UNIFIED FACILITIES CRITERIA (UFC)

SUBSURFACE DRAINAGE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
UNIFIED FACILITIES CRITERIA (UFC)

SUBSURFACE DRAINAGE

Any copyrighted material included in this UFC is identified at its point of use. Use of the copyrighted material apart from this UFC must have the permission of the copyright holder.

U.S. ARMY CORPS OF ENGINEERS (Preparing Activity)

NAVAL FACILITIES ENGINEERING COMMAND

AIR FORCE CIVIL ENGINEER SUPPORT AGENCY

Record of Changes (changes are indicated by \1\ ... /1/)

<table>
<thead>
<tr>
<th>Change No.</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5 Jul 2007</td>
<td>Replace hyperlink with document for EI 02C202</td>
</tr>
</tbody>
</table>

This UFC supersedes EI 02C202. The format of this UFC does not conform to UFC 1-300-01; however, the format will be adjusted to conform at the next revision. The body of this UFC is the previous EI 02C202.
FOREWORD

The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides planning, design, construction, sustainment, restoration, and modernization criteria, and applies to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance with USD(AT&L) Memorandum dated 29 May 2002. UFC will be used for all DoD projects and work for other customers where appropriate. All construction outside of the United States is also governed by Status of forces Agreements (SOFA), Host Nation Funded Construction Agreements (HNFA), and in some instances, Bilateral Infrastructure Agreements (BIA.) Therefore, the acquisition team must ensure compliance with the more stringent of the UFC, the SOFA, the HNFA, and the BIA, as applicable.

UFC are living documents and will be periodically reviewed, updated, and made available to users as part of the Services’ responsibility for providing technical criteria for military construction. Headquarters, U.S. Army Corps of Engineers (HQUSACE), Naval Facilities Engineering Command (NAVFAC), and Air Force Civil Engineer Support Agency (AFCESA) are responsible for administration of the UFC system. Defense agencies should contact the preparing service for document interpretation and improvements. Technical content of UFC is the responsibility of the cognizant DoD working group. Recommended changes with supporting rationale should be sent to the respective service proponent office by the following electronic form: Criteria Change Request (CCR). The form is also accessible from the Internet sites listed below.

UFC are effective upon issuance and are distributed only in electronic media from the following source:

- Whole Building Design Guide web site http://dod.wbdg.org/

Hard copies of UFC printed from electronic media should be checked against the current electronic version prior to use to ensure that they are current.

AUTHORIZED BY:

DONALD L. BASHAM, P.E.
Chief, Engineering and Construction
U.S. Army Corps of Engineers

DR. JAMES W WRIGHT, P.E.
Chief Engineer
Naval Facilities Engineering Command

KATHLEEN I. FERGUSON, P.E.
The Deputy Civil Engineer
DCS/Installations & Logistics
Department of the Air Force

DR. GET W. MOY, P.E.
Director, Installations Requirements and Management
Office of the Deputy Under Secretary of Defense (Installations and Environment)
US Army Corps of Engineers

Electronic Hypertext Media

EI-02C202
Subsurface Drainage
Version 1.0
FORWARD

CEMP-E

FORWARD

These Engineering Instructions (EI 02C202, Subsurface Drainage) provide design criteria and guidance for Corps of Engineers Major Subordinate Commands (MSC), District Commands, Field Operating Activities (FOA), and Major Army Commands (MACOM). These EI are to be used as a guide when planning, programming, and designing military facilities at Army installations.

EI are living documents and will be periodically reviewed, updated, and made available to MSC, District Commands, FOA, and MACOM as part of the HQUSACE responsibility for technical criteria and policy for new military construction. CEMP-EA is responsible for administration of the EI system; technical content of the EI is the responsibility of the HQUSACE element of the discipline involved. Recommend changes to EI, with rationale for the changes, should be sent to HQUSACE, ATTN: CEMP-EA, 20 Massachusetts Ave., NW, Washington, DC 20314-1000.

EI are effective immediately upon issuance. EI are distributed in electronic media. Primary distribution methods for the EI are TECHINFO (both the electronic bulletin board at 205-895-1799 and Internet at http://www.usace.army.mil or http://www.hnd.usace.army.mil) and the Construction Criteria Base (CCB) compact disk. Hard copies produced locally from the electronic media should be checked against the current electronic version prior to use to assure that the latest instructions are used.

FOR THE DIRECTOR OF MILITARY PROGRAMS:

Frank J. Oliva, P.E.
Acting Chief, Engineering Division
Directorate of Military Programs
Subsurface Drainage for Pavements

The following Topics are available:
FORWARD
LIST OF FIGURES AND TABLES

CHAPTER 1. INTRODUCTION
 Purpose
 Scope
 References
 Definitions
 Bibliography
 Effects of Subsurface Water
 Sources of Water

CHAPTER 2. PRINCIPLES OF PAVEMENT DRAINAGE
 Flow of Water Through Soils
 Factors Affecting Permeability
 Quantity and Rate of Subsurface Flow
 Use of Drainage Layers
 Use of Filters
 Use of Separation Layers
 Use of Geotextiles

CHAPTER 3. DESIGN OF THE PAVEMENT SUBSURFACE DRAINAGE SYSTEM
 General
 Methods
 Design Prerequisites
 Criteria for Subsurface Drain Systems
 Design Example
 Placement of Subsurface Drainage System
 Material Properties
 Stabilization of Drainage Layer

CHAPTER 4. CONSTRUCTION OF THE DRAINAGE LAYER
 Experience
 Placement of Drainage Layer
 Compaction
 Protection After Compaction
 Proof Rolling

CHAPTER 5. COLLECTOR DRAINS
 Design Flow
 Design of Collector Drains
 Trench Construction
 Lateral Outlet Pipe
 Cross Drains
 Manholes and Observation

APPENDIX A. REFERENCES
APPENDIX B. BIBLIOGRAPHY

GLOSSARY

Hot Spot Help
LIST OF FIGURES AND TABLES

FIGURES

1-1. Collector Drain Used to Remove Infiltration Water.

1-2. Collector Drain Used to Intercept Seepage and Lower the Ground-Water Table.

2-1. Permeability Test Data.

3-1. Design Storm Index, 1-hour Rainfall Intensity-Frequency Data for Continental United States Excluding Alaska.

3-2. Drainage Layer Placed Directly Below Surface Layer.

3-3. Drainage Layer Placed Beneath Base Course.

5-1. Subsurface Drain System.

5-2. Typical Concrete Pavement Interior Subdrain Detail.

5-3. Typical Edge Subdrain for Concrete Pavements.

5-4. Typical Flexible Pavement Interior Subdrain Detail.

5-5. Typical Edge Subdrain for Flexible Pavements.

5-6. Example Design for a Headwall.

TABLES

2-1. Permeability of Sand and Gravel Materials.

3-1. Frost-Susceptible Soils.

3-2. Gradations of Material for Drainage Layers and Choke Stone

5-1. Coefficient of Roughness for Different Types of Pipe.
PURPOSE 1-1.

This manual provides guidance for the design and construction of subsurface drainage facilities for airfields, roads, streets, parking lots and other paved areas.
SCOPE 1-2.

The criteria herein apply to paved areas such as airfields, roads, streets and parking lots having a relatively impervious surface such as asphalt concrete or Portland cement concrete. The criteria is limited to situations where the surface water can be drained by gravity flow and is mainly concerned with elimination of water which enters the pavement through the surface.
REFERENCES 1-3.

Appendix A contains a list of references used in this manual.
DEFINITIONS 1-4.

This manual uses a number of terms that have unique usage within the manual or which may not be in common usage. The definitions of these terms are contained in the glossary.
BIBLIOGRAPHY 1-5.

In recent years subsurface drainage has received increasing attention, particularly in the area of highway design. A number of studies have been conducted by State Highway Agencies and by the Federal Highway Administration that have resulted in a large number of publications on the subject of subsurface drainage. Appendix B contains a list of publications which contain information pertaining to the design of subsurface drainage for pavements.
EFFECTS OF SUBSURFACE WATER 1-6.

