/C31M, and compression test specimens tested in accordance with ASTM C39/C39M, but results will be used only for determination of the uniformity of the mixture produced.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

**
NOTE: Well-rounded natural aggregates are preferred due to the increased flowability of concrete containing these aggregates. If crushed aggregates are used, the fine aggregate and cementitious materials contents may have to be increased to achieve satisfactory flowability. If crushed materials contain less than 15% nonplastic fines, the amount of cement should be increased by a factor of 1.05. If crushed materials contain more than 15% nonplastic fines, the amount of cement should be increased by a factor of 1.10.
aggregate is used, increase the specified minimum cement content to 335 kg per cubic meter 564 pounds per cubic yard.

Submit concrete mixture proportions as determined by the Contractor for review. State concrete mixture quantities of all ingredients per cubic meter yard and nominal maximum coarse aggregate size that will be used in the manufacture of each quality of concrete. Proportions shall indicate the mass of cement, pozzolan, ground granulated blast-furnace slag (GGBFs) when used, and water; the mass of aggregates in a saturated surface-dry condition; and the quantities of admixtures. The submission shall be accompanied by test reports from a laboratory complying with ASTM C1077 which show that proportions thus selected will produce concrete of the qualities indicated. No substitution shall be made in the source or type of materials used in the work without additional tests to show that the quality of the new materials and concrete are satisfactory. Concrete Mixture Proportioning shall conform to the following:

2.1.1 Maximum Water-Cement Ratio

The maximum water-cement ratio by weight of equivalent portland cement shall be 0.50, unless otherwise approved in writing.

2.1.2 Cement Content

The cement content of the concrete shall be within the range from a minimum of [279 kg] [470 pounds] [_____] to a maximum of 446 kg/cubic meter 752 pounds/cubic yard. When a pozzolan is used, the total absolute volume of cementitious material shall be within the same range in absolute volume as previously specified. Of the total absolute volume of cementitious materials, between 20 and 30 percent may be pozzolan that meets the requirements of paragraph POZZOLAN, OTHER THAN SILICA FUME in PART 2. [If GGBFS is used, it shall not exceed 25 percent by absolute volume, and percentage shall be as approved before mixture proportioning studies commence.]

2.1.3 Nominal Maximum-Size Coarse Aggregate

The nominal maximum-size coarse aggregate is [19.0 mm 3/4 inch] [25.0 mm 1 inch].

2.1.4 Fine Aggregate

Fine aggregate comprises approximately 40 to 50 percent, by volume, of the total aggregate.

2.1.5 Air Content

Air Content as determined by ASTM C231/C231M to be 6.0 ± 1.5 percent.

2.1.6 Slump

Determined by ASTM C143/C143M between 150 and 225 mm 6 and 9 inches.

2.1.7 Responsibility of Mixture Proportioning

Proportioning of concrete for use in construction of the cutoff wall shall be the responsibility of the Contractor and performed by a laboratory.
complying with ASTM C1077.

2.1.8 Concrete Proportioning

**
NOTE: There is no requirement for fc'. The results of trial mixture should be basis for QC.
**

Trial batches and testing requirements for concrete shall be the responsibility of the Contractor. Samples of approved aggregates shall be obtained in accordance with the requirements of ASTM D75/D75M. Samples of materials other than aggregate shall be representative of those proposed for the project and shall be accompanied by manufacturer's test reports indicating compliance with applicable specified requirements. Trial mixtures having proportions, slumps, and air content suitable for the work shall be made based on ACI 211.1. The maximum water-cement ratio required in the paragraph MAXIMUM WATER-CEMENT RATIO above will be converted to a weight ratio of water to cement plus pozzolan or GGBFS by mass equivalency as described in ACI 211.1. In the case where GGBFS is used, the mass of the slag shall be included in the equation for the term P, which is used to denote the mass of pozzolan. Trial mixtures shall be proportioned for specified slump and air content. The temperature of concrete in each trial batch shall be reported. If a chemical admixture is used, slump loss versus time in each trial batch shall be reported. For each trial mixture, at least three test cylinders for each test age shall be made and cured in accordance with ASTM C192/C192M. They shall be tested at 7 and 28 days in accordance with ASTM C39/C39M, or if a pozzolan is used, they shall be tested at 7, 28, and 90 days. Results of these compressive strength tests shall be submitted but will be used only for quality control purposes. All results of mixture proportioning studies shall be submitted at least 10 days prior to commencing concrete placement.

2.2 MATERIALS

**
NOTE: Delete the requirements for Certificates for air entrainment admixtures, other chemical admixtures, curing compounds, portland cement, and pozzolan if the optional parts of paragraph CEMENTITIOUS MATERIALS below, is used.
**

Submit certificate of compliance with all specification requirements for the following: Air-Entraining Admixture, Accelerators, and other Chemical Admixtures.

2.2.1 Cementitious Materials

**
NOTE: See the appropriate DM to select the proper requirements for the Cementitious Materials Options. Other cementitious materials may be added if specifically recommended and approved in the concrete materials DM.
**

Cementitious Materials are portland cement or portland cement in combination with pozzolan or GGBFS [or [_____]] conforming to appropriate
specifications listed below. Do not use cementitious materials until notice of acceptance has been given by the Contracting Officer. Cementitious materials will be subject to check testing from samples obtained at the source, at transfer points, or at the project site, as scheduled by the Contracting Officer, and such sampling will be by or under the supervision of the Government at its expense. Material not meeting specifications shall be promptly removed from the site of work. Submit the manufacturer's certification of compliance, accompanied by mill test reports that materials meet the requirements of the specification under which they are furnished, for cementitious materials, including Cement and Pozzolan, [and GGBFS]. Certification and mill test reports must be from samples taken from the particular lot furnished.

2.2.1.1 Portland Cement

ASTM C150/C150M, Type I or II, except that the maximum amount of C3A in Type I cement shall be 15 percent [including the heat of hydration at 7 days] [including false set requirements] [low alkali when used with aggregates listed at the end of this section which require it]. [In lieu of low-alkali cement, the Contractor may use a combination of portland cement that does not meet the low-alkali requirement with a pozzolan or GGBFS provided the following requirement is met. The expansion of the proposed combination when tested in accordance with ASTM C441/C441M shall be equal to or less than the expansion of a low-alkali cement meeting the requirements of ASTM C150/C150M when tested in general conformance with ASTM C441/C441M. The expansion tests shall be run concurrently at an independent laboratory that is nationally recognized to perform such tests. The Government reserves the right to confirm the test results and to adjust the percentage of pozzolan or slag in the combination to suit other requirements.]

