

ENGINEERING AND

US Army Corps CONSTRUCTION BULLETIN of Engineers.

No. 2025-5 Issuing Office: CECW-EC Issued: 01 Apr 25 Expires: 01 Apr 27

SUBJECT: Mechanical and Electrical Reliability Models for Major Rehabilitation Evaluation Reports

CATEGORY: Guidance

1. References:

a. Definition of Rehabilitation for Inland Waterway Projects, Public Law 102-580 (WRDA 1992), 33 USC 2327, Section 205, 31 Oct 1992

b. Engineering Regulation (ER) 1130-2-500 Project Operations Partners and Support Work Management Guidance and Procedures, 27 Dec 1996.

c. Engineer Pamphlet (EP) 1130-2-500 Project Operations Partners and Support Work Management Guidance and Procedures, 27 Dec 1996.

d. Engineering Circular (EC) 1110-2-6062 Risk and Reliability Engineering for Major Rehabilitation Studies 1 Feb 2011.

e. Patev, R.C., Buccini, D.L., Bartek, J.W., and Foltz, S. 2013. Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities. ERDC/CERL Technical Report 13-4, Vicksburg, MS. <u>https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/4332/</u>

f. Hartford, D., Baecher, G.B., Zielinski, P.A., Patev, R.C., Ascilia, R and Rytters, K.2016. Operational Safety for Dams and Reservoirs. ICE Publishing, London, UK. https://www.icevirtuallibrary.com/isbn/9780727761217?mobileUi=0

g. USACE Asset Management Data – Operational Condition Assessment Weibull tables <u>https://assetmanagement.usace.army.mil</u>

2. **Purpose.** This Engineering and Construction Bulletin (ECB) provides guidance for mechanical and electrical reliability models developed for Major Rehabilitation Evaluation Reports (MRER). These reliability models are necessary for a MRER economic analysis. ER 1130-2-500 and EP 1110-2-500 provide requirements for the overall Major Rehabilitation program.

3. Background.

a. Previous US Army Corps of Engineers (USACE) guidance on mechanical and electrical reliability has expired. The use of Fault Tree Analysis (FTA) has become the standard tool for mechanical and electrical systems analyzed in a MRER. Previous guidance was given in EC

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

1110-2-6062. This EC is in the process of being converted to an engineering manual. The purpose of this ECB is to provide interim guidance for MRER development while EC 1110-2-6062 is being updated.

b. FTA models are a bottom-up approach that start at the individual component level and roll up to an overall system level. To obtain good results from these FTA models, failure distributions are required for each component at the bottom level of the fault tree.

c. The failure distribution used in most USACE FTA is the Weibull distribution since it can best represent the common distributions (exponential, normal, lognormal, etc.) found with USACE mechanical and electrical failure datasets. The Weibull distribution is either a two parameter (alpha and beta) or a three parameter (alpha, beta, and gamma) analysis. The alpha parameter represents the mean-time-to-failure (MTTF) in years, beta is the shape parameter of the distribution (e.g. normal distribution is a beta of about 4) and gamma is a shift in years of the start of the Weibull distribution.

d. Current USACE practice of using alpha adjustments and gamma shifts for the Weibull distribution in fault trees or reliability block diagrams models was leading to unreasonable Weibull parameters and life distribution for an expected MTTF. In addition, these models generally did not include either a duty factor, environmental factor, or load factors. Environmental and load factors were included in previous expired MRER guidance to account for actual operational use of mechanical and electrical components at a project.

4. **Applicability.** This ECB applies to USACE Civil Works projects when developing fault tree or reliability block diagrams for a MRER. USACE has two options for FTA software on the USACE APP portal (<u>https://app-portal.usace.army.mil/ESD</u>). This includes Reliability Workbench (RWB) and Availability Workbench (AWB). Reliability Workbench is primarily used for safety analysis of systems to estimate the on-demand failure probability for the top event or any subsystem in the fault tree. RWB should be used for FTA in the USACE dam and levee safety program. For MRER development, AWB should be utilized since it can account for a proper duty factor, environment factor and load factors that reflect actual operational conditions experienced by mechanical and electrical components at a project.