Water has a detrimental effect on pavement performance, primarily by either weakening subsurface materials or erosion of material by free water movement. For flexible pavements the weakening of the base, subbase or subgrade when saturated with water is one of the main causes of pavement failures. In rigid pavement free water, trapped between the rigid concrete surface and an impermeable layer directly beneath the concrete, moves due to pressure caused by loadings. This movement of water (referred to as pumping) erodes the subsurface material creating voids under the concrete surface. In frost areas subsurface water will contribute to frost damage by heaving during freezing and loss of subgrade support during thawing. Poor subsurface drainage can also contribute to secondary damage such as 'D' cracking or swelling of subsurface materials.
SOURCES OF WATER 1-7.

a. General. The two sources of water to be considered are from infiltration and subterranean water. Infiltration is the most important source of water and is the source of most concern in this document. Subterranean water is important in frost areas and areas of very high water table or areas of artesian water. In many areas perched water may develop under pavements due to a reduced rate of evaporation of the water from the surface. In frost areas free water collects under the surface by freeze/thaw action.

b. Infiltration. Infiltration is surface water which enters the pavement from the surface through cracks or joints in the pavement, through the joint between the pavement and shoulder, through pores in the pavement, by movement from ditches and surface channels near the pavement, and through shoulders and adjacent areas. Since surface infiltration is the principal source of water, it is the source needing greatest control measures.

c. Subterranean water. Subterranean water can be a source of water from a high water table, capillary forces, artesian pressure, and freeze-thaw action. This source of water is particularly important in areas of frost action when large volumes of water can be drawn into the pavement structure during the formation of ice lenses. For large paved areas the evaporation from the surface is greatly reduced which causes saturation of the subgrade by capillary forces. Also, if impervious layers exist beneath the pavement, perched water can be present or develop from water entering the pavement through infiltration. This perched water then becomes a subterranean source of water.

d. Classification of Subdrainage Facilities. Subdrainage facilities can be categorized into two functional categories, one to control infiltration, and one to control groundwater. An infiltration control system is designed to intercept and remove water that enters the pavement from precipitation or surface flow. An important function of this system is to keep water from being trapped between impermeable layers. A groundwater control system is designed to reduce water movement into subgrades and pavement sections by controlling the flow of groundwater or by lowering the water table. Often, subdrainage is required to perform both functions, and the two subdrainage functions can be combined into a single subdrainage system. Figures 1-1 and 1-2 illustrate examples of infiltration and groundwater...
control systems.

Figure 1-1. Collector Drain Used to Remove Infiltration Water.

Figure 1-2. Collector Drain Used to Intercept Seepage and Lower the Groundwater Table.
FLOW OF WATER THROUGH SOILS 2-1.

The flow of water through soils is expressed by Darcy's empirical law which states that the velocity of flow \(v \) is directly proportional to the hydraulic gradient \(i \). This law can be expressed as:

Click on the green text to the right to execute equation

\[
v = ki_1 \quad (eq. 2-1)
\]

Where \(k \) is the coefficient of proportionality known as the coefficient of permeability. Equation 21 can be expanded to obtain the rate of flow through an area of soil \(A \). The equation for the rate of flow \(Q \) is:

Click on the green text to the right to execute equation

\[
Q = kia_2 \quad (eq. 2-2)
\]

According to Darcy's law, the velocity of flow and the quantity of discharge through a porous media are directly proportional to the hydraulic gradient. For this condition to be true, flow must be laminar or nonturbulent. Investigations have indicated that Darcy's law is valid for a wide range of soils and hydraulic gradients. However, in developing criteria for subsurface drainage, liberal margins have been applied to allow for turbulent flow. The criteria and uncertainty depend heavily on the permeability of the soils involved in the pavement structure. It is therefore useful to examine the influence of various factors on the permeability of soils. In examining permeability of soils in regard to pavement drainage, the materials of most concern are base and subbase aggregate and aggregate used as drainage layers.
FACTORS AFFECTING PERMEABILITY 2-2.

a. Coefficient of Permeability. The value of permeability depends primarily on the characteristics of the permeable materials, but it is also a function of the properties of the fluid. An equation (after Taylor) demonstrating the influence of the soil and pore fluid properties on permeability was developed based on flow through porous media similar to flow through a bundle of capillary tubes. This equation is as follows:

Click on the green text to the right to execute equation

\[k = \frac{D_s^2 \gamma}{\mu (1-e)^3} \cdot C \]

(eq. 2-3)

where

- \(k \) = the coefficient of permeability
- \(D_s \) = some effective particle diameter
- \(\gamma \) = unit weight of pore fluid
- \(\mu \) = viscosity of pore fluid
- \(e \) = void ratio
- \(C \) = shape factor

b. Effect of Pore Fluid and Temperature. In the design of subsurface drainage systems for pavements, the primary pore fluid of concern is water. Therefore, when permeability is mentioned in this manual, water is assumed to be the pore fluid. Equation 23 indicates that the permeability is directly proportional to the unit weight of water and inversely proportional to the viscosity. The unit weight of water is essentially constant, but the viscosity of water will vary with temperature. Over the widest range in temperatures ordinarily encountered in seepage problems, viscosity varies about 100 percent. Although
this variation seems large, it can be insignificant when considered in the context of the variations which
can occur with changes in material properties.

c. Effect of Grain Size. Equation 23 suggests that permeability varies with the square of the particle
diameter. It is logical that the smaller the grain size the smaller the voids that constitute the flow
channels, and hence the lower the permeability. Also, the shape of the void spaces has a marked
influence on the permeability. As a consequence, the relationships between grain size and permeability
are complex. Intuition and experimental test data suggest that the finer particles in a soil have the most
influence on permeability. The coefficient of permeability of sand and gravel materials, graded between
limits usually specified for pavement bases and subbases, depends principally upon the percentage by
weight of particles passing the 0.075 mm (No. 200) sieve. Table 21 provides estimates of the
permeability for these materials for various amounts of material finer than the 0.075 mm (No. 200) sieve.

Coefficient of 55

<table>
<thead>
<tr>
<th>Percent by Weight Passing</th>
<th>Permeability for Remolded Samples</th>
<th>millimeters/second</th>
<th>feet/minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075 mm (No. 200) Sieve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5 x 10-1</td>
<td>10-1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 x 10-2</td>
<td>10-2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5 x 10-3</td>
<td>10-3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5 x 10-4</td>
<td>10-4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5 x 10-5</td>
<td>10-5</td>
<td></td>
</tr>
</tbody>
</table>

d. Effect of Void Ratio. The void ratio or porosity of soils, though less important than grain size and
soil structure, often has a substantial influence on permeability. The void ratio of a soil will also dictate
the amount of fluid that can be held within the soil. The more dense a soil, the lower the soil permeability
and the lesser the amount of water that can be retained in the soil. Figure 2-1 presents the permeability
for different soils as a function of the void ratio. The amount of water that can be contained in a soil will
directly relate to the void ratio. Not all water contained in a soil can be drained by gravity flow since water
retained as thin films adhering to the soil particles and held by capillarity will not drain. Consequently, to
determine the volume of water that can be removed from a soil the effective porosity (ne) must be
known. The effective porosity is defined as the ratio of the volume of the voids that can be drained under gravity flow to the total volume of soil, and can be expressed mathematically as

\[n_e = 1 - \frac{\gamma_d}{G_s \gamma_w} (1 + G_s W_e) \]

Click on the green text to the right to execute equation

(eq. 2-4)

where

\[\gamma_d = \text{dry density of the soil} \]

\[G_s = \text{specific gravity of solids} \]

\[\gamma_w = \text{unit weight of water} \]

\[W_e = \text{effective water content (after the soil has drained)} \]

expressed as a decimal fraction relative to dry weight

Limited effective porosity test data for well-graded base-course materials, such as bank-run sands and gravels, indicate a value for effective porosity of not more than 0.15. Uniformly graded medium or coarse sands, may have an effective porosity of not more than 0.25 while for a uniformly graded aggregate, such as would be used in a drainage layer, the effective porosity may be above 0.30.
Figure 2-1. Permeability Test Data (from Lambe and Whitman, with permission).

e. Effect of Structure and Stratification. Generally, in situ soils show a certain amount of stratification or a heterogeneous structure. Water deposited soils usually exhibit a series of horizontal layers that vary in grain-size distribution and permeability, and generally these deposits are more permeable in the horizontal than in the vertical direction. In pavement construction the subgrade, subbase, and base materials are placed and compacted in horizontal layers which result in having a different permeability in
the vertical direction than in the horizontal direction. The vertical drainage of water from a pavement can be disrupted by a single relatively impermeable layer. For most pavements the subgrades have a very low permeability compared to the base and subbase materials. Therefore, water in the pavement structure can best be removed by horizontal flow. For a layered pavement system the effective horizontal permeability is obtained from a weighted average of the layer permeability by the formula

\[k = \left(\frac{k_1 d_1 + k_2 d_2 + k_3 d_3 + \ldots}{d_1 + d_2 + d_3 + \ldots} \right) \] \hspace{1cm} (eq. 2-5)

where

- \(k \) = the effective horizontal permeability
- \(k_1, k_2, k_3, \ldots \) = the coefficients of horizontal permeability of individual layers
- \(d_1, d_2, d_3, \ldots \) = thicknesses of the individual layers

When a drainage layer is employed in the pavement section, the permeability of the drainage material will likely be several orders of magnitude greater than the other materials in the section. Since water flow is proportional to permeability, the flow of water from the pavement section can be computed based only on the characteristics of the drainage layer.
QUANTITY AND RATE OF SUBSURFACE FLOW 2-3.

