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SURFACE DRAINAGE FACILITIES FOR
AIRFIELDS AND HELIPORTS

1. Purpose and scope. This manual prescribes standards of design of surface drainage of airfields and
heliports. Problems involved in the design of drainage facilities are discussed, and convenient methods of
estimating design capacities are outlined. These standards can be altered when necessary to meet special
problems or unusual conditions on the basis of good engineering practice. Design of drainage facilities
for arctic or subarctic regions is discussed in TM 5-852-7/AFM 88-19, Chap. 7 (see app A for referenced
publications).

2. Design objectives for airfield and heliport surface drainage. Surface drainage facilities will be
designed to suit the mission and the importance of airfields or heliports; the design capacity will be
adequate to accomplish the following objectives:

a. Surface runoff from the design s term. Surface runoff from the selected design storm will be
disposed of without damage to the airfield facilities or significant interruption of normal traffic.

b. Surface runoff from storms exceeding the design storm. Surface runoff from storm exceeding the
design storm will be disposed of with minimum damage to the airfield facilities and with the shortest
practicable interruption of normal traffic. The primary runway will remain operational under all
conditions.

c. Reliability of operation. The drainage system will provide maximum practicable reliability of
operation under all climatic conditions.

d. Maintenance. The drainage system in the immediate vicinity of operational facilities will require
minimum maintenance.

e. Coordination. Basic data obtained during preliminary field investigations will be coordinated with
the facility master plan and with other agencies having jurisdiction over conservation, flood control,
drainage, and irrigation.

f. Safety requirement. Separate drainage and containment should be provided in areas with a high
potential for fuel spills. This provision will allow spilled fuel to be promptly separated, collected, and
removed from the rest of the drainage system.

g. Future expansion. Drainage design should allow for future expansion with a minimum of expense
and traffic interruption.

h. Environmental impact. Drainage facilities will be constructed with minimal impact on the
environment.

3. Drainage protection required.

a. Degree of drainage protection. The degree of drainage protection depends largely on the
importance of the airfield or heliport, the mission and volume of traffic to be accommodated, and the
necessity for uninterrupted service. Within certain limits the degree of drainage protection should be
sufficient so that hazards can be avoided during operation.

b. Frequency of the design storm. Drainage for military airfields and heliports will be based on a
2-year design frequency, unless exceptional circumstances require greater protection. Temporary pending
will be permitted on graded areas adjacent to runway and taxiway aprons, or airfield or heliport
pavements other than primary runways. Pending will not be permitted on primary runways under any
condition. To determine the extent of pending permissible on areas where pending is allowed, possible
damage of pavement subgrades and base courses as a result of occasional flooding must be considered.
In addition, pending basins must conform to grading standards.

4. Hydrologic considerations.

a. Definitions. The following definitions are used in the development of hydrologic concepts.

(1) Design frequency. The average frequency with which the design event, rainfall or runoff, is
equaled or exceeded. The reciprocal of frequency is the annual probability of occurrence. Design
frequency is selected to afford the degree of protection deemed necessary. Except in special
circumstances, the 2-year frequency, that is, an annual probability y of occurrence of 0.5, is considered
satisfactory for most airfields.

(2) Design storm. The standard rainfall intensity-frequency relation, lasting for various durations
of supply. The design storm is used to compute the runoff to be carried in drainage facilities.

(3) Rainfall-excess. The amount of rainfall which appears as surface runoff. Rainfall-excess is
rainfall less losses to infiltration or other abstractions.
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(4) Standard supply. The standard intensity-frequency-duration relationship of the selected design
storm less losses for infiltration. Standard supply is usually designated by the average rainfall intensity
in inches per hour at the I-hour duration.

b. Design methods. The design procedures for drainage facilities involve computations to convert the
rainfall intensities expected from the design storm into runoff rates which can be used to size the
various elements of the storm drainage system. There are two basic approaches: direct estimates of the
proportion of the average rainfall intensity which will appear as the peak rate of runoff and hydrographic
methods which account for losses such as infiltration and for the effects of flow over the surface to the
point of design. The first approach is exemplified by the “Rational Method,” which is used in most
engineering offices in the United States. This approach can be used successfully by experienced designers
for drainage areas up to 1 square mile in size. ASCE Manual of Practice No. 37 and FAA AC
150/5320-5B explain and illustrate the use of the Rational Method. TM 5-820-4/AFM 88-5, Chap. 4,
presents a modified Rational Method. The second approach includes techniques to synthesize
hydrography of runoff. Where studies of large drainage areas or complex conditions of storage require
hydrography, the designer should refer to the sources listed in the Bibliography and other publications
on these subjects. The method described in paragraphs 5 through 9 of this manual and developed and
illustrated in appendixes B and C combines features from both basic approaches to determine runoff.

5. Rainfall.

a. Intensity-frequency data. Studies of rainfall intensity-frequency data indicate a fairly consistent
relation between the average intensities of rainfall for a period of 1 hour and the average intensities at
the same frequency for periods less than 1 hour, regardless of the geographical location of the stations.
The average rainfall for a I-hour period at various frequencies for the continental United States,
excluding Alaska, may be determined from figure 1. Data for other locations are available from the
Office, Chief of Engineers, and the National Oceanic and Atmospheric Administration, National Weather
Service (formerly the US Weather Bureau). For Alaska, data may be obtained from TM 5-852-7/AFM
88-19, Chap. 7, and US Weather Bureau Technical Paper No. 47. Data for Puerto Rico and the Virgin
Islands and for Hawaii may be obtained from US Weather Bureau Technical Papers No. 42 and 43,
respectively. For any frequency, the I-hour rainfall intensity is considered a design-storm index for all
average intensities and duration of storms with the same frequency.

b. Standard rainfall intensity-duration curves. Figure 2 shows the standard curves that have been
compiled to express the rainfall intensity-duration relationships and the standard supply (infiltration
subtracted) which are satisfactory for the design of airfield drainage systems in the continental United
States. The curves may be used for all locations until standard curves are developed for any region
under consideration. As an example, assume the average rainfall intensity is required for a 40-minute
design storm based on a 2-year frequency in central Kentucky. From figure 1 the 2-year I-hour rainfall is
found to be 1.4 inches per hour. In figure 2, supply curve No. 1.4 is used with the 40-minute duration of
storm to determine a rainfall intensity of 1.9 inches per hour.