5. Guidance.

a. Selection of Weibull Parameters for Fault Tree and Reliability Block Diagrams. The guidance provided in the attachments applies to models that utilize Weibull parameters in the reliability models for MRER. This guidance recommends values of the Weibull parameters, alpha and beta, for navigation (NAV) and flood risk management (FRM) projects. This data is summarized from three USACE resources.

1. ERDC Technical Report 13-4 (NAV and FRM). This report developed the use of Expert-Opinion Elicitation (EOE) to help estimate the characteristic life (CL) of mechanical and electrical components at USACE navigation projects. This report estimated the CL or MTTF (Weibull alpha parameter) for mechanical components at both navigation (NAV) and flood risk

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

management (FRM) projects and electrical components at NAV only. See details in Attachment A.

2. Operation Safety of Dams and Reservoirs (FRM). Weibull data is found in Appendix A of this OSDR book and contains failure data collected from 295 USACE FRM projects in 2011. See Attachment A for more details.

3. Asset Management Operational Condition Assessment (NAV and FRM). These resources will be covered in more detail with recommended tables for Weibull parameters in Attachment A.

b. Selection of Duty Factors and Environmental/Stress Factors for Fault Tree and Reliability Block Diagrams. This attachment addresses how to apply duty factors and environmental and load factors to the components in the AWB fault tree model. Recommended values for duty factors and load factors are available in tables shown in Attachment B.

c. Application Example to Fault Tree and Reliability Block Diagrams in Availability Workbench. An example of a Dam Gate Operating Equipment FTA is provided in Attachment C to show the step-by-step application of this guidance to an AWB fault tree model. For guidance for AWB FTA model development and Weibull probability plotting, refer to Attachment C.

6. Date of Applicability. This ECB is effective immediately.

7. **Point of Contact.** HQUSACE point of contact for this ECB is Timothy M. Paulus, P.E., CECW-EC, (651) 528-9457.

//S// THOMAS P. SMITH, P.E. Director of Engineering and Construction U.S. Army Corps of Engineers

Enclosures:

Attachment A – Weibull Parameters Data Sources Attachment B – Duty and Environmental/Load Factors

Attachment C – Application Example

ATTACHMENT A: Weibull Parameters Data Sources

Currently there are three data sources available for Weibull parameters for USACE components at navigation locks and dams and flood risk management dam safety projects. These three data sources are:

1. **ERDC/CERL Technical Report 13-4 (Patev et al 2013).** This report used Expert Opinion Elicitation to estimate the Characteristic Life (CL) or MTTF (Weibull alpha parameter) for mechanical components at both navigation (NAV) and flood risk management (FRM) projects and electrical components at NAV only.

2. Recommend that these are used for MRER FTA. Values for the Weibull beta (shape parameter) were not elicited as part of that study, but the user can assume a Beta between 3 to 4 to reflect wear and corrosion of ME components. Summary tables A-1 (mechanical) and A-2 (electrical) are presented below.

Туре	Component	Navigation Components CL (years)	Flood Reduction Components CL (years)
Bearings			
	Rolling element	40	60
	Sleeve (self lubricated)	25	20
	Bronze sleeve	40	60
Couplings			
	Flexible	35	40
	Rigid	50	60
Shafts		80	100
Pins		35	70
Gear reducers			
	Worm	25	40
	Parallel	40	60
	Right angle	38	40
Open gearing			
	Spur	60	100
	Helical	38	100
	Bevel	40	50
	Rack	60	80
Brake	Electromechanical	45	60
Clutch	Slip	30	-
	Jaw	-	70
Wire ropes			

Table A-1 Mechanical Components CL at NAV and FRM Projects

•		Navigation Components	Flood Reduction Components
Туре	Component	CL (years)	CL (years)
	Spiral plate	5	-
	Single/multiple sheave(s)	20	-
	Single Drum	28	-
	Round	-	50
	Flat	-	20
Wire rope drums		75	100
Wire rope sheaves		33	50
Chains	Roller	40	60
	Link	-	40
Chain sprocket		60	75
Miter gates			
	Sector arms	73	-
	Strut arms - buffered	35	-
	Strut arms - rigid	50	-
	Support roller	43	-
	Rack support beam	60	-
Valves			
	Bellcranks	78	-
	Crosshead/guide	73	-
	Strut	43	-
	Butterfly	-	50
	Ball	-	50
	Slide	-	50
	Knife	-	50
	Jet	-	50