2.2.1.2 Pozzolan, Other than Silica Fume

Pozzolan shall conform to ASTM C618, Class [C], [F], with the optional requirements for multiple factor, drying shrinkage, and uniformity [and [moderate] [severe] sulfate resistance requirements] of Table 2A. Table 1A requirement for maximum alkalis shall apply when used with aggregates listed at the end of this section to require low-alkali cement.

2.2.1.3 Ground Granulated Blast-Furnace (GGBF) Slag

Ground Granulated Blast-Furnace Slag shall conform to ASTM C989/C989M, Grade 100 or Grade 120.

2.2.2 Aggregates

NOTE: This note may be disregarded for regions where Alkali-Silica Reactivity (ASR) is not a concern. Some aggregate sources may exhibit an ASR potential. ASR is a potentially deleterious reaction between alkalis present in concrete and some siliceous aggregates, reference EM 1110-2-2000 paragraph 2-3b(6) and appendix D. Where ASR is known or suspected to pose a concern for concrete durability, it is recommended that aggregates proposed for use in concrete be evaluated to determine ASR potential and an effective mitigation. EM 1110-2-2000, provides
recommendations for evaluating and mitigating ASR in concrete mixtures. Aggregate evaluations may not be practical for projects requiring small quantities of concrete (less than 200 cubic meters 250 cubic yards).

Section 32 13 14.13 CONCRETE PAVING FOR AIRFIELDS AND OTHER HEAVY DUTY PAVEMENTS, paragraph 2.3.1.2 Alkali-Silica Reactivity, provides a specification method for the Contractor to evaluate and mitigate ASR in concrete mixtures. The expansion limits specified in Section 32 13 14.13 are requirements for pavements and exterior slab construction. For structural concrete applications the measured expansion shall be less than 0.10 percent. It may not be economical or practical to specify different test limit requirements for use on the same project. In which case the lower limit required by the application should be used.

The designer may use the specification method in Section 32 13 14.13 by incorporating the relevant paragraphs into this specification, or may use the following requirements (retain either the 0.10 or the 0.08 percent expansion limits as appropriate) included in the paragraph below. Delete the following paragraph if not required in the project.

Alkali-Silica Reactivity: Fine and coarse aggregates proposed for use in concrete shall be tested and evaluated for alkali-aggregate reactivity in accordance with ASTM C1260. The fine and coarse aggregates shall be evaluated separately and in combination, which matches the Contractor's proposed mix design proportioning. All results of the separate and combination testing shall have a measured expansion less than 0.10 (0.08) percent at 16 days after casting. Should the test data indicate an expansion of 0.10 (0.08) percent or greater, the aggregate(s) shall be rejected or additional testing using ASTM C1260 and ASTM C1567 shall be performed. The additional testing using ASTM C1260 and ASTM C1567 shall be performed using the low alkali portland cement in combination with ground granulated blast furnace (GGBF) slag, or Class F fly ash. GGBF slag shall be used in the range of 40 to 50 percent of the total cementitious material by mass. Class F fly ash shall be used in the range of 25 to 40 percent of the total cementitious material by mass.

2.2.2.1 Listed Sources

NOTE: The list of sources and required tests and test limits will be taken from the concrete materials DM.

Concrete aggregates may be furnished from any source capable of meeting the quality requirements as stated in paragraph QUALITY below. The sources listed at the end of this section were evaluated during the design phase of the project in [_____] and at that time were capable of meeting the quality requirements when suitably processed. No guarantee is given or implied that any of the listed sources are currently capable of producing
aggregates that meet the required quality stated in paragraph QUALITY below. A DM containing the results of the Government's investigation and test results is available for review in the [____] District Office. Contact [____] at [____] to arrange for review of the memorandum. The test results and conclusions shall be considered valid only for the sample tested and shall not be taken as an indication of the quality of all material from a source nor for the amount of processing required. Fine and coarse aggregates shall conform to the grading requirements of ASTM C33/C33M. The nominal maximum size shall be as listed in subparagraph NOMINAL MAXIMUM-SIZE COARSE AGGREGATE of 1.3, 'c'.

2.2.2.2 Concrete Aggregate Sources

**
NOTE: If an aggregate source is provided by the Government, the appropriate paragraphs from Section 03 70 00 should be used.
**

2.2.2.2.1 List of Sources

The concrete aggregates sources may be selected from sources listed at the end of this section.

2.2.2.2.2 Selection of Source

After the award of the contract, designate in writing only one source or combination of sources from which he proposes to furnish aggregates. If the Contractor proposes to furnish aggregates from a source or from sources not listed at the end of this section, then designate only a single source or single combination of sources for aggregates. Regardless of the source, selected samples for acceptance testing shall be provided as required by paragraph GOVERNMENT TESTING AND SAMPLING in PART 1. If a source for coarse or fine aggregates so designated by the Contractor does not meet the quality requirements stated in the paragraph below, the Contractor may not submit for approval other nonlisted sources but shall furnish the coarse or fine aggregate, as the case may be, from sources listed at the end of this section at no additional cost to the Government.

2.2.2.3 Quality

**
NOTES: The tests selected should be those which are applicable to the concrete to be used in the project. These tests may include those listed below in addition to others not listed. See EM 1110-2-2000 for schedule of tests.

Depending upon the quality of aggregates available, some tests may not be required. Refer to EM 1110-2-2000 for the purpose of each test.

A list of properties and test values are unique to each project and should be taken from the concrete materials DM. Delete the quality tests not required in the DM.

The petrographic examination shall be used to identify deleterious substances in aggregates.
Deleterious substances shall be listed individually with respective limits.

In selecting deleterious substances, it should be borne in mind that cutoff walls are to be treated as structures not exposed to weather.