c. Incomplete data. In areas where rainfall data are incomplete or unavailable, the methods described
in appendix B can be used to develop design rainfall information.

d. Design frequency. Drainage systems are normally designed for the maximum runoff from rainfall
with a certain frequency of occurrence. The design frequency indicates the average frequency at which
some portions or all of the drainage system will be taxed to capacity. After the design frequency is
selected, computations must be made to determine the critical duration of rainfall necessary to produce
the maximum rate of runoff for the specific areas involved. Ordinarily, the maximum rate of runoff
occurs when all tributary areas are contributing to the system. However, in cases of odd-shaped areas
and areas containing both paved and turfed areas, peak runoff rates may occur before all areas are
contributing. Factors affecting the critical duration of rainfall are primarily the length of overland flow,
extent of surface detention, pending, and characteristics of the runoff surfaces.

e. Storms of greater severity than the design storm. The design storm alone is not a completely
reliable criterion for the adequacy of drainage facilities. Often storms more severe than the design storm
can cause excessive damage and affect operations. Therefore, the probable consequences of storms
greater than the design storm should be considered before deciding on the adequacy of facilities designed
to handle only the design storm.

6. Infiltration. Infiltration refers to the rate of absorption of rainfall into the ground during a design
storm which is assumed to occur after a 1-hour period of antecedent rainfall. Wherever possible,
determine average infiltration rates from a study of runoff records near the airfield from infiltrometer

4
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studies or from similar acceptable information. Suggested mean values of infiltration for generalized soil
classifications are shown in table 1. The soil group symbols are those given in MIL-STD-619.
Infiltration values are for uncompacted soils. Studies indicate that where soils are compacted, infiltration
values decrease; the percentage decrease ranges from 25 to 75 percent, depending on the degree of
compaction and the types of soil. Vegetation generally decreases infiltration capacity of coarse soils and
increases that of clayey soils. The infiltration rate after 1 hour of rainfall for turfed areas is
approximately 0.5 inch per hour and seldom exceeds 1.0 inch per hour. The infiltration rate for paved or
roofed areas, blast protective surfaces, and impervious dust-palliative-treated areas is zero.

Table 1. Infiltration rate for generalized soil
classifications (uncompacted)

Soil Group Infiltration,
Description Symbol* inch per hour
Sand and gravel mixture GW, GP 0.8-1.0
SwW, SP
Silty gravels and silty sands to inorganic silt, and well-developed loams GM, SM 0.3-0.6
ML, MH
OL
Silty clay sand to sandy clay SC, CL 0.2-0.3
Clays, inorganic and organic CH, OH 0.1-0.2
Bare rock, not highly fractured .4 0.0-0.1

*Classified by the Unified Soil Classification system (MIL-STD-619).

7. Rate of supply. Rate of supply refers to the difference between the rainfall intensity and the
infiltration capacity at the same instant for a particular storm. To simplify computations, the rainfall
intensity and the infiltration capacity are assumed to be uniform during any specific storm. Thus the
rate of supply during the design storm will also be uniform.

a. Average rate of supply. Average rates of supply corresponding to storms of different lengths and
the same average frequency of occurrence may be computed by subtracting estimated infiltration
capacities from rainfall intensities represented by the selected standard rainfall intensity-duration curve
in figure 2. For convenience and since no appreciable error results, standard supply curves are assumed
to have the same shapes as those of the standard rainfall intensity-duration curves shown in figure 2.
For example, if supply curve No. 2.2 in figure 2 were selected as the design storm and the infiltration
loss during a I-hour storm were estimated as 0.6 inch, supply curve No. 1.6 would be adopted as the
standard supply curve for the given areas.

b. Weighted standard rate of supply curves. Drainage areas usually consist of combinations of paved
and unpaved areas having different infiltration capacities. A weighted standard supply should be
established for the composite drainage areas by weighting the standard supply curve numbers adopted
for paved and unpaved surfaces in proportion to their respective tributary area. An example is given in
appendix B.

8. Runoff. The method of runoff determination described herein is based on an overland flow model.
Details are given in appendix B.

a. Overland flow. The surface runoff resulting from a uniform rate of supply is termed “overland
flow.” If the rate of supply were to continue indefinitely, the runoff would rise to a peak rate and remain
constant. Ordinarily, the peak rate is established after all parts of the drainage surface are contributing
to runoff. However, in cases of odd-shaped areas and areas containing both paved and turfed areas, peak
runoff rates may occur before all areas are contributing. The elapsed time for runoff to build to a peak is
termed the “time of concentration,” which depends primarily on the coefficient of roughness, the slope,
and the effective length of the surface. When the supply terminates, the runoff rate diminishes, but
continues until the excess stored on the surface drains away.

b. Effective length. The effective length to the point under consideration must account for the
effects of overland and channel flow and for the differences in roughness and slope of the drainage
surface. Methods for determining effective length are presented in appendix B.

¢. Maximum rate of runoff. Figure 3 shows the results of overland flow computations using standard
supply curves No. 2.0 and 2.2. Curves for other supply rates are given in appendix B (figs B-7 through
B-14). Figure 3 depicts the relationships between rate of supply, o, in inches per hour; critical duration
of supply or time of concentration, t. the effective length of overland flow, L; and the resulting
maximum rate of runoff. The curves are not complete hydrography for any specific design storm, but are

7
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Figure 3. Rates of runcff and rates of supply corresponding to standard supply curves No. 2.0 and 2.2, n = 0.40 and S = 1 percent.

peak rates of runoff from individual storm events of various durations, all udvulg the same irequency
occurrence. Use of the curves can be illustrated by using supply curve No. 2.0, as follows:
(1) Assume the effective length of overland flow is 300 feet:

(a) The critical duration of supply, that is, the time of concentration, to provide maximum runoff
. ned hv rpnr‘hncr vm'hna]]v downward from the nmnf where t, and I. = 300 feet curves intersect,
ThIS alue is found to be 24 minutes.

(b) The maximum rate of runoff from overland flow is obtained by reading horizontally across

from the point where t. and L. = 300 feet curves intersect. This value is found to be 2.5 inches per hour
or 2.5 cubic feet per second per acre (cfs/acre).
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(c) The average rate of supply over the area is obtained by reading vertically upward from the
point where the t.and L = 300 feet curve intersect to the o curve and then reading horizontally across
from this point. This value is found to be 3.6 inches per hour or 3.6 cfs/acre.