a. General. Water flowing from the pavement section may come from infiltration through the pavement surface and groundwater. Normally groundwater flows into collector drains from the subgrade and will be an insufficient flow compared to the flow coming from infiltration. The computation of the groundwater flow is beyond the scope of this manual and should it be necessary to compute the groundwater flow, a textbook on groundwater flow should be consulted. The volume of infiltration water flow from the pavement will depend on factors such as type and condition of surface, length and intensity of rainfall, properties of the drainage layer, hydraulic gradient, time allowed for drainage and the drained area. In the design of the subsurface drainage system all of these factors must be considered.

b. Effects of Pavement Surface. The type and condition of the pavement surface will have considerable influence on the volume of water entering the pavement structure. In the design of surface drainage facilities all rain falling on paved surfaces is assumed to be runoff. For new well designed and constructed pavements, the assumption of 100 percent runoff is probably a good conservative assumption for the design of surface drainage facilities. For design of the subsurface drainage facilities, the design should be based on the infiltration rate for a deteriorated pavement. Studies have shown that for badly deteriorated pavements well over 50 percent of the rainfall can flow through the pavement surface.

c. Effects of Rainfall. It is only logical that the volume of water entering the pavement will be directly proportional to the intensity and length of the rainfall. Relatively low intensity rainfalls can be used for designing the subsurface drainage facilities because high intensity rainfalls do not greatly increase the adverse effect of water on pavement performance. The excess rainfall would, once the base and subbase are saturated, run off as surface drainage. For this reason a seemingly unconservative design rainfall can be selected.

d. Capacity of Drainage Layers. If water enters the pavement structure at a greater rate than the discharge rate, the pavement structure becomes saturated. The design of horizontal drainage layers for the pavement structure is based, in part, on the drainage layer serving as a reservoir for the excess water
entering the pavement. The capacity of the drainage layer as a reservoir is a function of the storage capacity of the drainage layer plus the amount of water which drains from the layer during a rain event. The storage capacity of the drainage layer will be a function of the effective porosity of the drainage material and the thickness of the drainage layer. The storage capacity of the drainage layer (qs) in terms of depth of water per unit area is computed by:

\[
q_s = (n_e) (h) \quad (eq. 2-6)
\]

where

- \(n_e \) = the effective porosity
- \(h \) = the thickness of the drainage layer

In the equation the dimensions of the qs will be the same as the dimensions of the h. If it is considered that not all the water will be drained from the drainage layer, then the storage capacity will be reduced by the amount of water in the layer at the start of the rain event. The criterion for design of the drainage layer calls for 85 percent of the water to be drained from the drainage layer within 24 hours; therefore it is conservatively assumed that only 85 percent of the storage volume will be available at the beginning of a rain event. To account for the possibility of water in the layer at the beginning of a rain event, equation 26 is modified to be:

Click on the green text to the right to execute equation

\[
q_s = 0.85(n_e) (h) \quad (eq. 2-7)
\]

The amount of water (qd) which will drain from the drainage layer during the rain event may be estimated using the equation
Click on the green text to the right to execute equation

\[q_d = \frac{(t)(k)(i)(h)}{\gamma} \]
(\text{eq. 2-8})

where

\[t = \text{duration of the rain event} \]
\[k = \text{permeability of the drainage layer} \]
\[i = \text{slope of the drainage layer} \]
\[h = \text{thickness of the drainage layer} \]

In these equations the dimensions of \(q_s, q_d, t, k, \) and \(h \) should be consistent. The total capacity \(q \) of the drainage layer will be the sum of \(q_s \) and \(q_d \) resulting in the following equation for the capacity

Click on the green text to the right to execute equation

\[q = 0.85(n_s)(h) + \frac{(t)(k)(i)(h)}{\gamma} \]
(\text{eq. 2-9})

Knowing the water entering the pavement, equation 29 can be used to estimate the thickness of the drainage layer such that the drainage layer will have the capacity for a given design rain event. For most situations the amount of water draining from the drainage layer will be small compared to the storage capacity. Therefore, in most cases, equation 27 can be used in estimating the thickness required for the drainage layer.

e. Time for Drainage. It is desirable that the water be drained from the base and subbase layers as rapidly as possible. The time for drainage of these layers is a function of the effective porosity, length of the drainage path, thickness of the layers, slope of the drainage path, and permeability of the layers. Past criterion has specified that the base and subbase obtain a degree of 50 percent drainage within
10 days. The equation for computing time for 50 percent drainage is:

\[
T_{50} = \frac{(n_e D)}{2kH_o} \quad (eq. 2-10)
\]

where

- \(T_{50} \) = time for 50 percent drainage
- \(n_e \) = effective porosity of the soil
- \(k \) = coefficient of permeability
- \(D \) and \(H \) = base- and subbase geometry dimensions (illustrated in fig. 22)

The dimensions of time, \(k \), \(H_o \) and \(D \) must be consistent. In figure 2-2 the slope \(i \) of the drainage path is \(D/H_o \); therefore equation 210 can be written

\[
T_{39} = \frac{(n_e (D))}{2ik} \quad (eq. 2-11)
\]

Experience has shown that base and subbase materials, when compacted to densities required in pavement construction, seldom have sufficient permeability to meet the 10 day drainage criterion. In such pavements the base and subbase materials become saturated causing a reduced pavement life. When a drainage layer is incorporated into the pavement structure to improve pavement drainage, the criterion for design of the drainage layer shall be that the drainage layer shall reach a degree of drainage of 85 percent within 24 hours. The time for 85 percent drainage is approximately twice the time for
50 percent drainage. The time for 85 percent drainage (T_{85}) is computed by

$$T_{85} = \frac{(n_e)(D)}{ik_{12}} \quad (eq. \, 2-12)$$

![Diagram of pavement geometry for computation of time for drainage.](image)

Figure 2-2. Pavement Geometry for Computation of Time for Drainage.

f. Length and Slope of the Drainage Path. As can be seen in equation 210, the time for drainage is a function of the square of the length of drainage path. For this reason and the fact that for most pavement designs the length of the drainage path can be controlled, the drainage path length is an important parameter in the design of the drainage system. The length of the drainage path (L) may be computed from the following equation

Click on the green text to the right to execute equation
\[L = L_t \sqrt{i_t^2 + i_e^2} \]
\[\text{(eq. 2-13)} \]

where

\(L_t \) = the length of the transverse slope of the drainage layer

\(i_t = \) the transverse slope of the drainage layer

\(i_e = \) the longitudinal slope of the drainage layer

The slope of the drainage path \(i \) is a function of the transverse slope and longitudinal slope of the drainage layer and is computed by the equation

Click on the green text to the right to execute equation

Click on the green text to the right to execute equation

\[i = \sqrt{i_t^2 + i_e^2} \]
\[\text{(eq. 2-14)} \]

g. Rate of Flow. The edge drains for pavements having drainage layers shall be designed to handle the maximum rate of flow from the drainage layer. This maximum rate of flow will be obtained when the drainage layer is flowing full and may be estimated using equation 22.
USE OF DRAINAGE LAYERS 2-4.

a. Purpose of Drainage Layers. Special drainage layers may be used to promote horizontal drainage of water from pavements, prevent the buildup of hydrostatic water pressure, and facilitate the drainage of water generated by cycles of freeze-thaw.

b. Placement of Drainage Layers. In rigid pavements the drainage layer will generally be placed directly beneath the concrete slab. In this location the drainage layer will intercept water entering through cracks and joints, and permit rapid drainage of the water away from the bottom of the concrete slab. In flexible pavements the drainage layer will normally be placed beneath the base. In placing the drainage layer beneath the base the stresses on the drainage layer will be reduced to an acceptable level and drainage will be provided for the base course.

c. Permeability Requirements for the Drainage Layer. The material for drainage layers in pavements must be of sufficient permeability to provide rapid drainage and rapidly dissipate water pressure and yet provide sufficient strength and stability to withstand load induced stresses. There is a trade off between strength or stability and permeability; therefore the material for the drainage layers should have the minimum permeability for the required drainage application. For most applications a material with a permeability of 300 meters/day (1,000 feet/day) will provide sufficient drainage.
USE OF FILTERS 2-5.

a. Purpose of Filters in Pavement Structures. The purpose of filters in pavement structures is to prevent the movement of soil (piping) yet allow the flow of water from one material to another. The need for a filter is dictated by the existence of water flow from a fine grain material to a coarse grain material generating a potential for piping of the fine grain material. The principal location in the pavement structure where a flow from a fine grain material into a coarse grain material is water flowing from the base, subbase, or subgrade into the coarse aggregate surrounding the drain pipe. Thus, the principal use of a filter in a pavement system will be in preventing piping into the drain pipe. Although rare, the possibility exists for hydrostatic head forcing a flow of water upward from the subbase or subgrade into the pavement drainage layer. For such a condition it would be necessary to design a filter to separate the drainage layer from the finer material.

b. Piping Criteria. The criteria for preventing movement of particles from the soil or granular material to be drained into the drainage material are:

\[
\frac{15 \text{ percent size of drainage or filter material}}{85 \text{ percent size of material to be drained}} \leq 5
\]