Table A-1 (con't) Mechanical Components CL at NAV and FRM Projects

Туре	Component	Navigation Components CL (years)	Flood Reduction Components CL (years)
Hydraulic cylinder		60	60
Control valves			
	Check	45	40
	Relief	40	40
	Directional		
	Manual	60	60
	Solenoid	40	40
	Proportional/throttle	40	40
Pumps			
	Fixed	50	60
	Variable	30	35
Hydraulic Motors			
	Fixed	50	-
	Variable	30	-
Piping		40	40
Hose		-	25
	Misc Gate/Filling	Emptying Valves	•
Wheel assembly (rollers)		40	50
Pintles/bushings		30	-
Gudgeon pin/bushings		43	-
Trunnion pin/bushings		38	60
Strut spindle pin		25	-
	Other Sj	vstems	•
Tow haulage			
	Hydraulic	30	-
	Mechanical	48	-
Emptying filling			
	Butterfly	50	-
	Vertical lift	50	-
Gate connection (pins, cable, chain)		-	50
Grease/lube system		_	30
Actuators (screw type, limit torque)		-	50

Table A-1 (cont') Mechanical Components CL at NAV and FRM Projects

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

Туре	Component	Navigation Components CL
Commercial power		
Sonvice transformer		55
	A	55
I ranster switch	Automatic	30
	Manual	65
Switchgear		78
Circuit breakers		63
Power panelboard		78
Cables	Buried/submerged	60
	Duct/cable tray	80
	Portable/flexible	28
Bus duct		95
Switchboards		83
Motor control centers		83
Motor starters	Full voltage	63
	Reduced/variable	50
	VFD	35
PLC Systems		25
Selsyn motor		43
Traveling nut limit switch		65
Electric Motor	New or rebuilt	68
Standby generator set		50
DC rectifier brakes		35

Table A-2 Electrical Components CL at NAV Projects

3. **Operational Safety of Dams and Reservoirs (OSDR) (Hartford et al 2016).** Weibull data is found in Appendix A of this OSDR book and contains failure data collected from 295 USACE FRM projects in 2011. This Weibull data is shown using both a Weibull probability plotting method and a Bayesian updating method from the University of Maryland Center for Reliability Engineering. The Bayesian data is preferred since it accounts for those components that had both failed and those that had survived up to time, "t". Recommend using for FRM projects. The NAV FTA may not be as accurate since data is skewed to components that are not operated frequently. See Tables A-3 and A-4 below.