(2) Assume the critical duration of supply is 30 minutes:

(@) The average rate of supply is obtained by reading horizontally across from the point where
the duration of supply = 30 minutes and a intersect. This value is found to be 3.2 inches per hour or 3.2
cfs/acre.

(b) The effective length is obtained by reading the point where tcand the duration of supply =
30 minutes intersect. This is found to be 500 feet.

(¢) The maximum rate of runoff is obtained by reading horizontally across from this point. This
is found to be 2.0 inches per hour or 2.0 cfs/acre.

9. Storage. The supply curves in figure 3 assume no surface storage. Where surface storage or ponding
is permitted, the overland flow will be stored temporarily and released as the pond drains. The discharge
rate from the pond will depend on the volume of storage provided and the extent to which the surface
area of the pond reduces the effective length of overland flow. Methods for designing with temporary
storage or ponding are given in appendix B.

10. Design procedures for the drainage system. Design-storm runoff must be efficiently removed from
airfields and heliports to avoid interruption of operations during or following storms and to prevent
temporary or permanent damage to pavement subgrades. Removal is accomplished by a drainage system
unique to each airfield and heliport site. Drainage systems will vary in design and extent depending
upon local soil conditions and topography; size of the physical facility; vegetation cover or its absence;
the anticipated presence or absence of pending; and most importantly, upon local storm intensity and
frequency patterns. The drainage system should function with a minimum of maintenance difficulties
and expense and should be adaptable to future expansion. Open channels or natural water courses are
permitted only at the periphery of the airfield or heliport facility and must be well removed from the
landing strips and traffic areas. Provisions for subsurface drainage, the requirements for which are
provided in TM 5-820-2/AFM 88-5, Chap. 2, may necessitate careful consideration. Subdrains are used
to drain the base material, lower the water table, or drain perched water tables. Fluctuations of the
water table must be considered in the initial design of the airfield or heliport facility.

a. Information required. Before proceeding with the design calculations, as illustrated in appendixes
B and C, certain additional information and data must be developed. These include:

(1) A topographic map.

(2) A layout of the helipad, runways, taxiways, aprons, and other hardstands with tentative
finished grading contours at I-foot intervals.

(3) Profiles of runways, taxiways, apron areas, and other hardstands.

(4) Soil profiles based on soil tests to include, whenever possible, infiltration properties of local
soils to be encountered.

(5) Groundwater elevation and fluctuation if known or obtainable.

(6) A summary of climatic conditions including temperature ranges, freezing and thawing patterns,
and depth of frost penetration.

(7) sSnowfall records, snow cover depths, and convertibility factors to inches of rainfall.

(8) Runoff records for drainage areas in the same locality having similar characteristics and soil
conditions.

b. Grading. Proper grading is the most important single factor contributing to the success of the
drainage system. Development of grading and drainage plans must be fully coordinated. Grading criteria
in AFR 86-14 for Air Force facilities and TM 5-803—4 for Army airfields and heliports provide adequate
grading standards to insure effective drainage.

(1) Minimum slopes. For satisfactory drainage of airfield pavements, a minimum gradient of 1.5
percent in the direction of drainage is recommended except for rigid pavements where 1.0 percent is
adequate. In some cases, gradients less than 1.5 percent are adequate because of existing grades; arid or
semiarid climatic conditions; presence of noncohesive, free-draining subgrades; and locations of existing
drainage structures. Such factors may allow a lesser transverse slope; thus, construction economies are
effected and preferred operational grades are obtained.

(2) Shoulder slopes. In attachment 5 of AFR 86-14, transverse grades of shoulders are specified
for runways, taxiways, and aprons. In areas of moderate or heavy rainfall or excessive turf
encroachment, use of a steeper transition shoulder section immediately adjacent to the airfield pavement

9
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is permitted. In designing shoulders, the first 10-foot strip of shoulder adjacent to the pavement edges of
runways, taxiways, or aprons should have a 5 percent slope. The elevation of the pavement edge and the
shoulder will coincide. The shoulder gradient beyond the 10-foot strip will conform to the minimum 2
percent and maximum 3 percent specified in AFR 86-14. Waivers will not be required for the 5 percent
slope discussed above. Paved shoulders will normally have the same transverse slope as that of the
contiguous runways and taxiways.

(3) Determination of drainage area. Use the completed grading plan as a guide and sketch the
boundaries of specific drainage areas tributary to their respective drain inlets. Compute the area of
paved and unpaved areas tributary to the respective inlets by planimetering.

(4) Drainage patterns. Drainage patterns consisting of closely spaced interior inlets in pavements
with intervening ridges are to be avoided. Such grading may cause taxiing problems including bumping
or scraping of wing tanks. Crowned sections are the standard cross sections for runways, taxiways, and
safety areas. Crowned sections generally slope each way from the center line of the runway on a
transverse grade to the pavement. Although crowned grading patterns result in most economical
drainage, adjacent pavements, topographic considerations, or other matters may necessitate other
pavement grading.

c. Classification of storm drains. Storm drains for airfields and heliports may be classified in two
groups, primary and auxiliary.

(1) Primary drains. Primary drains consist of main drains and laterals that have sufficient
capacity to accommodate the project design storm, either with or without supplementary storage in
pending basins above the drain inlets. To lessen construction requirements for drainage facilities,
maximum use of pending consistent with operational and grading requirements will be considered. The
location and elevation of the drain inlets are determined in the development of the grading plans.

(2) Auxiliary drains. Auxiliary drains normally consist of any type or size drains provided to
facilitate the removal of storm runoff, but lacking sufficient capacity to remove the project design storm
without excessive flooding or overflow. Auxiliary storm drains may be used in certain airfields to provide
positive drainage of long flat swales located adjacent to runways or in unpaved adjacent areas. During
less frequent storms of high intensity, excess runoff should flow overland to the primary drain system or
other suitable outlet with a minimum of erosion. An auxiliary drain may also be installed to convey
runoff from pavement gutters wherever a gutter capacity of less than design discharge is provided.

d. Storm-drain layout. The principal procedures in the determination of the storm-drain layout
follow:

(1) Preliminary layout. Prepare a preliminary map (scale 1 inch = 200 feet or larger) showing the
outlines of runways, taxiways, and parking aprons. Contours should represent approximately the finished
grade for the airfield or heliport. Details of grading, including pending basins around primary drain
inlets, need not be shown more accurately than with I-foot contour intervals.