Aggregates delivered to the mixer shall meet the following requirements:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>FINE AGGREGATE</th>
<th>COARSE AGGREGATE</th>
<th>TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>[_____]</td>
<td>[_____]</td>
<td>ASTM C127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM C128</td>
</tr>
<tr>
<td>Absorption</td>
<td>[_____]</td>
<td>[_____]</td>
<td>ASTM C127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM C128</td>
</tr>
<tr>
<td>Clay Lumps and Friable Particles</td>
<td>[_____]</td>
<td>[_____]</td>
<td>ASTM C142/C142M</td>
</tr>
<tr>
<td>Material Finer than 75-µm No. 200 Sieve</td>
<td>[_____]</td>
<td>[_____]</td>
<td>ASTM C117</td>
</tr>
<tr>
<td>Organic Impurities</td>
<td>Not darker than No. 3</td>
<td>Not less than 95 percent</td>
<td>ASTM C40/C40M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM C87/C87M</td>
</tr>
<tr>
<td>L.A. Abrasion</td>
<td>[_____]</td>
<td>[_____]</td>
<td>ASTM C131/C131M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM C535</td>
</tr>
<tr>
<td>Soft Particles</td>
<td>[_____]</td>
<td>[_____]</td>
<td>[COE CRD-C 130]</td>
</tr>
<tr>
<td>Petrographic Examination</td>
<td>Listed unwanted deleterious materials and their limits</td>
<td></td>
<td>ASTM C295/C295M</td>
</tr>
<tr>
<td>Coal and Lignite, less than 2.00 specific gravity</td>
<td>[_____]</td>
<td>[_____]</td>
<td>ASTM C123/C123M</td>
</tr>
</tbody>
</table>

2.2.2.4 Fine Aggregate Grading and Moisture Content

The fine aggregate or each fine aggregate shall have its sieve analysis and fineness modulus determined in accordance with ASTM C136/C136M and COE CRD-C 104, respectively. The moisture content shall be determined with an electric moisture meter that shall be in accordance with COE CRD-C 143. When in the Contracting Officer's opinion the electric moisture meter is not operating satisfactorily, the moisture content shall be determined in accordance with either ASTM C70, ASTM C566, or COE CRD-C 112.

2.2.2.5 Coarse Aggregate Grading and Moisture Content

Each size group of coarse aggregate shall have its sieve analysis
determined in accordance with ASTM C136/C136M. The moisture content of each size group of the coarse aggregate shall be made in accordance with ASTM C566 or COE CRD-C 112.

2.2.3 Chemical Admixtures

Admixtures shall comply with the following.

2.2.3.1 Air-Entraining Admixture

The air-entraining admixture shall conform to ASTM C260/C260M and shall consistently cause the concrete to have an air content in the specified ranges under field conditions.

2.2.3.2 Accelerating Admixture

Accelerators shall meet the requirements of ASTM C494/C494M, Type C or E, except that calcium chloride or admixtures containing calcium chloride shall not be used.

2.2.3.3 Flowing Concrete Admixtures

Other chemical admixtures for use in producing flowing concrete shall comply with ASTM C1017/C1017M, Type I or II. These admixtures shall be used only if the proposed admixture shows no deleterious effects when used with all other project materials during mixture proportioning studies.

2.2.4 Water

Water for mixing and curing shall be fresh, clean, potable, and free of injurious amounts of oil, acid, salt, or alkali, except that nonpotable water may be used if it meets the requirements of COE CRD-C 400.

2.3 PLANT AND EQUIPMENT

Submit data on all placing equipment and methods for review by the Contracting Officer.

2.3.1 Capacity

**

NOTE: Experience has shown that to reduce problems associated with placement rates, the minimum capacity should be 77 cubic meters per hour 100 cubic yards per hour.

**

The batching and mixing equipment shall have a capacity of at least [_____] cubic meters yards per hour.

2.3.2 Batch Plant

Batching Plant shall conform to the requirements of NRMCA CPMB 100 and as specified; however, rating plates attached to batch plant equipment are not required. Submit batch plant data to the Contracting Officer for review for conformance with applicable specifications.
2.3.2.1 Batching Equipment

The batching controls shall be [partially automatic], [semiautomatic], [or] [automatic]. [The semiautomatic batching system shall be provided with interlocks such that the discharge device cannot be actuated until the indicated material is within the applicable tolerance.] The batching system shall be equipped with an accurate recorder or recorders that meet the requirements of NRMCA CPMB 100. Separate bins or compartments shall be provided for each size group of aggregate and cement, pozzolan, and GGBFS. Aggregates shall be weighed either in separate weigh batchers with individual scales or cumulatively in one weigh batcher on one scale. Aggregate shall not be weighed in the same batcher with cement, pozzolan, or GGBFS. If both cement and pozzolan or GGBFS are used, they may be batched cumulatively provided that the portland cement is batched first. If measured by mass, the mass of the water shall not be batched cumulatively with another ingredient. Water batcher filling and discharging valves shall be so interlocked that the discharge valve cannot be opened before the filling valve is fully closed. An accurate mechanical device for measuring and dispensing each admixture shall be provided. Each dispenser shall be interlocked with the batching and discharging operation of the water so that each admixture is separately batched and discharged automatically in a manner to obtain uniform distribution throughout the batch in the specified mixing period. Admixtures shall not be combined prior to introduction in water. The plant shall be arranged so as to facilitate the inspection of all operations at all times. Suitable facilities shall be provided for obtaining representative samples of aggregates from each bin or compartment. All filling ports for cementitious materials bins or silos shall be clearly marked with a permanent sign stating the contents.

2.3.2.2 Scales

The equipment for batching by mass shall conform to the applicable requirements of NIST HB 44, except that the accuracy shall be plus or minus 0.2 percent of scale capacity. Provide standard reference masses and any other auxiliary equipment required for checking the operating performance of each scale or other measuring devices. The tests shall be made at the frequency required in paragraph TESTS AND INSPECTIONS, in PART 3, and in the presence of a Government inspector.

2.3.2.3 Batching Tolerances

Tolerances on determination of mass:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PERCENT OF REQUIRED MASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cementitious materials</td>
<td>-0 to +2</td>
</tr>
<tr>
<td>Aggregate</td>
<td>± 2</td>
</tr>
<tr>
<td>Water</td>
<td>± 1</td>
</tr>
<tr>
<td>Chemical admixture</td>
<td>-0 to +6</td>
</tr>
</tbody>
</table>

For volumetric batching equipment, the following tolerances shall apply to
the required volume of material being batched:

<table>
<thead>
<tr>
<th>Water</th>
<th>Plus or minus 1 percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical admixtures</td>
<td>Zero to plus 6 percent</td>
</tr>
</tbody>
</table>

2.3.2.4 Moisture Control

The plant shall be capable of ready adjustment to compensate for the varying moisture content of the aggregates and to change the masses of the materials being batched. [An electric moisture meter complying with the provisions of COE CRD-C 143 shall be provided for measuring moisture in the fine aggregate. The sensing element shall be arranged so that the measurement is made near the batcher charging gate of the sand bin or in the sand batcher.]