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

Components	Total	Weibull plotting		Bayesian (uniform prior)		
	inventoried	Characteristic	Shape	Characteristic	Shape	
		life: α	parameter: β	life: α	parameter: β	
Air compressor	51	47.22	10.37	66.94	8.94	
Bearings (bronze bushing type)	2014	74.96	6.751	81.93	7.29	
Bearings (roller type)	3557	132	4,102	129	5.18	
Bearings (self-lubricating type)	87	NA	NA	NA	NA	
Brake (springs and pack)	997	93.78	3,898	102	3.26	
Bridge crane	150	90.39	4.748	97.2	4.39	
Butterfly valves	126	88.16	2,833	90.49	3.91	
Chain (link type)	514	63.8	5.115	63.09	8.71	
Chain (roller type)	465	73.44	6.039	75.88	6.37	
Check valves	737	68.28	5.698	71.73	5.05	
Clutch (iaw)	56	104.8	2.154	99.29	3.26	
Couplings (flexible)	1160	71.46	7.981	77.73	8.99	
Couplings (rigid)	2147	140.3	4.228	141.98	4.67	
Cylinders	1260	113.8	2.25	110.56	2.51	
Elexible hydraulic hose	975	44.1	4.5	52	3.87	
Gear reducer – narallel gears	1101	125	4.25	nn 132 87	4 71	
let/Howell hunger valve	24	45	0.76	55.02	1 33	
lib crane	64	124	1.8	128.49	2.07	
Lifting stores	790	100.5	2.857	106.64	2.67	
Manual control values	798	96	2.69	99.94	2.07	
Pines (carbon steel)	1887	117 1	3.021	105	3.51	
Pine (calvanised)	52	NA	NA	NA	NA	
Pinos (stainloss stool)	211	90.62	1 517	94.42	2 11	
Proceuro roliof valuor	204	92.07	5.029	90.21	5.04	
Pumpe (fixed disp.)	422	75.42	4 245	90.16	2.02	
Pumps (var. disp.)	50	51	10.2	54.57	10.15	
Posopoirs	220	20.09	1 29.4	102.47	4.02	
Pight angle gear box	494	220.6	9.309	244.75	4.05	
Fight angle gear box	404	250.0	2.23	244.73	2.09	
Polles trais for externillar actes	90	00.5	2.44	NA 00.76	2.2	
Cotocoillos octos	1002	99.5	2.44	90.76	2.2	
Caterpliar gates	180	09.00	18.39	106.99	5.76	
Rotating sharts	1240	103.4	7.958	111.89	8.68	
Screw actuator (electric)	359	70.8	4.049	83.98	3.35	
Screw actuator (manual hand wheel)	213	/1.43	4.098	85.5/	3.33	
Sector-bull gears	907	5/6.4	1.98	2119	2.19	
Sheave gears	141	NA	NA	NA	NA 2.00	
Slide gates	690	144.7	3.657	144.44	3.98	
Sluce gates	532	134	2.584	123.42	2.9	
Solenoid control valve	457	56.97	6.0/6	62.72	5.11	
Stem nut	912	144.6	2.222	153.24	2.36	
Spur-pinion gears	1139	NA	NA	NA	NA	
Sprockets	436	NA	NA	NA	NA	
Sump pumps	211	79.73	1.357	65.66	1.75	
Trunnion pin and bearing	954	81.2	5.71	89.1	5.32	
Wire rope (carbon steel)	1288	82.85	2.06	79.59	2.17	
Wire rope (drum)	515	NA	NA	NA	NA	
Wire rope (flat)	369	56.81	3.261	59.97	4.33	
Wire rope (multi-part sheaves)	376	105.4	4.843	112.82	4.75	
Wire rope (stainless steel)	2049	77.35	2.349	74.92	3.04	
Wire rope (sheaves)	1848	66.12	10.52	5496	0.62	
Worm gears	373	71.02	7.242	92.18	7.69	

Table A-3 Mechanical Weibull Parameter from USACE FRM Projects

Components	Total	Weibull plotting		Bayesian (uniform prior)	
	inventoried	Characteristic life: α	Shape parameter: β	Characteristic life: α	Shape parameter: β
Brakes (DC rectifier)	902	74.95	5.171	80.86	5.18
Control cables (fibre optic)	24	NA	NA	NA	NA
Control cables (multi conductor/twisted pair)	1342	66.88	5.94	72.63	4.36
Control panel	1190	81.96	4.37	74	5.57
Circuit breaker (fused disconnect)	2341	75.1	3.388	80.77	3.23
Electric motors	1979	91.43	4.047	93.46	3.88
Encoders	190	56.62	4.063	54.35	4.32
Generators	402	48.84	3.454	49.97	3.21
MCCs	346	83.42	3.249	89.53	3.64
Motor starter (full voltage)	1502	78.96	4.329	79.01	4.4
Motor starter (reduced voltage)	156	59.6	10.35	483.02	0.57
Panel board	431	82.39	4.958	83.45	4.95
Push button switches	4410	78.73	4.525	87.5	3.6
Power cable (in conduit)	1203	70.03	6.345	73.07	5.08
Power cable (buried)	129	85.25	2.914	84.89	3.12
Power cable (in duct tray)	90	74.8	4.432	73.07	5.08
Power cable (overhead)	46	105	1.72	112.5	1.84
PLCs	105	NA	NA	817.27	0.64
Rotating cam switches	255	51	19.4	91	7.76
Rotating limit switches	1717	77.65	6.414	82.07	6.87
SCADA	62	NA	NA	NA	NA
Selysn indicator motor	154	53.2	4.007	58.67	3.48
Switchboard	74	65.38	6.071	70.99	5.14
Switchgear	55	78.84	3.788	82.63	3.83
Transfer switch (automatic)	130	57.33	3.54	57.57	3.63
Transfer switch (manual)	229	64.25	3.758	70.79	3.28
Transformer	360	70.48	3.298	71.14	3.26
Travelling nut limit switch	43	NA	NA	NA	NA

Table A-4 Electrical Weibull Parameter from USACE FRM Projects

4. **USACE Asset Management Operational Condition Assessments** (2011). Weibull data was developed for USACE Asset Management program in 2011 using Expert-Opinion Elicitation (EOE) of USACE Subject Matter Experts for various categories of components at navigation locks and dams. The EOE data was processed using Weibull probability plotting of the median response from the SME for each top category that contains ME components within each group. The top categories for mechanical and electrical equipment at navigation locks and dams are: Controls (6 and 7), Electrical (11 to 15), and Operating Equipment (23 to 28). Below is a summary table with Weibull information and component list for each category.