And

\[
\frac{50 \text{ percent size of drainage or filter material}}{50 \text{ percent size of material to be drained}} \leq 25
\]

The criteria given above will be used when protecting all soils except clays without sand or silt particles. For these soils, the 15 percent size of drainage or filter material may be as great as 0.4 millimeters and
the D50 criteria will be disregarded.

c. Permeability Requirements. To assure that the filter material is sufficiently permeable to permit passage of water without hydrostatic pressure buildup, the following requirement should be met:

\[
\frac{15 \text{ percent size of filter material}}{15 \text{ percent size of material to be drained}} \geq 5
\]
USE OF SEPARATION LAYERS 2-6.

a. Purpose of Separation Layers. When drainage layers are used in pavement systems, the drainage layers must be separated from fine grain subgrade materials to prevent penetration of the drainage material into the subgrade or pumping of fines from the subgrade into the drainage layer. The separation layer is different from a filter in that there is no requirement, except during frost thaw, to protect against water flow through the layer.

b. Requirements for Separation Layers. The main requirements of the separation layer are that the material for the separation layer have sufficient strength to prevent the coarse aggregate of the drainage layer from being pushed into the fine material of the subgrade and that the material have sufficient permeability to prevent buildup of hydrostatic pressure in the subgrade. To satisfy the strength requirements the material of the separation layer should have a minimum CBR of 50. To allow for release of hydrostatic pressure in the subgrade, the permeability of the separation layer should have a permeability greater than that of the subgrade. This would not normally be a problem because the permeability of subgrades are orders of magnitude less than the permeability of a 50 CBR material but to ensure sufficient permeability the permeability requirements of a filter would apply.
USE OF GEOTEXTILES 2-7.

a. Purpose of Geotextiles. Geotextiles (engineering fabrics) may be used to replace either the filter or the separation layer. The principal use of geotextiles is the filter around the pipe for the edge drain. Although geotextiles can be used as a replacement for the separation layer, geotextile adds no structure strength to the pavement; therefore this practice is not recommended.

b. Requirements of the Geotextiles for Filters. When geotextiles are to serve as a filter lining the edge drain trench, the most important function of the filter is to keep fines from entering the edge drain system. For pavement systems having drainage layers there is little requirement for water flow through the fabric; therefore for most applications, it is better to have a heavier fabric than would normally be used as a filter. Since drainage layers have a very high permeability, geotextile fabric should never be placed between the drainage layer and the edge drain. The permeability of geotextiles is governed by the size of the openings in the fabric which is specified in terms of the apparent opening size (AOS) in millimeters. For use as a filter for the trench of the edge drain the AOS of the geotextile should always be equal to or less than 0.212 millimeters. For geotextiles used as filters with drains installed to intercept groundwater flow in subsurface aquifers the geotextile should be selected based on criteria similar to the criteria used to design a granular filter.

c. Requirements for Geotextiles Used for Separation. Geotextiles used as separation layers beneath drainage layers should be selected based primarily on survivability of the geotextiles with somewhat less emphasis placed on the AOS. When used as a separation layer the geotextile survivability should be rated very high by the rating scheme given by AASHTO M 28890 "Standard Specification for Geotextiles, Asphalt Retention, and Area Change of Paving Engineering Fabrics." This would ensure survival of the geotextiles under the stress of traffic during the life of the pavement. To ensure that fines will not pump into the drainage layer yet allow water flow to prevent hydrostatic pressure the AOS of the geotextile must be equal to or less than .212 millimeters and also equal to or greater than .125 millimeters.
GENERAL 3-1.

The design methodology contained herein is for the design of a pavement subsurface drainage system for the rapid removal of surface infiltration water and water generated by freeze-thaw action. Although the primary emphasis will be on removing water from under the pavement, there may be occasions when the system will also serve as interceptor drain for groundwater.
METHODS 3-2.

For most pavement structures water is to be removed by the use of a special drainage layer which allows the rapid horizontal drainage of water. The drainage layer must be designed to handle surface infiltration from a design storm and withstand the stress of traffic. A separation layer must be provided to prevent intrusion of fines from the subgrade or subbase into the drainage layer and facilitate construction of the drainage layer. The drainage layers should feed into a collection system consisting of trenches with a drain pipe, backfill, and filter. The collection system must be designed to maintain progressively greater outflow capabilities in the direction of flow. The outlet for the subsurface drains should be properly located or protected to prevent backflow from the surface drainage system. Some pavements may not require a drainage system in that the subgrade may have sufficient permeability for the water to drain vertically into the subgrade. In addition, some pavements designed for very light traffic may not justify the expense of a subsurface drain system.
DESIGN PREREQUISITES 3-3.

For the satisfactory design of a subsurface drainage system, the designer must have an understanding of environmental conditions, subsurface soil properties and groundwater conditions.

a. Environmental Conditions. Temperature and rainfall data applicable to the local area should be obtained and studied. The depth of frost penetration is an important factor in the design of a subsurface drainage. For most areas the approximate depth of frost penetration can be determined by referring to TM 58252/AFMAN 328008, Vol. 2 or by using the computer program for frost analysis. Rainfall data are used to determine the volume of water to be handled by the subsurface drainage system. The data can be obtained from local weather stations or by the use of figure 3-1.

Figure 3-1. Design Storm Index, 1-hr Rainfall Intensity-Frequency Data for Continental United States Excluding Alaska.

b. Subsurface Soil Properties. In most cases the soil properties investigated for other purposes in
connection with the pavement design will supply information that can be used for the design of the subsurface drainage system. The two properties of most interest are the coefficient of permeability and the frost susceptibility of the pavement materials.

c. Coefficient of Permeability. The coefficient of permeability of the existing subsurface soils is needed to determine the need of special horizontal drainage layers in the pavement. For pavements having subgrades with a high coefficient of permeability the water entering the pavement will drain vertically and therefore horizontal drainage layers will not be required. For pavements having subgrades with a low coefficient of permeability the water entering the pavement must be drained horizontally to the collector system or to edge drains.

d. Frost Susceptible Soils. Soils susceptible to frost action are those that have the potential of ice formation occurring when that soil is subjected to freezing conditions with water available. Ice formation takes place at successive levels as freezing temperatures penetrate into the ground. Soils possessing a high capillary rate and low cohesive nature act as a wick in feeding water to ice lenses. Soils are placed into groups according to the degree of frost susceptibility as shown in table 3-1. Because a large volume of free water is generated during thaw of ice lenses, horizontal drainage layers are required to permit the escape of the water from the pavement structure and thus facilitate the restoration of the pavement strength.

Table 3-1. Frost Susceptible Soils.

Typical Soil

<table>
<thead>
<tr>
<th>Frost Group</th>
<th>Type of Soil</th>
<th>Percent Finer than 0.02 mm by Weight</th>
<th>Types Under Unified Soil Classification System</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Gravely Soils</td>
<td>6-10</td>
<td>GW-GM, GP-GM, GW-GC, GP-GC</td>
</tr>
<tr>
<td></td>
<td>(b) Sands</td>
<td>6-15</td>
<td></td>
</tr>
</tbody>
</table>
e. Sources for Data. The field explorations made in connection with the project design should include a topographic map of the proposed pavement facility and surrounding vicinity indicating all streams, ditches, wells, and natural reservoirs. An analysis of aerial photographs should be conducted for information on general soil and groundwater conditions. Borings taken during the soil exploration should provide depth to water tables and subgrade soil types. Typical values of permeability for subgrade soils can be obtained from figure 2-1. Although the value of permeability determined from figure 2-1 must be considered only an estimate, the value should be sufficiently accurate to determine if subsurface drainage is required for the pavement. For the permeability of granular materials, estimates of the permeability may be determined from the following equations:

Click on the green text to the right to execute equation

\[
k = \frac{217.5 \left(D_{10} \right)^{1.478} \left(n \right)^{6.654}}{(P_{200})^{0.597}} \text{ in mm/sec}
\]

(eq 3-1)

or

Click on the green text to the right to execute equation

\[
k = \frac{6.214 \times 10^7 \left(D_{10} \right)^{1.478} \left(n \right)^{6.654}}{(P_{200})^{0.597}} \text{ in ft/day}
\]

(eq 3-2)
where

\[I - \frac{\gamma_d}{\gamma_w G} \]

\(n \) = porosity
\(G \) = specific gravity (assumed 2.7)

\(\gamma_d = \text{density of water} \), \(\gamma_w = \text{dry density of material} \)

\(D_{10} \) = effective grain size at 10 percent passing in mm

\(P_{200} \) = percent passing 0.075 mm (No. 200) sieve

For the most part the permeability needed for design of the drainage layer will be assigned based on the gradation of the drainage material. In some cases, laboratory permeability tests may be necessary, but it is cautioned that the permeability of very open granular materials is very sensitive to test methods, methods of compaction and gradation of the sample. Therefore, conservative drainage layer permeability values should be used for design.
CRITERIA FOR SUBSURFACE DRAIN SYSTEMS 3-4.