2.3.3 Concrete Mixers

The concrete mixers shall not be charged in excess of the capacity recommended by the manufacturer. The mixers shall be operated at the drum or mixing blade speed designated by the manufacturer. The mixers shall be maintained in satisfactory operating condition, and the mixer drums shall be kept free of hardened concrete. Should any mixer at any time produce unsatisfactory results, its use shall be promptly discontinued until it is repaired. Submit concrete mixer data including the make, type, and capacity of concrete mixers proposed for mixing concrete in conformance with specified requirements.

2.3.3.1 Stationary Mixers

Concrete plant mixers shall be tilting, nontilting, horizontal-shaft, vertical-shaft, or pugmull and shall be provided with an acceptable device to lock the discharge mechanism until the required mixing time has elapsed. The mixing time and uniformity shall conform to all the requirements in ASTM C94/C94M applicable to central-mixed concrete.

2.3.3.2 Truck Mixers

Truck mixers, the mixing of concrete, and concrete uniformity shall conform to the requirements of ASTM C94/C94M. A truck mixer may be used for complete mixing or to finish the partial mixing begun in a stationary mixer. Each truck shall be equipped with two counters from which it will be possible to determine the number of revolutions at mixing speed and the number of revolutions at agitating speed.

2.3.4 Conveying Equipment

**
NOTE: Experience has shown that to reduce problems associated with placement rates, the minimum conveying capacity should be 75 cubic meters per hour or 100 cubic yards per hour.
**

The conveying equipment shall have a capacity of at least [_____] cubic meters per hour. Concrete shall be conveyed from mixer to trench as rapidly as practicable and within the time interval specified in paragraph PLACING, in PART 3, by methods that will prevent segregation or loss of
ingredients. Any concrete transferred from one conveying device to another shall be passed through a hopper that is conical in shape and shall not be dropped vertically more than 1.5 m 5 feet, except where suitable equipment is provided to prevent segregation and where specifically authorized. Submit data on the conveying equipment and methods for transporting, handling, and depositing the concrete.

2.3.4.1 Buckets

The interior hopper slope shall be not less than 58 degrees from the horizontal; the minimum dimension of the clear gate opening shall be at least five times the nominal maximum-size aggregate; and the area of the gate opening shall not less than 0.2 square meters 2 square feet. The maximum dimension of the gate opening shall not be greater than twice the minimum dimension. The bucket gates shall be essentially grout tight when closed and may be manually, pneumatically, or hydraulically operated except that buckets larger than 1.5 cubic meters 2 cubic yards shall not be manually operated. The design of the bucket shall provide means for positive regulation of the amount and rate of deposit of concrete in each dumping position.

2.3.4.2 Trucks

Truck mixers operating at agitating speed or truck agitators used for transporting plant-mixed concrete shall conform to the requirements of ASTM C94/C94M. Nonagitating equipment shall not be used for transporting concrete.

2.3.4.3 Chutes

When concrete can be placed directly from a truck mixer or agitator, the chutes attached to this equipment by the manufacturer may be used. A discharge deflector shall be used when required by the Contracting Officer. Separate chutes and other similar equipment will not be permitted for conveying concrete.

2.3.4.4 Concrete Pumps

Concrete may be conveyed by positive displacement pump when approved. The pumping equipment shall be piston or squeeze pressure. The pipeline shall be rigid steel pipe or heavy-duty flexible hose. The inside diameter of the pipe shall be at least three times the nominal maximum-size coarse aggregate in the concrete mixture to be pumped, but not less than 100 mm 4 inches. Aluminum pipe shall not be used. The nominal maximum-size coarse aggregate shall not be reduced to accommodate the pumps. The distance to be pumped shall not exceed limits recommended by the pump manufacturer. The concrete shall be supplied to the concrete pump continuously. When pumping is completed, concrete remaining in the pipeline shall be ejected without contamination of concrete in place. After each operation, equipment shall be thoroughly cleaned, and flushing water shall be wasted outside of the forms.

PART 3 EXECUTION

3.1 PLACING

Concrete placement will not be permitted when, in the opinion of the Contracting Officer, weather conditions prevent proper placement. Concrete shall be deposited in the tremie hopper and in so depositing there shall be

SECTION 03 37 29 Page 23
no vertical drop greater than 1.5 m 5 feet except where suitable equipment is provided to prevent segregation and where specifically authorized. Sufficient placing capacity shall be provided so that concrete placement can be kept plastic and free of horizontal cold joints while concrete is being placed. Prior to placement, submit the method and equipment proposed for vertical construction joints cleanup and waste disposal, for review and approval by the Contracting Officer.

3.1.1 Time Interval Between Mixing and Placing

Place concrete within 30 minutes after mixing or agitating ceases. When concrete is truck mixed or when a truck mixer or agitator is used for transporting concrete mixed by a concrete plant mixer, the concrete shall be delivered to the site of the work, and discharge shall be completed within 45 minutes after introduction of the cement to the aggregates.

3.1.2 Placing Temperature

Concrete, when deposited in the slurry, shall have a temperature of not less than 5 degrees C 40 degrees F. Heating of the mixing water or aggregates shall not be permitted until the temperature of the concrete has decreased to 7 degrees C 45 degrees F. The materials shall be free from ice, snow, and frozen lumps before entering the mixer. All placing equipment and methods shall be subject to [approval] [review]. When heating is necessary to keep the concrete temperature above 5 degrees C 40 degrees F, it shall be regulated so that the concrete temperature does not exceed 15 degrees C 60 degrees F. The concrete, when deposited in the slurry, shall not exceed 32 degrees C 90 degrees F. Cooling of the mixing water and/or aggregates may be required to obtain an adequate placing temperature.

3.1.3 Concrete Deposited in Cutoff Trench

NOTE: The hopper on top of the tremie pipe shall be of a size capable of receiving and passing concrete into the tremie pipe at the capacity rate of the batching, mixing, and conveying equipment.

Depending upon the quality of aggregates available, some tests may not be required. Refer to EM 1110-2-2000 for the purpose of each test.

Concrete placed for the cutoff wall shall be deposited in a bentonite slurry-filled trench by a tremie or by a valved tremie. The methods and equipment used shall be subject to approval. Concrete buckets will not be permitted for placement of concrete in the slurry trench, although they may be used to transport concrete to the tremie hoppers. The tremie shall be watertight and sufficiently large to permit a free flow of concrete, but it shall not be less than 250 mm 10 inches in diameter. A funnel-shaped hopper of at least [_____] cubic meters yards in volume shall be required at the top of the tremie. Neither the tremie pipe nor the hopper shall be constructed of aluminum. Hoisting equipment for raising and lowering the tremie pipe as the concrete is placed and tools for connecting the tremie pipe sections shall be continuously available and on hand. In lieu of use of a tremie, concrete may be placed using a positive displacement pump and pump line provided the entire operation is approved in writing after a demonstration of its use.