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

		Weibu	ll Parameters	
	Period	Beta	Alpha	MTTF
	(years)			(years)
Control A - #6	50	3.3	35.5	35.5
Control B - #7	35	3	20	20

Table A-5 Controls Data – Groups 6 and 7

Controls A 6

Controls B

7

<u>Electric Controls</u>

Controllers Control Panels Control Relays Solenoids Control Cable

PLC Systems HMI/PC Hardware

Software **Control Cable Power Cable Panel Cabinets** I/O racks Displays Alarms

SCADA

Limit Switches and

Positions Indicators Stop Control Switches Safety Control Switches Remote Terminal Units Position Indicators Position Gages/Displays Power Cable **Position Recorders**

Communication Infrastructure Controllers **Communication Cable Panel Cabinets** Supervisory PC Based Hardware Software I/O Devices Displays Alarms

Integrated Interlock Systems

Control Panels Displays/Indicators Control Cable Communication Cable By-Pass Switches Interlocking Devices

Misc. Solid State Controls

Photooptic controls Transfer Switches

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

		We		
		Para	meters	
	Period	Beta	Alpha	MTTF
	(years)		(years)	
Electrical A - #11	60	4.7	47	47
Electrical B - #12	60	2.9	45	45
Electrical C - #13	50	4.5	43	43
Electrical D - #14	40	4.5	33	33
Electrical E - #15	60	3.5	82	82

Table A 6 Electrical Data Groups 11 to 15

Electrical	Α
11	

Electrical B 12

Electrical C 13

Electrical D 14

Emergency Power System

Electrical E 15

Service Entrance Equipment **Operating - Electric** Service Transformers (Project Owned Electric Motors Switchgears **Electric Brakes** Motor Control Centers **Motor Starters** Switchboards Speed Drives Service Panels Contactors Voltage Regulators **Control Relays** Power Factor Correction Capacitors Main Disconnects

Substations (project owned) Main Breakers **Protective Relays**

Main Power Feeders

Medium Voltage Feeder (>600V) Low Voltage Feeder (<600V)

Power Distribution Systems

Panelboards (Operating Equipment) Panelboards (Lighting) Control Transformers

Disconnects Breakers Fuses

Conduits, Cable Trays and Supports

Conduits Cable Trays Cable Supports Lighting

Light Fixtures

Power Cable

Generator Set Manual Transfer Switches Generator Fueling System Grounding Ground Mats Lightning Protection

Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Subject Reports

		Weib	oull	
		Param	eters	
	Period	Beta	Alpha	MTTF
	(years)			(years)
Operating Equipment A #23	75	4.1	60	60
Operating Equipment B #24	50	3.4	35	35
Operating Equipment C #25	60	3.4	51	51
Operating Equipment D #26	50	3.3	35.5	35.5
Operating Equipment E #27	40	3.6	31	31
Operating Equipment F #28	50	3.9	46	46

Table A-7 Operating Equipment Data – Groups 23 to 28

Operating Equipment A	Operating Equipment B
23	24

Mechanical

Brakes

Bearings

Bushings

Pins

Springs

25

Operating Equipment C Operating Equipment D 26

> Water Pumps **Dewatering Pumps** Raw Water Pumps Sump Pumps

Operating Equipment E Operating Equipment F 27

Compressed Air

Air Compressors

Air Dryers

Regulators

Valves

Gauges

28

Misc. Seals Fenders Cathodic Protection Systems Dogging Mechanisms Automatic Lubrication Systems