a. Criteria for Requiring a Subsurface Drain System. Not all pavements will require a subsurface drain system either because the subgrade is sufficiently permeable to allow vertical drainage of water into the subgrade or the pavement structure does not justify the expense of a subsurface drain system. For pavements in nonfrost areas and having a subgrade with a permeability greater than 6 meters/day (20 feet/day), one can assume that the vertical drainage will be sufficient such that no drainage system is required. In addition to the above exemption for the requirement for drainage systems, flexible pavements which are in nonfrost areas and having total thickness of structure above the subgrade of 200 millimeters (8 inches) or less are not required to have a drainage system. All pavements not meeting the above criteria are required to have a subsurface drainage system. Even if a pavement meets the exemption requirements, a drainage analysis should be conducted for possible benefits for including the drainage system. For rigid pavements in particular, care should be taken to ensure water is drained rapidly from the bottom of the slab and that the material directly beneath the concrete slab is not susceptible to pumping.

b. Design Water Inflow. The subsurface drainage of the pavement is to be designed to handle infiltrated water from a design storm of 1 hour duration at an expected return frequency of 2 years. The design storm index for different parts of the world can be obtained from figure 3-1 or TM 58201/AFM 885, Chap. 1. The inflow is determined by multiplying the design storm index (R) times an infiltration coefficient (F). The infiltration coefficient will vary over the life of the pavement depending on the type of pavement, surface drainage, pavement maintenance, and structural condition of the pavement. Since the determination of a precise value of the infiltration coefficient for a particular pavement is very difficult, a value of 0.5 may be assumed for design.

c. Length and Slope of Drainage Path. The length of drainage path is measured along the slope of the drainage layer from the crest of the slope to where the water will exit the drainage layer. In simple terms, the length of the drainage path is the maximum distance water will travel in the drainage layer. The length of drainage path (L) in meters (feet) may be computed by equation 213, and the slope (i) of
the drainage path may be computed by equation 214.

d. Thickness of Drainage Layer. The thickness of the drainage layer is computed such that the capacity of the drainage layer will be equal to or greater than the infiltration from the design storm. When the length of the drainage path (L) is in meters (feet), the design storm index (R) is in meters/hour (feet/hour), the permeability of the drainage layer (k) is in meters/hour (feet/hour), and the length of the design storm (t) is in hours, the equation for computing the thickness (H) in meters (feet) is

\[H = \frac{2(F)(R)(L)(t)}{[1.7 n_e L + k i t]} \quad \text{eq. 3-3} \]

The effective porosity (ne), the infiltration coefficient (F) and the slope of the drainage path (i) are nondimensional. If the term (k i t) is small compared to the term 1.7 ne L, which would be the case for long drainage paths i.e., for drainage paths longer than 6 meters (20 feet), then the required thickness of the drainage layer can be estimated by deleting the term (k i t) from equation 33 or

\[H = \frac{(F)(R)}{0.85 n_e} \quad \text{eq. 3-4} \]

where the units are the same as in equation 33.

e. Required Permeability, Slope, and Length. The subsurface drainage criteria require that from the end of the design storm, the drainage layer should attain 85 percent drainage within 24 hours. The time for 85 percent drainage is computed by the equation

Click on the green text to the right to execute equation
\[
T_{85} = n_c \cdot \frac{L}{(t \cdot k)^2}
\]

(eq. 3-5)

where the dimensions of \(T_{85} \) will be in days when \(L \) is in meters (feet) and \(k \) is in meters/day (feet/day). The time of drainage may be adjusted by changing the drainage material, the length of the drainage path or the slope of the drainage path. Changing the drainage material will change both the effective porosity and the permeability but the effective porosity will change, at the most, by a factor of 3, whereas the permeability may change by several orders of magnitude. Thus, providing a more open drainage material would decrease the time for drainage but more open materials are less stable and more susceptible to rutting. It is therefore desirable to keep the drainage material as dense as possible. The drainage layer of a pavement is usually placed parallel to the surface; therefore the slope of the drainage path is governed by the geometry of the pavement surface. For large paved areas such as parking lots, airfield aprons, and storage areas, the time for drainage is best controlled by designing the collection system to minimize the length of the drainage path. For edge drains along roads, streets, and airfield taxiways and runways, it may be difficult to reduce the length of the drainage path without resorting to placing drains under the pavement. Pavements having long longitudinal slopes may require transverse collector drains to prevent long drainage paths. Thus, designing the subsurface drainage system to meet the criteria for time of drainage involves matching the type of drainage material with the drainage path length and slope.
DESIGN EXAMPLE

To illustrate the procedure for the design of a drainage layer for the subsurface drain system, consider the following parameters.

The design storm \((R) = 0.05 \) meters (2 inches) per hour
The effective porosity \((n_e) = 0.2\)
A trial length of drainage path \((L) = 46\) meters (150 feet)
The permeability of the drainage material \((k) = 600\) meters/day (2,000 feet/day)
The slope of the drain path \((i) = 0.01\)
The infiltration coefficient \((F) = 0.5\)

To compute the required thickness for the drainage layer, first convert permeability to meters/hour (feet/hour) then substitute into equation 33 obtaining

\[
H = \frac{2\times0.5\times0.05\times46\times1}{(1.7\times0.2\times46+24\times0.01)}
\]
\[
H = 0.145 \text{ meters (5.8 inches)}
\]

Since the drainage path is relatively long, equation 34 could have been used to estimate the required thickness as follows.

\[
H = \frac{0.5\times0.05}{0.85\times0.2}
\]
\[
H = 0.147 \text{ meters (5.9 inches)}
\]

It is seen that both equations yield approximately the same thickness and that after rounding of the computed values, a design thickness of 0.150 meters (6 inches) would be obtained. The time required to obtain a degree of drainage of 85 percent is computed by the use of equation 35 as follows.
\[t_{85} = \frac{(.2 \times 46)}{(.01 \times 600)} = 1.5 \text{ days} \]

The 1.5 days for drainage is greater than the 1 day specified in the criteria. Since the criteria for drainage is exceeded, it is desirable to decrease the time for drainage by either using a more permeable material, increasing the slope or decrease the length of the drainage path. In most design situations the length of the drainage path will be the easier variable to modify; therefore the maximum length for the drainage path can be found by solving equation 35 for \(L \),

\[L = \frac{T_{85} \times i \times k}{n_e} \]

then substituting to obtain

\[L = 1 \times 0.01 \times 600 / 0.2 \]

\[L = 30 \text{ meters (99 ft)} \]

Rounding the computed length, the design length of the drainage path would be 30 meters (99 feet).
PLACEMENT OF SUBSURFACE DRAINAGE SYSTEM 3-6.

a. Rigid Pavements. In the case of rigid pavements the drainage layer, if required, shall be placed as shown in figure 3-3 directly beneath the concrete slab. In the structural design of the concrete slab the drainage layer along with any granular separation layer shall be considered a base layer, and structural benefit may be realized from the layers.

b. Flexible Pavements. In the case of flexible pavements the drainage layer should be placed either directly beneath the surface layer as shown in figure 3-2 or beneath a graded crushed aggregate base course as shown in figure 3-3. If the required thickness of granular subbase is equal to or greater than the thickness of the drainage layer plus the thickness of the separation layer, the drainage layer is placed beneath the graded crushed aggregate base (figure 3-4). Where the total thickness of pavement structure is less than 300 mm (12 inches), the drainage layer may be placed directly beneath the surface layer (figure 3-2) and the drainage layer used as a base. When the drainage layer is placed beneath an unbound aggregate base, care must be taken to limit the material passing the .075 mm (No. 200) sieve in the aggregate base to 8 percent or less.
Figure 3-2. Drainage Layer Placed Directly Below Surface Layer.

Figure 3-3. Drainage Layer Placed Beneath Base Course.

c. Separation Layer. The drainage layer must be protected from contamination of fines from the underlying layers by a separation layer to be placed directly beneath the drainage layer. In most cases the separation layer should be a graded aggregate material meeting the requirements of a 50 CBR subbase and, in fact, can be considered as part of the subbase. For design situations where a firm foundation already exists and thickness of the separation layer is not needed in the structure for protection of the subgrade, a filter fabric may be substituted for the granular separation layer.
MATERIAL PROPERTIES 3-7.

a. For Drainage Layers. The material for a drainage layer should be a hard, durable crushed aggregate to withstand degradation under construction traffic as well as inservice traffic. The gradation of the material should be such that the material has sufficient stability for the operation of construction equipment. While it is desirable for strength and stability to have the well graded aggregate, the permeability of the material must be maintained. For most drainage layers, the drainage materials should have a minimum permeability of 300 meters/day (1,000 feet/day). Two materials, a rapid draining material (RDM) and an open graded material (OGM), have been identified for use in drainage layers. The RDM is a material having a sufficiently high permeability (300 meters/day (1,000 feet/day) to 1,500 meters/day (5,000 feet/day)) to serve as a drainage layer and will also have the stability to support construction equipment and the structural strength to serve as a base and/or a subbase. The OGM is a material having a very high permeability (greater than 1,500 meters/day (5,000 feet/day)) which can be used for a drainage layer. The OGM will normally require stabilization for construction stability and/or for structural strength to serve as a base in a flexible pavement. Gradation limits for the two materials are given in table 3-2 and the design properties are given in table 3-3.