SECTION 03 37 29 Page 24
3.1.4 Concrete Placement

Tremie pipe sections shall be suitably secured together and a gasket used at each joint to prevent leakage. A retrievable traveling plug (go-devil) or a dry pipe with a plate and gasket wired to the bottom to prevent contact of the concrete and the slurry in the tremie shall be required to start each placement. The tremie assembly shall be lowered to rest within 150 mm 6 inches of the bottom of the trench prior to beginning placement. During placement of the concrete, any unnecessary movement of the pipe shall be avoided. The bottom of the tremie pipe shall remain submerged in fresh concrete at all times to a depth that will produce the flat test surface slope that can practically be achieved. This depth shall not be less than 3 m 10 feet nor more than 9 m 30 feet except when beginning placement at the bottom of a panel. Batches of concrete shall be supplied to the tremie pipe at a uniform rate for a continuous flow. The tremie pipe shall be lifted during placement at a rate that will maintain the bottom of the pipe embedded in fresh concrete to a level that will produce the desired surface slope and rate of flow within the limits specified above. It may be necessary to reduce the amount of embedment as the differential head decreases between the concrete in the tremie pipe and the concrete in the panel. The repeated raising and lowering of the tremie pipe in the fresh concrete to facilitate placement shall be minimized. Placement shall proceed without interruption until the concrete has been brought to the required height. Continuously measure and record the flow and slopes during placement with the use of a sounding line. The tremie shall not be moved horizontally during a placing operation, except that as the required height is reached, the tremie pipes may be moved to the corners and low areas between the tremie pipes to bring the lift to final elevation. A sufficient number of tremies shall be provided so that the concrete does not flow horizontally a distance of more than 2.1 m 7 feet from a tremie; i.e., tremies shall be placed a maximum of 4.2 m 14 feet on centers. Where more than one tremie pipe is used in the same placement simultaneously, the concrete level at each pipe position shall be maintained nearly level with respect to the other. Special care shall be taken to ensure that the bottom of the tremie pipe is not lifted out of the fresh concrete. If this occurs, remove the tremie pipe, insert a dry pipe with a temporary bottom plug, and restart the placement. Also, as soon as practical, drill a NX-size core boring through the center of the cutoff wall to a depth of at least 3 m 10 feet below the depth where the bottom of the tremie pipe was lifted out of the fresh concrete. Unacceptable zones of concrete such as honeycombed, segregated, or uncedmented zones found within the core boring shall immediately be repaired or removed and replaced by an appropriate means. All cost incurred because of this failure, including the initial core boring and as many additional core borings as may be required to delineate the limits of the unacceptable concrete and the repair of the cutoff wall, shall be borne by the Contractor and shall not result in any additional cost to the Government. Submit a plan for repairing or removing and replacing the unacceptable concrete. Placement delays shall not be permitted for periods of time longer than 30 minutes.

3.1.5 Required Height of Concrete

Concrete that is free of laitance, scum, slurry, or other contaminants shall be placed at the top of the wall. All scum, laitance, and contaminated concrete shall be removed from the top of the concrete as the placement is nearing completion and shall be disposed of in the spoil areas. The top surface shall be finished to grade by screeding spoil areas.
3.2 CURING AND PROTECTION

The exposed concrete shall be moist cured for 14 days. Immediately after placement, concrete shall be protected from premature drying, extremes in temperatures, rapid temperature change, and mechanical damage. All materials and equipment needed for adequate curing and protection shall be available and at the placement site prior to the start of concrete placement. Concrete shall be protected from the damaging effects of rain for 12 hours and from flowing water for 14 days. No fire or excessive heat including welding shall be permitted near or in direct contact with concrete or concrete embedments at any time. Submit the curing medium and methods to be used for review and approval.

3.3 TESTS AND INSPECTIONS

Submit statements asserting that the concrete testing technicians and the concrete inspectors meet the specified requirements; also test results and inspection reports daily and weekly as required.

3.3.1 General

Perform the inspection and tests described in the following paragraphs and, based upon the results of these inspections and tests, take the action required and submit reports as required. When, in the opinion of the Contracting Officer, the concreting operation is out of control, concrete placement shall cease. The laboratory performing the tests shall be onsite and shall conform with ASTM C1077. The individuals who sample and test concrete or the constituents of concrete as required in this specification shall have demonstrated a knowledge and ability to perform the necessary test procedures equivalent to the ACI minimum guidelines for certification of Concrete Field Testing Technicians, Grade I. The individuals who perform the inspection of concrete construction shall have demonstrated a knowledge and ability equivalent to the ACI minimum guidelines for certification of Concrete Construction Inspector, Level II. The Government will inspect the laboratory, equipment, and test procedures prior to start of concreting operations and at least once per year thereafter for conformance with ASTM C1077.

3.3.2 Testing and Inspection Requirements

Submit documentation asserting that the concrete testing technicians and the concrete inspectors meet the specified requirements.

3.3.2.1 Fine Aggregate

3.3.2.1.1 Grading

At least once during each shift when the concrete plant is operating, perform one sieve analysis and fineness modulus determination in accordance with ASTM C136/C136M and COE CRD-C 104 for the fine aggregate or for each size range of fine aggregate if it is batched in more than one size or classification. The location at which samples are taken may be selected by the Contractor as the most advantageous for control. However, the Contractor is responsible for delivering fine aggregate to the mixer within specification limits.
3.3.2.1.2 Corrective Action for Fine Aggregate Grading

When the amount passing on any sieve is outside the specification limits, the fine aggregate shall be immediately resampled and retested. If there is another failure on any sieve, the fact shall immediately be reported to the Contracting Officer.

3.3.2.1.3 Moisture Content Testing

When, in the opinion of the Contracting Officer, the electric moisture meter is not operating satisfactorily, there shall be at least four tests for moisture content in accordance with ASTM C566 during each 8-hour period of mixing plant operation. The times for the tests shall be selected randomly within the 8-hour period. An additional test shall be made whenever the slump is out of control or excessive variation in workability is reported by the placing foreman. When the electric moisture meter is operating satisfactorily, at least two direct measurements of moisture content shall be made per week to check the calibration of the meter. The results of tests for moisture content shall be used to adjust the added water in the control of the batch plant.