(2) Profiles. Plot profiles of all runways, taxiways, and aprons so that elevations controlling the
grading of intermediate areas may be determined readily at any point.

(3) Drain outlets. Consider the limiting grade elevations and feasible channels for the collection
and disposition of the storm runoff. Select the most suitable locations for outlets of drains serving
various portions of the field. Then select a tentative layout for primary storm drains. The most
economical and most efficient design is generally obtained by maintaining the steepest hydraulic
gradient attainable in the main drain and maintaining approximately equal lateral length on each side of
the main drain.

(4) Cross-sectional profiles of intermediate areas. Assume the location of cross-sectional profiles of
intermediate areas. Plot data showing controlling elevations and indicate the tentatively selected
locations for inlets by means of vertical lines. Projections of the runways, taxiways, or aprons for limited
distances should be shown on the profiles, to facilitate a comparison of the elevations of intermediate
areas with those of the paved areas. Generally, one cross-sectional profile should follow each line of the
underground storm-drain system. Other profiles should pass through each of the inlets at approximately
right angles to paved runways, taxiways, or aprons.

(5) Correlation of the controlling elevations and limiting grades. Begin at points corresponding to
the controlling elevations, such as the edges of runways, and sketch the ground profile from the given
points to the respective drain inlets. Make the grades conform to the limiting slopes. Review the
tentative grading and inlet elevations and make such adjustments in the locations of drain inlets and in
grading details as necessary to obtain the most satisfactory general plan.
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(6) Trial drainage layouts. Several trial drainage layouts will be necessary before the most
economical system can be selected. The first consideration will be the tentative layout serving all of the
depressed areas in which overland flow will accumulate. The inlet structures will be located, during the
initial step, at the lowest points within the field areas. The pipelines will be shown next. Each of the
inlet structures will be connected to the field pipelines, which in turn will be connected to the major
outfalls.

(7) Rechecking of finished contours. Before proceeding further, recheck the finished contours to
determine whether the surface flow is away from the paved areas, that the flow is not directed across
them, that no field structures fall within the paved areas (except in aprons), that possible ponding areas
are not adjacent to pavement edges, and that surface water will not have to travel excessively long
distances to flow into the inlets. If there is a long, gradually sloping swale between a runway and its
parallel taxiway (in which the longitudinal grade, for instance, is all in one direction), additional inlets
should be placed at regular intervals down this swale. Should this be required, ridges may be provided to
protect the area around the inlet, prevent bypassing, and facilitate the entry of the water into the
structure. If the ridge area is within the runway safety area, the grades and grade changes will need to
conform to the limitations established for runway safety areas in other pertinent publications.

(8) Maximum pending area and volume. Estimate the maximum elevation of storage permissible in
the various ponding areas and indicate the elevations on the profiles referred to in (4) and (5) above.
Scale the distances from the respective drain inlets to the point where the elevation of maximum
permissible ponding intersects the ground line, transfer the scaled distances to the map prepared in (1)
above, and sketch a line through the plotted points to represent the boundary of the maximum ponding
area during the design storm. Determine the area within the various ponding areas and compute the
volume of permissible storage at the respective drain inlets. All ponding area edges will be kept at least
75 feet from the edges of the pavement to prevent saturation of the base or subbase and of the ground
adjacent to the pavement during periods of ponding.

(9) Ditches. A system of extensive peripheral ditches may become an integral part of the drainage
system. Ditch size and function are variable. Some ditches carry the outfall away from the pipe system
and drainage areas into the natural drainage channels or into existing water courses. Others receive
outfall flow from the airport site or adjacent terrain. Open ditches are subject to erosion if their
gradients are steep and if the volume of flow is large. When necessary, the ditches may be turfed,
sodded, stabilized, or lined to control erosion.

(10) Study of the contiguous areas. After the storm drain system has been tentatively laid out and
before the actual computations have been started, the areas contiguous to the graded portion of the
airport which may contribute surface flow upon it should again be studied. A system of open channels,
intercepting ditches, or storm drains should be designed where necessary to intercept this storm flow
and conduct it away from the airport to convenient outfalls. A study of the soil profiles will assist in
locating porous strata which may be conducting subsurface water into the airport. If this condition
exists, the subsurface water should be intercepted and diverted.

e. Typical design procedures. The procedures in paragraphs 2 through 10 are illustrated and
annotated in the design computations contained in appendix C. Comparative designs with and without
provisions for temporary ponding have been prepared for the airfield shown.

11
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APPENDIX B
DESIGN PROCEDURE

B-1. Rainfall.

a. Intensity-frequency data. In areas where intensity-frequency data are incomplete or unavailable,
the 2-year I-hour rainfall can be estimated from the following parameters: mean annual precipitation—
the average of total yearly rainfall for a specified number of years; mean annual number of days of
precipitation—-the average number of days for a specified number of years in which greater than 0.01
inch of rain occurred; mean annual thunderstorm days—the average number of days for a specified
number of years in which thunder was heard; and the mean of the annual maximum observational-day
rainfall amounts—the average of the maximum rainfall on any calendar day within the year for a
specified number of years. Correlation of the 2-year 1-hour rainfall with these four climatic parameters
appears in figure B-1.

(1) When daily rainfall data are not available, the 2-year I-hour value can be estimated using the
other three parameters, namely, mean annual precipitation, mean annual number of precipitation days,
and mean annual number of thunderstorm days. Three parameters are not as accurate as four, and the
diagram should be supplemented wherever possible by correlation with other data.

(2) As an example of the use of figure B-1, assume the mean annual precipitation is 60 inches, the
mean annual number of thunderstorm days is 50, and the mean annual number of precipitation days is
200. Enter the diagram at the upper right with the mean annual precipitation; proceed vertically down to
the mean annual number of thunderstorm days; move horizontally to the left to the number of days of
precipitation, and then vertically downward to the 2-year I-hour precipitation value (first estimate). In
this example, the first estimate for the 2-year I-hour precipitation is approximately 1.4 inches. Now
assume the fourth parameter, the mean of annual series of maximum daily precipitation, is 4.3 inches.
The same procedure is followed to the mean annual days of precipitation; from there, move vertically
upward to the mean of annual series of maximum daily precipitation value and then horizontally to the
right to the 2-year I-hour precipitation value (second estimate). In this example, the second estimate
would be 2.0 inches. The second estimate is preferable, if four parameters are available.