Table 3-2. Gradations of Materials for Drainage Layers and Choke Stone.

<table>
<thead>
<tr>
<th>Sieve Designation (mm)</th>
<th>Rapid Draining Material</th>
<th>Open Graded Material</th>
<th>Choke Stone</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.0 (1-1/2 in.)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>25.0 (1 in.)</td>
<td>70-100</td>
<td>95-100</td>
<td>100</td>
</tr>
<tr>
<td>19.0 (3/4 in.)</td>
<td>55-100</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2 in.)</td>
<td>40-80</td>
<td>25-80</td>
<td>100</td>
</tr>
<tr>
<td>9.5 (3/8 in.)</td>
<td>30-65</td>
<td>--</td>
<td>80-100</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>10-50</td>
<td>0-10</td>
<td>10-100</td>
</tr>
<tr>
<td>2.4 (No. 8)</td>
<td>0-25</td>
<td>0-5</td>
<td>5-40</td>
</tr>
<tr>
<td>1.2 (No. 16)</td>
<td>0-5</td>
<td>--</td>
<td>0-10</td>
</tr>
</tbody>
</table>
Table 3-3. Properties of Materials for Drainage Layers.

<table>
<thead>
<tr>
<th>Property</th>
<th>Rapid Draining Material</th>
<th>Open Graded Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability in m/sec (feet/day)</td>
<td>300-1,500 (1,000-5,000)</td>
<td>> 1,500 (> 5,000)</td>
</tr>
<tr>
<td>Effective Porosity</td>
<td>0.25</td>
<td>0.32</td>
</tr>
<tr>
<td>Percent Fractured Faces (COE method)</td>
<td>90% for 80 CBR</td>
<td>90% for 80 CBR</td>
</tr>
<tr>
<td></td>
<td>75% for 50 CBR</td>
<td>75% for 50 CBR</td>
</tr>
<tr>
<td>Cv</td>
<td>> 3.5</td>
<td>--</td>
</tr>
<tr>
<td>LA Abrasion</td>
<td>< 40</td>
<td>< 40</td>
</tr>
</tbody>
</table>

Note: Cv is the uniformity coefficient = D60/D10.

b. Aggregate for Separation Layer. The separation layer serves to prevent fines from infiltrating or pumping into the drainage layer and to provide a working platform for construction and compaction of the drainage layer. The material for the separation layer should be a graded aggregate meeting the requirements of a 50 CBR subbase as given in TM 58252/AFM 886, Chap. 2 except that the maximum aggregate size should not be greater than 1/4 the thickness of the separation layer. The permeability of the separation layer should be greater than the permeability of the subgrade, but the material should not be so open as to permit pumping of fines into the separation layer. To prevent pumping of fines the ratio of d15 of the separation layer to d85 of the subgrade must be equal to or less than 5. The material property requirements for the separation layer are given in Table 3-4.

Table 3-4. Criteria For Cranular Separation Layer.

<table>
<thead>
<tr>
<th>Maximum Aggregate Size</th>
<th>Lesser of 50 mm (2 inches) or 1/4 of layer thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum CBR</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Percent Passing 2.00 mm (No. 10)</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Percent Passing 0.075 mm</td>
<td>15</td>
</tr>
</tbody>
</table>
(No. 200)

Maximum Liquid Limit 25
Maximum Plasticity Index 5

d15 of Separation Layer to d85 of Subgrade ≤ 5

c. Filter Fabric for Separation Layer. Filter fabric provides protection against pumping, but does not provide extra stability for compaction of the drainage layer. Therefore, fabric should be selected only when the subgrade provides adequate support for compaction of the drainage layer. The important characteristics of the fabric are strength for surviving construction and traffic loads, and apparent opening size (AOS) to prevent pumping of fines into the drainage layer. Filter fabric for separation shall be a nonwoven needle punched fabric meeting the criteria given in table 3-5.

Table 3-5. Criteria for Filter Fabric to be Used as a Separation Layer.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>ASTM Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Percent or Less Passing No. 200 Sieve</td>
<td>AOS (mm) < 0.6 mm Greater than No. 30 sieve</td>
</tr>
<tr>
<td>Greater Than 50 Percent Passing No. 200 Sieve</td>
<td>AOS (mm) < 0.297 Greater than No. 50 sieve</td>
</tr>
<tr>
<td>Minimum Grab Strength in kN(lbs) at 50% Elongation</td>
<td>0.8 (180)</td>
</tr>
<tr>
<td>Minimum Puncture Strength in kN(lbs)</td>
<td>0.35 (80)</td>
</tr>
</tbody>
</table>
STABILIZATION OF DRAINAGE LAYER 3-8.

a. General. Stabilization of OGM is normally required for stability and strength, and for preventing degradation of the aggregate in handling and compaction. Stabilization may also be used when high quality crushed aggregate is not available and there may even be occasions when stabilization of RDM is necessary. Stabilization may be accomplished mechanically by use of a choke stone or by the use of a binder such as asphalt or portland cement.

b. Choke Stone Stabilization. A choke stone is a small size stone used to stabilize the surface of an OGM. The choke stone should be a hard, durable, crushed aggregate having 90 percent fractured faces. The ratio of D15 of the coarse aggregate to the D15 of the choke stone must be less than 5, and the ratio of the D50 of the coarse aggregate to D50 of the choke stone must be greater than 2. The gradation range for acceptable choke stone is given in table 3-2. Normally ASTM No. 8 or No. 9 stone will meet the requirements of a choke stone for the OGM.

c. Asphalt Stabilization. Stabilization of the drainage material is accomplished by using only enough asphalt required to coat the aggregate. Care should be taken so that the voids are not filled by excess asphalt. Asphalt grade used for stabilization should be AC20 or higher. For stabilization of OGM, 2 to 2-1/2 percent asphalt by weight should be sufficient to coat the aggregate. Higher rates of application may be necessary when stabilization of less open aggregate such as RDM is necessary.

d. Cement Stabilization. As with asphalt stabilization, portland cement stabilization is accomplished by using only enough cement paste to coat the aggregate, and care should be taken so that the voids are not filled by excess paste. The amount of portland cement required should be approximately 170 kilograms per cubic meter (2 bags/yd3) depending on the gradation of the aggregate. The water-cement ratio should be just sufficient to provide a paste which will adequately coat the aggregate.
EXPERIENCE 4-1.

Construction of drainage layers can present problems in handling, placement, and compaction. If the drainage material does not have adequate stability, major problems can develop in the placement of the surface layer above the drainage layer. Experience with highly permeable bases (drainage layers) both by the Corps of Engineers and various State Departments of Transportation indicates that pavements containing such layers can be constructed without undue difficulties provided due precautions are taken. The real key to successful construction of the drainage layers is the training and experience of the construction personnel. Prior to start of construction, the construction personnel should be indoctrinated in the handling and placing of the drainage material. The placement of test strips is recommended for training of the construction personnel.
PLACEMENT OF DRAINAGE LAYER 4-2.

The material for the drainage layer must be placed in a manner to prevent segregation and to obtain a layer of uniform thickness. The materials for the drainage layer will require extra care in stockpiling and handling. Placement of the RDM and OGM is best accomplished using an asphalt concrete paver. To ensure good compaction, the maximum lift thickness should be no greater than 150 millimeters (6 inches). If choke stone is used to stabilize the surface of OGM, the choke stone is placed after compaction of the final lift of OGM. The choke stone is spread in a thin layer no thicker than 10 millimeters (1/2 inch) using a spreader box or paver. The choke stone is worked into the surface of the OGM by the use of a vibrator roller and by wetting. The choke stone remaining on the surface should not migrate into the OGM by the action of water or traffic.
COMPACTIO宁 4-3.

Compaction is a key element in the successful construction of the drainage layer. Compaction control normally used in pavement construction is not appropriate for materials such as the RDM and OGM. It is therefore, necessary to specify compaction techniques and level of effort instead of the properties of the end product. It will be important to place the drainage material in relatively thin lifts of 150 millimeters (6 inches) or less and to have a good firm foundation beneath the drainage material. The recommended method of determining the required compaction effort is to construct a test section and closely monitor the aggregate during compaction to determine when crushing of the aggregate appears excessive. Experience has indicated that sufficient compaction can be obtained by six passes or less of a vibrator roller loaded at approximately 9 metric tons (10 short tons). Material not being stabilized with asphalt or cement should be kept moist during compaction. Asphalt stabilized material for drainage layers must be compacted at a somewhat lower temperature than a dense-graded asphalt material. In most cases, it will be necessary to allow an asphalt stabilized material to cool to less than 93 degrees C (200 degrees F) before beginning compaction.
PROTECTION AFTER COMPACTION 4-4.