3.3.2.1.4 Moisture Content Corrective Action

Whenever the moisture content of the fine aggregate changes by 0.5 percent or more, the scale settings for the fine-aggregate batcher and water batcher shall be adjusted (directly or by means of a moisture compensation device) if necessary to maintain the specified slump.

3.3.2.2 Coarse Aggregate

3.3.2.2.1 Grading

At least once during each shift in which the concrete plant is operating, there shall be a sieve analysis in accordance with ASTM C136/C136M for each size of coarse aggregate. The location at which samples are taken may be selected by the Contractor as the most advantageous for production control. A test record of samples of aggregate taken at the same locations shall show the results of the current test as well as the average results of the five most recent tests including the current test. The Contractor may adopt limits for control which are coarser than the specification limits for samples taken at locations other than as delivered to the mixer to allow for degradation during handling.

3.3.2.2.2 Corrective Action for Grading

When the amount passing any sieve is outside the specification limits, the coarse aggregate shall be immediately resampled and retested. If the second sample fails on any sieve, that fact shall be reported to the Contracting Officer. Where two consecutive averages of five tests are outside specification limits, the operation shall be considered out of control and shall be reported to the Contracting Officer. Concreting shall be stopped and immediate steps shall be taken to correct the grading.

3.3.2.2.3 Coarse Aggregate Moisture Content

A test for moisture content of each size group of coarse aggregate in accordance with ASTM C566 or COE CRD-C 112 shall be made at least once during a shift. When two consecutive readings for smallest-size coarse aggregate differ by more than 1.0 percent, frequency of testing shall be

SECTION 03 37 29 Page 27
increased to that specified above for fine aggregate, until the difference falls below 1.0 percent.

3.3.2.2.4 Coarse Aggregate Moisture Corrective Action

Whenever the moisture content of any size of coarse aggregate changes by 0.5 percent or more, the scale setting for the coarse aggregate batcher and the water batcher shall be adjusted if necessary to maintain the specified slump.

3.3.2.3 Quality of Aggregates

**

NOTES: Tests should be those listed in paragraph QUALITY. The petrographic examination shall be used to identify deleterious substances in aggregates. Deleterious substances shall be listed individually with respective limits.

Depending upon the quality of aggregates available, some tests may not be required. Refer to EM 1110-2-2000 for the purpose of each test.

**

Submit aggregate quality tests results at least 30 days prior to start of concrete placement.

3.3.2.3.1 Frequency of Quality Tests

Thirty days prior to the start of concrete placement perform all tests for aggregate quality listed below. In addition, after the start of concrete placement, perform tests for aggregate quality in accordance with the frequency schedule shown below. Samples tested after the start of concrete placement shall be taken immediately prior to entering the concrete mixer.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>FINE AGGREGATE</th>
<th>COARSE AGGREGATE</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>Every 3 months</td>
<td>Every 3 months</td>
<td>ASTM C127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM C128</td>
</tr>
<tr>
<td>Absorption</td>
<td>Every 3 months</td>
<td>Every 3 months</td>
<td>ASTM C127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM C128</td>
</tr>
<tr>
<td>Clay Lumps and Friable</td>
<td>Every 3 months</td>
<td>Every 3 months</td>
<td>ASTM C142/C142M</td>
</tr>
<tr>
<td>Particles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Finer than the 75 µm No.</td>
<td>Every 3 months</td>
<td>Every 3 months</td>
<td>ASTM C117</td>
</tr>
<tr>
<td>200 Sieve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Impurities</td>
<td>Every 3 months</td>
<td>Not applicable</td>
<td>ASTM C40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM C87/C87M</td>
</tr>
</tbody>
</table>

SECTION 03 37 29 Page 28
FREQUENCY

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>FINE AGGREGATE</th>
<th>COARSE AGGREGATE</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.A. Abrasion</td>
<td>Not applicable</td>
<td>Every 6 months</td>
<td>ASTM C131/C131M, ASTM C535</td>
</tr>
<tr>
<td>Soft Particles</td>
<td>Not applicable</td>
<td>Every 6 months</td>
<td>COE CRD-C 130</td>
</tr>
<tr>
<td>Petrographic Examination</td>
<td>Every 6 months</td>
<td>Every 6 months</td>
<td>ASTM C295/C295M</td>
</tr>
<tr>
<td>Coal and Lignite, less than 2.00 specific gravity</td>
<td>Every 6 months</td>
<td>Every 6 months</td>
<td>ASTM C123/C123M or ASTM C295/C295M</td>
</tr>
</tbody>
</table>

3.3.2.3.2 Corrective Action for Aggregate Quality

If the result of a quality test fails to meet the requirements for quality immediately prior to start of concrete placement, production procedures or materials shall be changed and additional tests shall be performed until the material meets the quality requirements prior to proceeding with either mixture proportioning studies or starting concrete placement. After concrete placement commences, whenever the result of a test for quality fails the requirements, the test shall be rerun immediately. If the second test fails the quality requirement, the fact shall be reported to the Contracting Officer, and immediate steps shall be taken to rectify the situation.

3.3.2.4 Deleterious Substances

3.3.2.4.1 Testing

When, in the opinion of the Contracting Officer, a problem exists in connection with deleterious substances in fine or coarse aggregates, tests shall be made in accordance with ASTM C33/C33M at a frequency as directed, but not less than once per week. Results of tests shall be reported in writing.

3.3.2.4.2 Corrective Action for Deleterious Substances

When the results for a deleterious substance are out of the specification limit, the aggregate shall be resampled and retested for the deleterious substance that failed. If the second sample fails, that fact shall be reported to the Contracting Officer. When material finer than 75-µm (No. 200) sieve for coarse aggregate exceeds the specification limit, immediate steps, such as washing or other corrective actions, shall be initiated.
3.3.2.5 Scales

3.3.2.5.1 Accuracy

Checked by test weights prior to start of concrete operations and at least once every 3 months for conformance with the applicable requirements of paragraph BATCHING EQUIPMENT. Such tests shall also be made as directed whenever there are variations in properties of the fresh concrete that could result from batching errors.

3.3.2.5.2 Batching and Recording Accuracy

Once a week the accuracy of each batching and recording device shall be checked during a weighing operation by noting and recording the required weight, recorded weight, and the actual mass batched. Confirm that the calibration devices described in paragraph BATCH PLANT in PART 2 for checking the accuracy of dispensed admixtures are operating properly.