(3) For frequencies other than 2 years, the following factors in table B-1 can be used to
approximate intensity-frequency values, using the 2-year 1-hour value as a base:

Table B-1. Approximate intensity-frequency values

Factor Intensity-frequency values
0.80 1-year 1-hour
1.00 2-year 1-hour
1.35 5-year 1-hour
1.60 10-year 1-hour
1.90 25-year 1-hour
2.10 50-year 1-hour
2.30 100-year 1-hour

b. Standard rate of supply curves. Standard supply curves for areas with zero infiltration loss will be
the same as the standard rainfall intensity curves in figure 2 (see main text). Where infiltration losses
occur, the standard supply curve number corresponding to a given standard rainfall curve number is
computed by subtracting the estimated I-hour infiltration value from the 1-hour rainfall quantity.

c. Weighted standard rates of supply. For composite areas, the rate of supply should be the average
weighted supply. Mathematically, the weighted supply curve, SC,, can be expressed by the equation:

_[(SC; X Aj) + (SCy X Ay) + ... (SC, X AL
SC, = A ¥ A, F... TA, (eq B-1)

where the SC's are standard supply rates for the various areas, A. For example, if the drainage area
under consideration has a 1-hour rainfall intensity of 2.5 inches; estimated infiltration values of 0.0 for
paved area Al, 0.6 for turfed area AZ, and 0.2 for bare clay area A3; and drainage area Alis 1.5 acres,
Azis 5.0 acres, and Asis 6.5 acres; then the weighted standard supply curve for the composite drainage
area would be:

SC = (2.5 — 0.0) (1.5) + (2.5 -0.6) (5.0) + (2.5 — 0.2) (6.5)
v 1.5+ 5.0 + 6.5
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SCy, = 2.2

d. Overland flow. The rate of overland flow to be expected from a continuous and uniform rate of
rainfall excess, or rate of supply, can be determined from equation B -2 as interpreted by G. A.
Hathaway (American Society of Civil Engineers, Transactions, Vol 110):

q = o tanh? [0.922t(¢/nL)%-%°S%25] (eq B-2)
where
q = rate of overland flow at the lower end of an elemental strip, inches per hour or cubic feet per
second per acre.
o = rate of supply or intensity of rainfall excess, inches per hour.
t = time, or duration, from beginning of supply, minutes.
n = coefficient of roughness of the surface.

L effective length of overland, or channel flow, feet.

S = slope of the surface (absolute, that is, 1 percent = 0.01).
tanh = hyperbolic tangent.

(1) The curves shown in figures B-2 through B-4 were computed using equation B-2, assuming n
= 0.40 and S = 0.01. The overland flow curves are the hydrography that would result from continuous
and uniform rates of rainfall-excess or rates of supply. From the curves, hydrography can be developed
for any selected duration and rate of rainfall-excess by the procedure shown in figure B-5. Hydrography
1 and 1-A in figure B-5 represent rates of runoff under given conditions assuming supply continues
indefinitely. However, by lagging the hydrography for a selected period of rainfall-excess, tr (20 minutes
in this example), and subtracting runoff in hydrography 1-A from hydrography 1, a hydrography can be
obtained that represents the runoff pattern for the selected period of rainfall-excess (hydrography 2 in the
example).

(2) Overland flow curves may be used for surfaces having other coefficients of roughness or slopes
by using, instead of actual length of the flow involved, a hypothetical length that is greater or less than
the actual by a sufficient amount to compensate for the difference between the correct values of n and S
and those used in preparing figures B-2 through B-4. The necessary conversions to get an effective
length may be accomphshed by substituting the quantity nL ~0.4 VS for L or by using figure B-6 as
explained in paragraph B-2.

B-2. Effective length.

a. General. In equation B -2, the effective length, L, represents the length of overland flow, measured
in a direction parallel to the maximum slope, from the edge of the drainage area to a point where runoff
has reached a defined channel or pending basin. In large drainage areas, considerable channelized flow
will occur under design-storm conditions. Investigation of many runoff records for watersheds has
indicated that by modifying the actual length, satisfactory reproduction of runoff hydrography may be
obtained regardless of channelization of flow. The values for L are determined by summing the length of
channel flow and the length of overland flow after each has been reduced to an effective length for n =
0.40 and S = 1.0 percent by means of figure B-6. The length of channel flow is measured along the
proposed collecting channel for that section in which appreciable depth of flow may be reasonably be
expected to occur during the design storm. Length of overland flow is the average distance from the end
of the effective channel or from the drain inlet to the edge of the drainage area, measured in the
direction of flow as indicated on the proposed grading plans. Airfield and heliport grading is such that
overland flow will normally channelize in distances of 600 feet or less, although this distance may be
exceeded. Whenever the distance is exceeded, the actual length may be divided by a number so that the
quotient conveniently falls on the horizontal axis of graph A on figure B-6. The length derived from
graph B on the figure would then be multiplied by this same number to determine the final effective
length. Typical values of the coefficient of roughness, n, for use in determining effective length of
overland flow are given in table B-2. TM 5-820-3/AFM 88-5, Chap. 3 gives additional n values for
turfed channels. For example, to find the effective length of overland flow for an actual length of 900
feet on a sparse grass ground cover where n = 0.20, and the overall slope is 0.7 percent, use the
following procedure. Divide the 900-foot actual length by 2 and enter graph A of figure B-6 with 450
feet on the horizontal axis. Project a line vertically upward until it intersects the coefficient of roughness
line; proceed horizontally to the intersection of the slope line equal to 0.7 percent on graph B, and
proceed vertically down to obtain a length of 275 feet, which must be multiplied by 2, resulting in a total
effective length of overland flow of 550 feet.
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EXPLANATION

EXAMPLE: L =400 FT.; S=1%; n=0.40; o= 4 IN. PER HR.; t; = 20 MIN.

HYDROGRAPH 1| REPRESENTS RATE OF RUNOFF UNDER GIVEN CONDITIONS
ASSUMING SUPPLY BEGINS AT TIME ZERO AND CONTINUES INDEFINITELY
(SEE FIG. B-3).

HYDROGRAPH 1-A IS IDENTICAL WIiTH HYDROGRAPH 1 EXCEPT THAT SUPPLY
AND RUNOFF ARE ASSUMED TO BEGIN 20 MIN. LATER THAN HYDROGRAPH 1.