Struts **Torque Tubes** Connecting Shafts

Mechanical

Gear Boxes

Linkages

Clutches

Sprockets

Couplings

Guides

Sheaves

Gears

Rotating Shafts

Structural/Mechanical

Pintles Quoins **Contact Blocks**

Water Driven Hydraullic

Control Gates/Wickets Turbine Pump

Hydraulic

Hyd. Cylinders

Hyd. Motors

Hyd. Pumps

Valves

Hyd. Power Units

Hyd. Reservoirs

Accumulators

Flow Control Valves

Misc. Hydraulic Equipment

Filters Hyd. Piping Hyd. Hosing

Steam System

Boilers Water Intakes Valves Gages Controls

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

ATTACHMENT B: Duty and Environmental Factors

a. Duty Cycles. The mission or function of the system should address the duty cycle or period of operation. For example, miter gate equipment is considered to have a negligible failure rate during periods of nonoperation. The failure rate can be modified by a duty cycle factor. The duty cycle factor is the ratio of actual operating time to total mission time t. For example, the equation:

$$\mathbf{R}(\mathbf{t}) = \mathbf{e}^{-.\mathrm{td}}$$

is the exponential failure rate distribution with a duty factor d. The duty factor for lock mechanical equipment is directly related to the number of lockages or hard operations that occur at a facility. The number of lockages may vary over time, and hence the duty factor may vary. In this example, the lockages or cycles increase with time.

The duty factor, d, is calculated for each year as follows: For example, in year 5, the lock performs 11,799 open/close cycles. Assuming the operating time of an open or close operation is 120 seconds (or 240 seconds per open/close cycle) and using a total mission time of 8760 hours per year then the duty factor can be calculated as follows:

Operating time = (240*11,799)/3600= 786.6 operational hours/year d = 786.6/8760 hours/year

d = 0.0898

The Weibull reliability function from the main text for the components becomes

$$R(t) = \exp\left[-\left(\frac{td}{\alpha}\right)^{\beta}\right]$$

Where time t is in years. The Weibull hazard function then becomes

$$h(t) = \frac{\beta}{\alpha} \left(\frac{td}{\alpha}\right)^{\beta-1}$$

As part of the inputs to the components of a fault tree or reliability block diagram, Availability Workbench allows the duty factor, d, to be represented using two different apportionments factors in the program as non-operating failure and non-operating ageing that are defined below:

1. Non-operating failure apportionment %

The non-operating failure apportionment indicates how the failure rates of components associated with the failure model will be adjusted when they are not operational. An apportionment value of 50% indicates that the failure rate should be halved or mean time to failure doubled when it is nonoperational.

2. Non-operating ageing apportionment %

The non-operating ageing apportionment indicates how the age of components associated with the failure model will be adjusted when they are not operational. An apportionment value of 50% indicates that the component ages at only half the normal rate when it is non-operational.

These factors are part of the Failure Models in AWB for each component shown in Figure B.1 below as 10 percent of the duty cycles. This allows the failure rate and age to be reduced to a duty factor of 10 percent during the AWB simulations.

Failu	re Models 👻 Basic d	ata 🗸 🚰 🍸 🏹	Fi All rows •	gur 🏼 🌬	e B.1	Duty Fact	ors in AW	В		
	G D	Description	Failure distributio	on Fa	ilure Eta1	Failure Beta1	Failure Gamma1	Non-operating failure apportionment	Non-operating ageing apportionment	Dormant failure
•	ANTIFRICTION B		Weibull	~ 40	3	4	0	10	10	
	BRAKE		Weibull	~ 45		4	0	10	10	
	COUPLING	COUPLING	Weibull	~ 50		4	0	10	10	
	GEAR REDUCER		Weibull	~ 38		4	0	10	10	
	PLAIN BRONZE		Weibull	~ 40		4	0	10	10	
	SHAFTS		Weibull	~ 80		4	0	10	10	
	SPUR GEARS		Weibull	~ 60	2	4	0	10	10	

b. Environmental Conditions. Load factors may be assigned to individual blocks of the fault tree in AWB. The load factor allows users to model additional or reduced stress conditions during different operational phases. Default value in AWB is 1. In addition, the warm Standby option also needs to be active for the component in the AWB fault tree model. For example, a load factor of 2 will increase the failure rate by 2 for the exponential distribution. This is equivalent to halving the MTTF. This is described by the general expression:

 $MTTF = MTTF_{Normal}/Load Factor$

c. Environmental conditions must be defined for the ambient service of the equipment. An approximate approach multiplies failure data by various K factors to relate the data to other conditions of environment and stress where K is the environmental factor adjustment coefficient used to represent component stress levels altered by environmental conditions. Typical K factors are given in Table B-1 where K1 relates to the general environment of operation, K2 to the specific rating or stress of the component, and K3 to the general effect of temperature. The equipment on the lock is exposed to an outdoor marine environment. For this example, a K1 factor of 2 is used and K2 and K3 are 1.0. Recommended values are 1.0 for K1, K2 and K3.