3.3.2.5.3 Scales Corrective Action

When either the weighing accuracy or batching accuracy does not comply with specification requirements, the plant shall not be operated until necessary adjustments or repairs have been made. Discrepancies in recording accuracies shall be corrected immediately.

3.3.2.6 Batch-Plant Control

The measurement of quantities of all constituent materials batched including cementitious materials, each size of aggregate, water, and admixtures shall be continuously controlled. The aggregate quantities and amount of added water shall be adjusted as necessary to compensate for free moisture in the aggregates. The amount of air-entraining agent shall be adjusted to control air content within specified limits. A report shall be prepared indicating type and source of cement used, type and source of pozzolan or slag used, amount and source of admixtures used, aggregate source, the required aggregate and water amounts per cubic meter yard, amount of water as free moisture in each size of aggregate, and the batch aggregate and water amounts per cubic meter yard for each class of concrete batched during plant operation. Submit the report to the Contracting Officer.

3.3.2.7 Concrete Mixture

3.3.2.7.1 Air Content Testing

Air content tests shall be made when test specimens are fabricated. In addition, at least two tests for air content shall be made on randomly selected batches of each separate concrete mixture produced during each 8-hour period of concrete production. Additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government quality assurance representative. Tests shall be made in accordance with ASTM C231/C231M. Test results shall be plotted on control charts which shall at all times be readily available to the Government. Copies of the current control charts shall be kept in the field by the Contractor's quality control representatives and results plotted as tests are made. When a single test result reaches either the upper or lower action limit, a second test shall immediately be made. The results of the two tests shall be averaged, and this average shall be used as the air content of the batch to plot on the control charts for air content and

SECTION 03 37 29 Page 30
range and to determine the need for any remedial action. The result of each test, or average as noted in the previous sentence, shall be plotted on a separate chart for each mixture on which an "average line" is set at the midpoint of the specified air content range from subparagraph AIR CONTENT of 1.3 'e'. An upper warning limit and a lower warning limit line shall be set 1.0 percentage point above and below the average line. An upper action limit and a lower action limit line shall be set 1.5 percentage points above and below the average line, respectively. The range between each two consecutive tests shall be plotted on a control chart for range where an upper warning limit is set at 2.0 percentage points and an upper action limit is set at 3.0 percentage points. Samples for air content may be taken at the mixer; however, the Contractor is responsible for delivering the concrete to the placement site at the stipulated air content. If the Contractor's materials or transportation methods cause air content loss between the mixer and the placement, correlation samples shall be taken at the placement site as required by the Contracting Officer and the air content at the mixer controlled as directed.

3.3.2.7.2 Air Content Corrective Action

Whenever points on the control chart for percent air reach either warning limit, an adjustment shall immediately be made in the amount of air-entraining admixture batched. As soon as is practical after each adjustment, another test shall be made to verify the result of the adjustment. Whenever a point on the control chart range reaches the warning limit, the admixture dispenser shall be recalibrated to ensure that it is operating accurately and with good reproducibility. Whenever a point on either control chart reaches an action limit line, the air content shall be considered out of control and the concreting operation shall immediately be halted until the air content is under control. Additional air content tests shall be made when concreting is restarted. All this shall be at no extra cost to the Government.

3.3.2.7.3 Slump Testing

In addition to slump tests which shall be made when test specimens are fabricated, at least four slump tests shall be made on randomly selected batches in accordance with ASTM C143/C143M for each separate concrete mixture produced during each 8-hour or less period of concrete production each day. Also, additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government's quality assurance representative. Test results shall be plotted on control charts which shall at all times be readily available to the Government. Copies of the current control charts shall be kept in the field by the Contractor's quality control representatives and results plotted as tests are made. When a single slump test reaches or goes beyond either the upper or lower action limit, a second test shall immediately be made on the same batch of concrete. The results of the two tests shall be averaged and this average used as the slump of the batch to plot on the control charts for percent air and for range and to determine the need for any remedial action. An upper warning limit shall be set at 13 mm 1/2 inch below the maximum allowable slump on separate control charts for percent air used for each type of mixture as specified in subparagraph SLUMP of 1.3 'f', and upper and lower action limit lines shall be set at the maximum and minimum allowable slumps, respectively, as specified in the same paragraph. The range between each consecutive slump test for each type of mixture shall be plotted on a single control chart for range on which an upper action limit is set at 50 mm 2 inches. Samples for slump shall be taken at the mixer; however, the Contractor is responsible for delivering the concrete to the

SECTION 03 37 29 Page 31
The placing foreman shall supervise all placing operations, shall determine
that the correct quality of concrete is placed in each location as directed by the Contracting Officer, and shall be responsible for measuring and recording concrete temperatures, weather conditions, time of placement, quantity placed, method of placement, depths of tremie pipes and concrete at regular intervals, and loss of concrete. A written report recording these data shall be submitted daily.

3.3.2.8.3 Placing Corrective Action

Placing shall not be continued if any pile of concrete is inadequately consolidated. If any batch of concrete fails to meet the temperature requirements, immediate steps shall be taken to improve temperature controls.

3.3.2.9 Curing

3.3.2.9.1 Moist-Curing Inspections

At least once each shift and once per day on nonwork days an inspection shall be made of all areas subject to moist curing. The surface moisture condition shall be noted and recorded.

3.3.2.9.2 Moist-Curing Correction Action

When a daily inspection report lists an area of inadequate curing, immediate corrective action shall be taken, and the required curing period for such areas shall be extended by 1 day.

3.3.2.10 Mixer Uniformity

Mixer uniformity of concrete shall conform to the following:

3.3.2.10.1 Stationary Mixers

At the start of concrete placing and at least once every 6 months when concrete is being placed, uniformity of concrete shall be determined. The tests shall be performed in accordance with ASTM C94/C94M. Whenever adjustments in mixer or increased mixing times are necessary because of failure of any mixer to comply, the mixer shall be retested after adjustment. Submit in writing the results of the initial mixer uniformity tests at least 5 days prior to the initiation of placing.

3.3.2.10.2 Truck Mixers

At the start of concrete placing and at least once every 6 months when concrete is being placed, uniformity of concrete shall be determined in accordance with ASTM C94/C94M. The truck mixers shall be selected randomly for testing. When satisfactory performance is found in one truck mixer, the performance of mixers of substantially the same design and condition of blades may be regarded as satisfactory. Results of tests shall be reported in writing.