HYDROGRAPH 2, OBTAINED BY SUBTRACTING ORDINATES OF HYDROGRAPH

1-A FROM HYDROGRAPH 1, REPRESENTS APPROXIMATELY THE RUNOFF TO

BE EXPECTED FROM A SUPPLY RATE OF 4 IN. PER HR. AND A DURATION OF
20 MIN.

Modified from ''Design of Drainage Facilities,"
Transactions, Vol 110, with permission from

American Society of Civil Engineers.

Figure B-5. Computation of hydrograph to represent runoff from supply of specified duration.
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Table B-2. Coefficients of roughness for overland flow

Surface Value of n
Pavements and paved shoulders 0.01 (0.02)
Bare, packed soil, free of stone 0.10
Sparse grass cover, or moderately rough bare surface 0.20
Average grass cover 0.40
Dense grass cover 0.80

Reproduced from “Design of Drainage Facilities,”” by G. A. Hathaway, Transactions, Vol 110, with permission of the American
Society of Civil Engineers.

b. Effect of paved area on determination of effective length. Pending areas are frequently located in
intermediate turfed areas bordered by paved runways, taxiways, or aprons. Runoff from paved areas
ultimately passes over turfed slopes to reach the pending areas and drain inlets, and is retarded in a
manner similar to runoff that results from precipitation falling directly on the turfed area. Inasmuch as
the time required for water to flow from the average paved area is normally very short (5 to 10 minutes),
the length of the paved area can be disregarded or given very little weight in estimating the value of L
for a composite area.

c. Determination of effective length for pending conditions. The true value of L applicable to a
particular area varies as the size of the storage pond fluctuates during storm runoff. As water
accumulates in the relatively flat storage area during storm runoff, the size of the pond increases rapidly
and progressively reduces the distance from the edge of the pond to the outer limits of the drainage
area. In the majority of cases, it is satisfactory to estimate the value of L as the distance from the outer
limits of the drainage area to the average limits of the pending area during the period of design-storm
runoff. If the drain inlet is not located near the centroid of the drainage area, the value of L can be
estimated approximately as the average distance to the limit of the pending area, which corresponds to a
depth equal to two-thirds of the maximum depth caused by the design storm.

B-3. Runoff.

a. General. The curves shown in figures 3 (main text) and B-7 through B-14 describe the
relationship between rate of supply, o; critical duration of supply, t.; effective length of overland flow, L;
and maximum rate of runoff for the various supply curves presented in figure 2. The curves portray the
data presented in the flow curves shown in figure B-2 through B-4 in another format. Table B-3
illustrates the computational procedure. The runoff values obtained are assumed to be the maximum
because surface storage is negligible. Actually, the maximum runoff would normally occur a short time
after the rainfall excess or rate of supply ceases. For practical purposes, however, the maximum rate of
overland flow can be assumed to occur at approximately the same time that the rate of supply ends.

b. Peak runoff rates. Figures 3 and B-7 through B-14 are not hydrography for any specified design
storm, but represent the peak rates of runoff from individual storm events of various durations, all of
which have the same average frequency of occurrence. The duration of supply corresponding to the
greatest discharge for a particular standard supply curve and value of L in these figures is defined as
the critical duration of supply, t., for runoff from an area not affected by surface ponding. However,
experience indicates that adopting minimum values for t.of 10 minutes for paved areas and 20 minutes
for turfed areas in the actual design of storm drains is feasible and practical. For combined turfed and
paved areas, minimum values of t.are to be used even though the calculated effective length of overland
flow indicates a shorter critical duration of supply. For combined turfed and paved areas, where only the
minimum values of t.are of concern, the following equation should be used in selecting t.:

te = (10A, + 20Ay) / (A, + Ay) (eq B-3)
where

A, = area paved, acres

A, = area turfed, acres

¢. Consolidated design curve. The data presented in figures 3 and B-7 through B-14 with respect to
peak runoff rates and critical durations of supply have been consolidated into one diagram, figure B-15.
Use of figure B-15 is not as precise as using figures 3 and B-7 through B-14, but figure B-15 may be
applied to most drainage problems. The following example is provided to illustrate the use of figure
B-15. Assume an effective length of overland flow of 315 feet and a rate of supply of 1.0 inch per hour.
To determine the critical duration of supply, project a line vertically upward from the effective length to
the intersection of the t.curve and proceed horizontally to the right to the critical duration of supply
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Figure B-7. Rates of runoff corresponding to supply curves No. 0.4 and 0.6; n = 0.40 and S = 1 percent.
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Figure B-8. Rates of runoff corresponding to supply curves No. 0.8 and 1.0; n = 0.40 and S = 1 percent.
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Figure B-9. Rates of runoff corresponding to supply curves No. 1.2 and 1.4, n = 0.40 and S = 1 percent.
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Figure B-10. Rates of runoff corresponding to supply curves No. 1.6 and 1.8; n = 0.40 and S = 1 percent.
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Figure B-12. Rates of runoff corresponding to supply curves No. 2.4 and 2.6; n = 0.40 and S = 1 percent.
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Table B-3. Rates of runoff corresponding to intensities and durations of supply represented by standard supply curve No. 2
in figure 2 (n = 0.40, S = 1 percent).

(1) (2) (3) (4) (5) (6) (7) (8) 9)
Rate of
supply
inches/ Rate of runoff
hour (in inches/hour or cubic feet/second/acre)
(scaled corresponding to durations shown in column 1
Duration from and rates of supply given in cclumn 2 as
of curve scaled from figures B-2 and B-3
supply No. 2.0, L, feet
minutes figure 2) 20 60 100 200 300 400 600
3 6.30 2.68 1.12 0.75 0.39 6.25 0.22 0.13
5 6.30 4.74 2.59 1.76 0.96 0.64 0.52 0.33
7 5.81 5.16 3.41 2.55 1.54 1,12 0.83 0.58
9 5.35 5.06 3.84 3.02 1.94 1.42 1.10 0.76
12 4.83 4.75 4.07 3.43 2.41 1.80 1.49 1.02
15 4.41 4,39 4,02 3.59 2.70 2.12 1.76 1.26
20 3.85 3.85 3.70 3.46 2,86 2,39 2.05 1.55
25 3.44 - 3.38 3.27 2.85 2.49 2.20 1.73
30 3.12 - 3.12 3.02 2,77 2.49 2.25 1.85
35 2.84 -- - 2,81 2,60 2.39 2.20 1.86
40 2.62 - - 2,62 2.48 2.32 2.15 1.86
45 2.43 - - - 2.32 2,21 2.09 1.86
50 2.27 - - - 2.20 2,11 2.00 1.82
60 2.00 - - — 2 1.96 1.32 1.86 1.72
80 1.62 - - - 1.60 1.59 1.56 1.50
100 1.38 - - =% 1.38 1.35 1.33 1.28
120 1.16 - = - — 1,16 1.16 1.12