After compaction, the drainage layer should be protected from contamination by fines from construction traffic or from flow of surface water. It is recommended that the surface layer be placed as soon as possible after placement of the drainage layer. Precautions must also be taken to protect the drainage layer from disturbance by construction equipment. Only tracked asphalt pavers should be allowed for paving over any RDM or OGM that has not been stabilized. Drivers should avoid rapid acceleration, hard braking, or sharp turning on the completed drainage layer. Although curing of cement stabilized drainage layers is not critical, efforts should be made at curing until the surface layer is placed.
PROOF ROLLING 4-5.

For Army Class IV airfield with runways over 1,524 meters (5,000 feet) and Air Force heavy, modified heavy, and medium load flexible airfield pavements, proof rolling as per TM 58252/AFM 886, Chap. 2, is required on the graded crushed aggregate base even when used over a drainage layer. Proof rolling the separation layer prior to placement of the drainage layer for other airfield pavements is recommended. For other Air Force flexible airfield pavements and Army Class IV flexible airfield pavements with runways less than 1,524 meters (5,000 feet), it is recommended that the proof rolling be accomplished using a rubber-tired roller load to provide a minimum tire force of 89 kN (20,000 pounds) and inflated to at least 620 kPa (90 pounds/square inches). A minimum of six coverages should be applied, where a coverage is the application of one tire print over each point in the surface of the designated area. For rigid pavements and flexible pavements for roads, streets, parking areas and Class I, II, and III Army airfields, proof rolling of the separation layer may be accomplished using the rubber-tired roller described above or by using a truck having tandem axles with either dual tires or super single tires. The truck should be loaded to provide 89 kN (20,000 pounds) per axle. During proof rolling, action of the separation layer must be monitored for any sign of excessive movement or pumping that would indicate soft spots in the separation layer or the subgrade. Since the successful placement of the drainage layer depends on the stability of the separation layer, all weak spots must be removed and replaced with stable material. All replaced material must be proof rolled as specified above.
DESIGN FLOW 5-1.

Collector drains are to be provided to collect and transport water from under the pavement. For pavements having drainage layers, it is mandatory that collector drains be provided. The collector system should have the capacity to handle the water from the drainage layer plus water from other sources. The water entering the collector system from the drainage layer is computed assuming the drainage layer is flowing full. Thus, the volume of water \((Q_o)\) in cubic millimeters per second per meter (cubic feet per day per foot) of length of collector pipe (assuming the drainage layer is only on one side of the collector) would be

Click on the green text to the right to execute equation

\[
Q = (H) \times (i) \times (k) \times (1000) \text{ in cubic mm per second per meter} \quad (\text{eq. 5-1})
\]

or

Click on the green text to the right to execute equation

\[
Q = (H) \times (i) \times (k) \text{ in cubic ft per day per foot} \quad (\text{eq. 5-2})
\]

where

- \(H\) = thickness of the drainage layer in millimeters (feet)
- \(i\) = slope of the drainage layer
- \(k\) = permeability of the material in the drainage layer in millimeters per second (feet per day)

If the collector system has water entering from both sides, the volume of water entering the collector would be double that given by equation 5-1.
DESIGN OF COLLECTOR DRAINS 5-2.

a. Drain System Layout. The collector drains are normally placed along the shoulder of the pavement as illustrated in figure 5-1. The system will consist of the drain pipe, flushing and observation risers, manholes, discharge laterals, filter fabric, and trench backfill. The drainage system for large areas of pavement may require placement of subsurface drains under the pavement. Typical designs for the collector drains are given in figures 5-2, 5-3, 5-4, and 5-5.

Figure 5-1. Plan View of Subsurface Drainage System.
NOTE: 1) IN FROST AREAS THE SIDES OF THE TRENCH SHALL BE SLOPED NOT MORE THAN 1 VERTICAL ON 10 HORIZONTAL FOR THE DEPTH OF FROST PENETRATION.

2) FOR CONCRETE PAVEMENTS LOCATE THE PIPE IN VICINITY OF A JOINT.

Figure 5-2. Typical Concrete Pavement Interior Subdrain Detail.
Figure 5-3. Typical Edge Subdrain Detail for Concrete Pavements.
Figure 5-4. Typical Flexible Pavement Interior Subdrain Detail.
Figure 5-5. Typical Edge Subdrain Detail for Flexible Pavements.

b. Collector Pipe. The collector pipe may be perforated flexible, ABS, corrugated polyethylene (CPE) or smooth rigid polyvinyl chloride pipe (PVC). Pipe should conform to the appropriate AASHTO Specification. Most State Highway Agencies use either CPE or PVC. For CPE pipe, AASHTO specification M 252 "Corrugated Polyethylene Drainage Tubing" is suggested, while for PVC pipe, AASHTO Specification M 278, "Class PC 50 Polyvinyl Chloride (PVC) Pipe," is recommended. It is recommended that asphalt stabilized material not be used as backfill around pipe, but, if it is to be used, then the pipe should be PVC 90 degrees centigrade electric plastic conduct, EPC40 or EPC80 conforming to the requirements of National Electrical Manufactures Association Specification TC2. Geocomposite edge drains (strip drains) may be used in special situations but only with the approval of
HQUSACE (CEMPET) or the appropriate Air Force major command. Geocomposite edge drains should only be considered for pavements not having a drainage layer.

c. Pipe Size and Slopes. The pipe must be sized, according to equations 5-3 or 5-4, to have a capacity sufficient to collect the peak flow from under the pavement. Equations 5-3 and 5-4 are Manning equations for computing the capacity of a full flowing circular drain. The equation for flow (Q) in cubic feet per second is:

\[Q = \frac{1.486}{n} \left(\frac{A}{4} \right) \left(\frac{d}{4} \right)^{2/3} \left(\frac{S}{2} \right) \]

(eq. 5-3)

where

- \(n \) = coefficient of roughness for the pipe
- \(A \) = area of the pipe in square feet
- \(d \) = pipe diameter in feet
- \(S \) = slope of the pipe invert

For metric units the equation for flow in cubic meters per second is:

Click on the green text to the right to execute equation

\[Q = \frac{1.0}{n} \left(\frac{A}{4} \right) \left(\frac{d}{4} \right)^{2/3} \left(\frac{S}{2} \right) \]

(eq. 5-4)

where

- \(n \) and \(s \) are as defined in equation 5-3
- \(A \) = pipe area in square meters
\[d = \text{pipe diameter in meters} \]

The coefficient of roughness for different pipe types can be obtained from table 5-1. Except for long intercepting lines and extremely severe groundwater conditions, 150 millimeter (6 inch) diameter drains should be satisfactory for most subsurface drainage installations. The minimum size pipe recommended for all collector drains is a 150 millimeter (6 inch) diameter pipe. The recommended minimum slope for subdrains is 0.15 percent.

Table 5-1. Coefficient of Roughness for Different Types of Pipe

<table>
<thead>
<tr>
<th>Type of Pipe</th>
<th>Coefficient of Roughness, (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay, concrete, smooth-wall plastic, and Asbestos-cement</td>
<td>0.013</td>
</tr>
<tr>
<td>Bituminous-coated, non-coated corrugated metal pipe or corrugated metal pipe</td>
<td>0.024</td>
</tr>
</tbody>
</table>
TRENCH CONSTRUCTION 5-3.

a. Design. The trench for the collector drains should be constructed of sufficient width to provide 150 millimeters (6 inches) clearance on each side of the pipe. The depth of the trench must be sufficient to provide a minimum 300 millimeters (12 inches) from the top of the pavement subgrade to the center of the pipe plus 80 millimeters (3 inches) clearance beneath the pipe. The minimum cover requirements for pipe is dependent upon loading and frost requirements. Cover requirements for different design wheel loads are indicated in TM 58203/AFM 885, Chap. 3. In frost areas the center of the pipe should be placed below the depth of frost penetration. In areas where the depth of frost penetration is greater than 1.2 meters (4 feet) below the bottom of the drainage layer, the pipe need not be located deeper than 1.2 meters (4 feet) from the bottom of the drainage layer. Also in frost areas and when differential heave will cause pavement problems, the sides of the trench shall be sloped not steeper than 1 vertical on 10 horizontal for the depth of frost penetration. The sloping of the trench sides is not required for the parts of the trench in nonfrost susceptible materials nor for F1 or S1 soils unless the pavement over the trench is subjected to high speed traffic.

b. Backfill. The trench should be backfilled with a permeable material to rapidly convey water to the drainage pipe. The backfill material may be either a OGM, RDM, or other uniform graded aggregate. A minimum of 80 millimeters (3 inches) of aggregate should be placed beneath the drainage pipe. Proper compaction or chemical stabilization of the backfill is necessary to prevent settlement of the fill. In placing the backfill, the backfill should be compacted in lifts not exceeding 300 millimeters (12 inches). When geocomposites are used in place of pipe, the geocomposites are placed against the material to be drained and thus the backfill is not expected to convey water. For this reason the backfill for the geocomposites will not require the high permeability required for the backfill around the pipe drains. However, since the backfill for the geocomposites will be against the side of the trench, the backfill should meet the requirements of a granular filter.

c. Geotextiles in the Trench. The trench should be provided with a geotextile filter fabric as shown in figures 5-2 through 5-5 for the typical details. The filter fabric should be placed to separate the
permeable backfill of the trench from the subgrade or subbase materials. The filter fabric must not be placed so as to impede the flow of water from the drainage layer to the drain pipe. The filter fabric must also protect from the infiltration of fines from any surface layers. This is particularly important for drains placed outside the pavement area where surface water can enter the drain through a soil surface. The filter fabric for the trench shall be a nonwoven needle punched fabric meeting the criteria given in table 5-2.