3.3.2.10.3 Mixer Uniformity Concrete Action

When a mixer fails to meet mixer uniformity requirements, the mixing time shall be increased or adjustments shall be made to the mixer until compliance is achieved.
3.3.3 Reports

All results of tests and inspections shall be reported as required. Each report shall include the updating of control charts covering the entire period from the start of the construction season through the current week. During periods of cold-weather protection, reports of pertinent temperatures shall be made daily. These requirements do not relieve the Contractor of the obligation to report certain failures immediately as required in preceding paragraphs. Such reports of failures and the action taken shall be confirmed in writing in the routine reports. The Contracting Officer has the right to examine all Contractor quality control records.

3.3.4 Concrete Coring

**

NOTES: The number of the test panels to be cored should be determined by each district office as necessary to give a representation of the work that was done. The core boring of these test panels should be done after the concrete has developed sufficient strength to allow cores of properly placed concrete to be retrieved.

The spacing and timing of the core borings of the concrete cutoff wall should be arranged to retrieve properly placed concrete cores. The concrete should be allowed to develop sufficient strength to allow cores of competent concrete to be retrieved. The spacing of the core holes should be representative of the particular job to give confidence in the work that was performed. The wall construction should not be allowed to get too far ahead of the core boring. This will allow problems discovered by the core boring to be corrected or changed and these changes incorporated in the cutoff wall construction that follows.

**

3.3.4.1 Concrete Coring in Completed Panels

One NX core boring (or one core boring approximately NX) shall be drilled through the concrete in each of the first [____] test panels. These borings shall be completed during the installation of the first [____] linear meters feet of cutoff wall and prior to commencement of the remainder of the wall. Thereafter, an NX boring shall be drilled through one panel selected by the Contracting Officer for every [____] linear meters feet of wall, within [____] days after completion of each [____] meter foot section. Additional core borings may be directed by the Contracting Officer. The borings shall be located in the center of each panel unless otherwise directed by the Contracting Officer. While coring the completed panels, prepare a log including the elevation of any drill fluid loss, soft zones, drill tool drops, or zones of core loss and provide the log to the Contracting Officer immediately after coring is complete. The core holes shall not be backfilled until approved by the Contracting Officer. [If the Contracting Officer decides to have falling head permeability tests or other tests conducted due to core results, this shall not be used as basis for a claim.] Core holes deviating through the side of the panel shall be filled and a new core hole drilled at no additional
cost to the Government.

3.3.4.2 Method of Drilling

Drilling of cores shall be by any approved standard and accepted method of rotary rock core wireline drilling using diamond-set coring bits by means of which continuous and complete cores of standard diameter for the specified bit size shall be obtained.

3.3.4.3 Equipment and Supplies

Equipment to be furnished by the Contractor for core drilling shall include diamond core-drilling machinery of a type or types approved by the Contracting Officer, complete with all accessories for taking continuous cores of a diameter consistent with specified bit size to the depths specified. The core drill shall be the product of one of the standard core drill manufacturing companies designed primarily for this type of work. Use a ball-bearing, swivel-type, double-tube NX core barrel or manufacturers' equivalent meeting standards established by DCDMA TM. Capacity of barrels shall not exceed 4.6 m 15 feet of core, and they shall be equipped with diamond-set core bits and standard core lifters. Supplies for core drilling shall include all casing, drill rods, core barrels, diamond-set coring bits, piping, pumps, water, tools, core boxes, and power required for drilling. Bits shall be set with the proper size stones for drilling the concrete and bed rock.

3.3.4.4 Core Boxes

Longitudinally partitioned wooden core boxes constructed of dressed lumber or other approved materials in general accordance with arrangement and dimensions shown in the drawing included at the end of this section of the specifications shall be used for all cores. As many core boxes as may be required shall be used in submitting each concrete or rock core or group of cores. Core boxes shall be completely equipped with all necessary partitions, covers, hinges, and hasps for holding down the cover. To prevent undue core breakage (while it is being placed in boxes) and to allow for ease of access to core in the specified core boxes, the maximum amount of core to be placed in any one box shall be determined by the Government core drill inspector during the drilling operations. Normally, it is expected that an average of approximately 3.7 m 12 feet of core can be placed in each box. In addition to the spacer blocks shown in the drawing, provide, as required, lengths of 29 by 54 mm 1-1/8 by 2-1/8 inch wood, painted red on one side, which shall be cut into 100 mm 4-inch lengths, marked with appropriate depths, and inserted in the proper positions in core boring samples to show the location and actual extent of voids and core losses. Mark all core boxes with the appropriate hole number, box number, and depths.

3.3.4.5 Disposition of Core Samples

Upon completion of core drilling and sampling operations for each hole, core boxes containing cores shall be delivered to a storage facility to be designated at the project site. Core boxes containing cores shall be delivered in accordance with schedules prepared by the Contracting Officer. All packing, handling, and transportation of samples shall be considered as subsidiary obligations of the Contractor.
3.3.4.6 Backfilling Core Holes

Upon completion of core sampling, the holes shall be backfilled under gravity pressure with portland cement grout or mortar as directed by the Contracting Officer. The grout shall be pumped into the hole through drill rods or plastic hose set to within 1.5 m 5 feet of the bottom of the hole. The bottom of the core hole is defined as being a point in bedrock 900 mm 3 feet below the bottom of the panel or the point at which the boring deviates from the cutoff wall.

3.3.5 Evaluation and Acceptance

Concrete will be evaluated by examination of cores drilled by the Contractor from completed panels as specified in paragraph CORING CONCRETE IN COMPLETED PANELS in PART 1, and unacceptable concrete is defined in paragraph UNACCEPTABLE CONCRETE IN COMPLETED PANELS. Concrete determined to be unacceptable shall be repaired or removed and replaced as specified in paragraph CONCRETE PLACEMENT above.
<table>
<thead>
<tr>
<th>LAT/LONG</th>
<th>PIT LOCATION, ADDRESS AND TELEPHONE NUMBER</th>
<th>MAIN OFFICE, ADDRESS AND TELEPHONE NUMBER</th>
</tr>
</thead>
</table>

FINE AGGREGATE

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COARSE AGGREGATE

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAT/LONG</td>
<td>PIT LOCATION, ADDRESS AND TELEPHONE NUMBER</td>
<td>MAIN OFFICE, ADDRESS AND TELEPHONE NUMBER</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>/</td>
<td>__________________________</td>
<td>__________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-- End of Section --