Mcdified from '"Design of Drainage Facilities," by G. A. Hathaway,
Transactions, Vol 110, with permission from Americar Society of
Civil Engineers.
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which, in this example, is 23 minutes. To determine the maximum rate of runoff, proceed vertically
upward from the effective length to the intersection of the rate of supply line and proceed horizontally to
the left to the maximum rate of runoff, which is 1.2 cfs/acre of drainage area.

B-4. Storage.

a. Temporary storage or pending. If the rate of outflow from a drainage area is limited by the
capacity of the drain serving the area, runoff rates exceeding the drain capacity must be stored
temporarily. As soon as the rate of inflow into the pending basin becomes less than the drain capacity,
the accumulated storage may be drawn off at a rate equal to the difference between the drain capacity
and the rate of inflow into the basin. The general relation between inflow, storage, and outflow is
expressed as: outflow = inflow * storage.

(1) The rate of outflow from a pending basin is affected by the elevation of the water surface at
the drain inlet serving the area. The rate of outflow increases as the head on the inlet increases.
However, because of the flat slopes of airfield areas, the surfaces of the storage ponds surrounding drain
inlets are usually very large in comparison to the depth of water at the inlets. The rate of outflow
through a particular drain inlet would be approximately constant as long as the rate of runoff and
accumulated storage are sufficient to maintain the full discharge capacity of the drain inlet. The rate of
outflow equals the rate of inflow into the pond until the full discharge capacity of the drain inlet is
attained.

(2) To illustrate these assumptions, reference is made to the curves shown in figure B-16 and the
computations in table B-4. Hydrography 1 and 2 are developed as for figure B-5. Hydrograph 3 of
figure B-16 represents the constant rate of outflow corresponding to inflow hydrography 2, when the
drain-inlet capacity is assumed to be 1.25 cfs/acre of drainage area. Storage volume can be calculated
from the area between curves 2 and 3. The volume of storage above outflow hydrography 3 and below
hydrography 2 that would be accumulated at successive intervals of time under these conditions is
indicated by curve 4 of figure B— 16. The maximum storage that would accumulate under these particular
conditions is 1,350 cu ft/acre of drainage area. The end of the accumulation period occurs approximately
43 minutes after the beginning of runoff.

b. Drain-inlet capacity-storage diagrams. The concepts presented by G. A. Hathaway (American
Society of Civil Engineers, Transactions, Vol 110) and discussed in a(1) and (2) above have been included
in the preparation of figures B-17 through B-21. These graphs are presented to facilitate the
determination of the drain-inlet capacity (diagram A) and the critical duration of supply (diagram B) for
drainage areas where temporary ponding can be permitted. Where temporary ponding is permitted, t.
reflects the time associated with both the overland flow and the time to obtain maximum temporary
storage. The diagrams presented in figures B-17 through B-21 have been prepared for use with effective
lengths reduced to n = 0.40 and S = 1.0 percent. As an example of the use of these figures, assume:

—Effective length of overland flow = 300 feet.

—Maximum storage allowable = 1,000 cubic feet per acre (cu ft/acre) of drainage area.

—Rate of supply = 3.0 inches per hour.

(1) From the 3.0 inches per hour line on the top portion of figure B-19, proceed vertically upward
to the intersection of the 1,000 cu ft/acre of drainage area maximum storage capacity and then
horizontally to the left to the intersection of the minimum design drain-inlet capacity of 2.8 cfs/acre of
drainage area. To determine the critical duration of supply, t=, proceed as before to the intersection of
the maximum storage capacity on diagram A; then move horizontally to the right to the intersection of
the maximum, storage capacity on diagram B, and then vertically downward to the intersection of t.at
30 minutes.

(2) If the drain-inlet capacity of an outlet has been previously established and the temporary
ponding capacity is known, diagram B can be entered directly to find t.. Diagram B of figure B-19, for
an effective length of 400 feet, offers a quick check on the example presented in table B —4 and figure
B-16.

¢. Minimum drain-inlet capacity. Curve 4 in diagram A (figs B— 17 through B-21) represents the
minimum drain-inlet capacities that are considered desirable, regardless of the volume of storage that
may be permitted. The drain-inlet capacities represented by curve 4 of diagram A are equal to the rates
of supply corresponding to durations of 4 hours on the standard supply curves given in figure 2. If the
drain-inlet capacity indicated by curve 4 is adopted in a particular case, some storage may result in the
pending basin during all storms less than 4 hours in duration that produce rates corresponding to the
given standard supply curve.
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Table B-4. Design example.

Duration Rate of Rate of Drain Storage

of Rate of runoff runoff inlet incre: Total

supply runoff + 20 min to inlet. capacity ment storage
min cfs/acre «cfs/acre cfs/acre cfs cu ft cu ft

2 3 4 5 6

0 0.0 0.0 0.0 0 0
5 0.2 0.2 1.25 0 0
10 0.8 0.8 1.25 0 0
13 1.25 0 0
15 1.5 1.5 1.25 +15 15
20 2,2 0.0 2.2 1.25 +180 195
25 2.7 0.2 2.5 1.25 +330 525
30 3.1 0.8 2.3 1.25 +345 870
35 3.5 1.5 2.0 1.25 +270 1,140
40 3.6 2.2 1.4 1.25 +165 1,305
43 1.25 +32 1,337
45 3.7 2.7 1.0 1.25 -15 1,322
50 3.8 3.1 0.7 1.25 =120 1,202
55 3.85 3.5 0.35 1.25 -218 984
60 3.9 3.6 0.3 1.25 -277 707
65 3.95 3.7 0.25 1.25 =292 415
70 4.0 3.8 0.2 1.25 -308 107
72 1.25 -125 0
75 4.0 3.85 0.15 1.25

80 4.0 3.9 0.1 1.25

85 4.0 3.95 0.05 1.25

90 4.0 4,0 0.0

Note: L = 400 feet; S = 1.0 percent; n = 0.40; o = inches per
hour; tC = 20 minutes.

a

From figure B-3.

b, .. .. - " .
Difference between columns Z and 3.

cExample for 20- to 25-minute increment.