Table 5-2. Criteria for Fabrics used in Trench Construction.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>ASTM Test Method</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil With 50 Percent or Less Passing No. 200 Sieve</td>
<td>D 4751</td>
<td>AOS < 0.6 mm (Sieve No. 30)</td>
</tr>
<tr>
<td>Soil With Greater Than 50 Percent Passing No. 200 Sieve</td>
<td>D 4751</td>
<td>AOS < 0.297 mm (Sieve No. 50)</td>
</tr>
<tr>
<td>Minimum Grab Strength in kN (pounds) at 50% Elongation</td>
<td>D 4632</td>
<td>0.6(130)</td>
</tr>
<tr>
<td>Minimum Puncture Strength in kN (pounds)</td>
<td>D 4833</td>
<td>0.25(55)</td>
</tr>
</tbody>
</table>

c. Trench Cap. Edge drains placed outside of a paved area should be capped with a layer of low permeability material to reduce the infiltration of surface water into subsurface drainage system.
LATERAL OUTLET PIPE 5-4.

a. Design. The lateral outlet pipe provides both a means of getting water out of the edge drains, and for cleaning and inspecting the system. Edge drains should be provided with lateral outlet pipes spaced at intervals (90 to 150 meters) (300 to 500 feet) along the edge drains and at the low point of all vertical curves. To facilitate drain cleanout, the outlet pipes should be placed at about a 45 degree angle from the direction of flow in the collector drain. The lateral pipe should be a metal or rigid solid-walled pipe and should be equipped with an outlet structure. A 3 percent slope from the edge drain to the outlet structure is recommended. To reduce outlet maintenance, outlet pipes should, where possible, be connected to existing storm drains or inlets. For lateral pipe flowing to a ditch, the invert of the outlet pipe should be a minimum of 150 millimeters (6 inches) above the 2 year design flow in the ditch. To prevent piping, the trench for the outlet pipes must be backfilled with a material of low permeability, or provided with a cutoff wall or diaphragm.

b. Outfall for Outlet Pipe. The outfall for the outlet pipe should be provided with a headwall to protect the outlet pipe from damage, prevent slope erosion, and facilitate the location of outlet pipes. Headwalls should be placed flush with the slope so that mowing operations are not impaired. Easily removed rodent screens should be installed at the pipe outlet. The headwall may be precast or cast-in-place. An example for a design for a headwall is given in figure 5-6.
c. Reference Markers. Although not a requirement, reference markers are recommended for the outlets to facilitate maintenance and/or observation. A simple flexible marker post or marking on the
shoulder will suffice to mark the outlet.
CROSS DRAINS 5-5.

Cross drains may be required at locations where flow in the drainage layer is blocked, for steep longitudinal grades, or at the bottom of vertical curves. For example, cross drains may be required where pavements abut building foundations, at bridge approach slabs, or where drainage layers abut impermeable bases.
MANHOLES AND OBSERVATION 5-6.

Manholes, observation basins, and risers are installed on subsurface drainage systems for access to the system to observe its operation and to flush or rod the pipe for cleaning. When required, manholes on subgrade pipe drains should be located at intervals of not over 300 meters (1,000 feet) with one flushing riser located between manholes and at dead ends. Manholes should be provided at principal junction points of several drains. Typical details of construction are given in TM 58203/AFM 885, Chap. 3.
APPENDIX A - REFERENCES

Government Publications

Departments of the Army, the Navy, and the Air Force

TM 5-825-2/NAVFAV

DM 21.3/AFJMAN 32-1014,

TM 5-820-1/AFM 885,

Chap. 1

TM 5-820-3/AFM 88-5,

Chap. 3

Flexible Pavement Design
for Airfields

Surface Drainage Facilities For
Airfields and Heliports

Drainage and Erosion Control
Structures for Airfields and
Heliports

Nongovernment Publications

American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103

D 4751

Test Method for Determining Apparent Opening Size of a
Geotextile

D 4632

Test Method for Breaking Load and Elongation of Geotextiles
(Grab Method)

D 4833

Test Method for Index Puncture Resistance of Geotextiles,
Geomembranes, and Related Products

American Association of State Highway and Transportation Officials, 444 N. Capitol Street, N.W.

Suite 225, Washington, DC 20001

M 288-90

Standard Specification for Geotextiles, Asphalt Retention,
and Area Change of Paving Engineering Fabrics

M 252

Corrugated Polyethylene Drainage Tubing

M 278

Class PC 50 Polyvinyl Chloride (PVC) Pipe
APPENDIX B - BIBLIOGRAPHY

GLOSSARY

Coefficient of Permeability (k). A measure of the rate at which water passes through a unit area of material in a given amount of time under a unit hydraulic gradient.

Drainage Layer. A layer in the pavement structure that is specifically designed to allow rapid horizontal drainage of water from the pavement structure. The layer is also considered to be a structural component of the pavement and may serve as part of the base or subbase.

Separation Layer. A layer provided directly beneath the drainage layer to prevent fines from infiltration or pumping into the drainage layer and to provide a working platform for construction and compaction of the drainage layer.

Rapid Draining Material (RDM). A granular material having a sufficiently high permeability (300 to 1,500 meters/day) to 1,000 to 5,000 feet/day) to serve as a drainage layer and also having the stability to support construction equipment and the structural strength to serve as a base and/or a subbase.

Open Graded Material (OGM). A granular material having a very high permeability (greater than 1,500 meters/day (5,000 feet/day)) which may be used for a drainage layer. Such a material will normally require stabilization for construction stability or structural strength to serve as a base in a flexible pavement.

Choke Stone. A small size stone used to stabilize the surface of an OGM. For a choke stone to be effective, the ratio of D15 of the coarse aggregate to the D15 of the choke stone must be less than 5, and the ratio of the D50 of the coarse aggregate to D50 of the choke stone must be greater than 2.

Effective Porosity. The effective porosity is defined as the ratio of the volume of voids that will drain under the influence of gravity to the total volume of a unit of aggregate. The difference between the porosity and the effective porosity is the amount of water that will be held by the aggregate. For materials such as the RDM and OGM, the water held by the aggregate will be small; thus, the difference between the porosity and effective porosity will be small (less than 10 percent). The effective porosity may be estimated by computing the porosity from the unit dry weight of the aggregate and the specific gravity of the solids which then should be reduced by 5 percent to allow for water retention on the aggregate.
Stabilization. Stabilization refers to either mechanically or chemically stabilizing the drainage layer to increase the stability and strength to withstand construction traffic and/or design traffic. Mechanical stabilization is accomplished by the use of a choke stone and compaction. Chemical stabilization is accomplished by the use of either portland cement or asphalt.

Geotextile. A permeable textile used in geotechnical projects. For this manual geotextile will refer to a nonwoven needle punch fabric that meets the requirements of the apparent opening size (AOS), grab strength and puncture strength specified for the particular application.

Geocomposite Edge Drain. A manufactured product using geotextiles, geogrids, geonets, and/or geomembranes in laminated or composite form, which can be used as an edge drain in place of trench-pipe construction.
HOT SPOT HELP

Subsurface Drainage

<table>
<thead>
<tr>
<th>Design Storm Index</th>
<th>SI</th>
<th>ENG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mm/h)</td>
<td>(in/h)</td>
</tr>
<tr>
<td>Length of Drainage Path</td>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>Permeability of Drainage Material</td>
<td>(mm/s)</td>
<td>(ft/d)</td>
</tr>
<tr>
<td>Effective Porosity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope of Drainage Path</td>
<td>Calc</td>
<td></td>
</tr>
<tr>
<td>Infiltration Coefficient</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SI</th>
<th>ENG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of Drainage Layer</td>
<td>(mm)</td>
</tr>
<tr>
<td>Time for 85% Drainage</td>
<td>(sec)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Flow</th>
<th>[cubic feet per day per foot of collector]</th>
</tr>
</thead>
</table>

Click on the item of the program you wish to have help on ...