V=1[(2.2 - 1.25) + (2.5 = 1.25)]/2 x (5 x 60) = 330 cubic feet.
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DRAIN-INLET CAPACITY (qd), IN CFS/ACRE OF DRAINAGE AREA
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Figure B-19. Drain-inlet capacity versus maximum surface storage; L = 300 and 400 feet.
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B-5. Drain-inlet and drain capacities.

a. Determination of drain-inlet capacities without pending. From figures B-7 through B-14, select
the supply curve number corresponding to the weighted standard supply curve determined previously.
The critical duration of supply, t., and the maximum rate of runoff, qq, in cubic feet per second per acre,
for the individual inlet drainage area can be read directly from the graph for the given value of effective
length. If figure B-15 is used, the same data can be obtained by following the procedure described in
paragraph B-3c.

(1) To obtain the maximum rate of runoff at a given point in a drainage system, during a supply
of uniform intensity, the storm must continue long enough to produce the maximum rate of runoff into
each upstream inlet and to permit the inflow to travel through the drain from the “critical inlet” to the
point of design. “Critical inlet” is defined as the upstream inlet from which the critical duration of
supply causes the maximum runoff to the point of design. The critical duration of supply necessary for
these purposes is referred to as t. and is expressed as

te — te + tg (eq B-4)
where t.is the duration of supply that would provide the maximum design-storm runoff from the area
tributary to the critical drain inlet, and tdis the time required for water to flow from the critical drain
inlet to the point of design. The critical drain inlet normally may be assumed to be the inlet located the
greatest distance upstream from the given point. Care should be taken to check whether t.to an inlet
along a drainage line exceeds the time required for water falling on a more distant area to reach this
same inlet. Problems which arise in this regard must be investigated individually to determine under
what conditions of time and flow the maximum volume of water can be expected at the point of design.

(2) In order to simplify the determination of drain-inlet capacities, the computed value of t; may
be rounded off to the nearest 5 minutes. Inspection of figures B-7 through B-14 will disclose that for
large values of effective length and low values of supply curves the maximum rate of runoff is approxi-
mately constant after t.duration of supply. In order to facilitate design computations, the drain-inlet ca-
pacity values, qd, obtained from the O storage capacity line of diagram A of figures B-20 and B-21 should
be used as a replacement for the maximum rate of runoff when the duration of supply is greater than t,
when the values of effective length are large, and when low values of the supply curve are in effect.

b. Determination of drain-inlet capacities with temporary pending. From figures B-17 through B-21,
select the graph corresponding to the effective length and determine the drain-inlet capacity from the
given standard supply curve value and maximum permissible pending. In a drainage system where
pending is used, the maximum rate of flow at any given point in the drainage system may be
determined, in most cases, by the simple addition of the peak discharges for the upstream inlets based
on drain-inlet capacities. This procedure is justified in view of the prolonged period where temporary
pending takes place as shown in figure B-16. Curve 4 in figures B-17 through B-21 represents the
minimum drain-inlet capacities that are considered desirable, regardless of the wvolume of flooding
exceeding allowable limits. The drain-inlet capacities represented by curve 4, in cubic feet per second per
acre of drainage area, are equal to the rates of supply corresponding to durations of 4 hours on the
respective standard supply curve given in figure 2. If the drain-inlet capacity indicated by curve 4 is
adopted in a particular case, some storage may result in the pending basin during all storms less than 4
hours in duration that produce supply rates corresponding to the given standard supply curve. The
proper criteria to be followed in estimating minimum drain-inlet capacities depend largely on the extent
of drainage desired and the characteristics of the soil involved.

c. Computation of pipe sizes. The size and gradient of storm drain required to discharge
design-storm runoff may be determined by use of Manning's formula presented in nomograph form in
figures B-22 through B-25. Storm drains will have a minimum diameter of 12 inches to lessen
possibilities of clogging. Design of drain-inlet facilities is discussed in TM 5-820-3/AFM 88-5, Chap. 3.

(1) For conditions of instantaneous runoff the hydraulic gradient will be kept at the top of the
pipe. Where temporary pending is proposed, considerable saving in pipe sizes may be accomplished by
designing the pipeline under pressure, provided undesirable backflow does not result in some critical
areas.

(2) Where flooding from a temporary pending area due to rates of supply greater than design will
cause a hazard to the adjacent areas, special provisions must be made to assure adequate control. An
auxiliary drainage system or a diversionary channel to another inlet or pending area is a method that
has been used successfully. The designer must consider each case individually to arrive at the most
economical solution to provide the desired results.
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Figure B-23 Nomograph for computing required size of circular standard corrugated pipe, 25 percent paved invert,

full n = 0.02L.
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Figure B-25. Nomograph for computing required size of circular structural plate pipe, unpaved, flowing full; n =
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APPENDIX C
DESIGN EXAMPLE

C-1. Design example.

a. The proposed layout for the primary storm drainage system for an airfield is depicted in figure
C-1. This airfield is to be located in central Mississippi where the design storm index for a 2-year I-hour
rainfall intensity, according to figure 1, is 2.0 inches per hour. The duration of storm being considered is
60 minutes; thus, figure 2 (see main text) need not initially be used. Infiltration values for the paved and
turfed area are considered to be 0.0 and 0.5 inches per hour, respectively, according to paragraph 6 of
the main text. The supply curves applicable to this airfield are No. 2.0 for paved areas (2.0-0.0) and No.
1.5 for turfed areas (2.0—0.5). These supply curves are provided in figure 2. Coefficients of roughness
have been selected for the paved and turfed areas as 0.01 and 0.40, respectively, as suggested in table
B-2.

b. In this example, two conditions are considered: where pending is permissible at inlets 4, 3, and 2,
and where no pending is allowed at these inlets. The purpose of these examples is to portray the
difference in pipe size requirements under these two imposing conditions. Tables C-1, C-2, and C-3
reflect the design where pending is permissible, and tables C-4, C-5, and C-6 reflect the design where
pending is not acceptable.
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