General Environmental Condition	K ₁			
Ideal, static conditions	0.1			
Vibration-free, controlled environment	0.5			
General purpose ground based	1.0			
Ship	2.0			
Road	3.0			
Rail	4.0			
Air	10.0			
Missile	100.0			
Stress Rating				
Percentage of component nominal rating	K ₂			
140	4.0			
120	2.0			
100	1.0			
80	0.6			
60	0.3			
40	0.2			
20	0.1			
Temperature				
Component temperature (degrees C) K ₃				
0	10			
20	1.0			
40	1.3			
60	2.0			
80	4.0			
100	10.0			
120	30.0			

Table B-1 Environmental Condition for Load Factors in AWB

These load factors are part of the Primary Events in AWB for each component shown in Figure B.2 below. This allows the load factor to reduce the MTTF of 2 as shown below during the AWB simulations

Primary Events 🝷 Basic data 📲 🌠 🌠 🌠 All rows 📲 🙀															
	D	Description	Туре		Failure Model	Logic mode		Maximum capacity	Initial age	Switching delay	Load factor	Non-maintainable	Use standby times to failure	Standby mode	
•	EV2	Coupling Failure	Basic	v	LM. COUPLINGS	Probabilistic	V	100	0	0	2		\checkmark	Warm	~
	EV3	Worm Gear Reducer	Basic	×	DM GEARS (RIG	Probabilistic	V	100	0	0	2		\checkmark	Warm	~
	EV11	Pinion #1 Failure	Basic	×	DM HIGHER SPEE	Probabilistic	V	100	0	0	2		\checkmark	Warm	v
	EV12	Gear #1 Failure	Basic	~	DM HIGHER SPEE	Probabilistic	V	100	0	0	2		\checkmark	Warm	~
	EV13	Pinion #2 Failure	Basic	×	DM. GEARS (SP	Probabilistic	×	100	0	0	2		\checkmark	Warm	v
	EV14	Gear #2 Failure	Basic	v	DM. GEARS (SE	Probabilistic	N	Probabilistic (0	0	2		\checkmark	Warm	v
	EV15	Pinion #3 Failure	Basic	~	DM. GEARS (SP	Probabilistic	~	100	0	0	2		\checkmark	Warm	~
	EV16	Gear #3 Failure	Basic	~	DM. GEARS (SE	Probabilistic	×	100	0	0	2			Warm	~
	EV17	Shaft Failure	Basic	~	LM. ROTATING S	Probabilistic	V	100	0	0	2		\checkmark	Warm	~
	EV18	Chain Sprocket Failure	Basic	~	DM. CHAIN (SPR	Probabilistic	V	100	0	0	2		\checkmark	Warm	~
	EV19	Chain Failure	Basic	~	DM. CHAIN (ROL	Probabilistic	~	100	0	0	2			Warm	~
	EV20	Brake Failure	Basic	~	DM. BRAKE (SPR	Probabilistic	V	100	0	0	2		\checkmark	Warm	~

Subject Mechanical and Electrical Reliability Modeling for Major Rehabilitation Evaluation Reports

ATTACHMENT C: Example Application of Fault Tree for Navigation Dam Operating Equipment

The following example shows the basic steps for obtaining system hazard function parameters and is based on Tainter gate operating machinery commonly used on navigation dams. The first page includes a plan view of the machinery with the major components identified which are included in a fault tree.

Following the plan, the fault tree is presented which is based on the machinery arrangement. The fault tree was created using Availability Workbench v.5.0. It is not the intention of this example to provide guidance or instruction in fault tree analysis. For that, other resources or training should be consulted.

After the 9 pages of the fault tree diagram, individual screen shots showing where to enter recommended parameters are included. This fault tree represents the Without Project Condition, but it can easily be adapted for various with project scenarios by adjusting the project age and/or individual component location parameters. The final page is a print of the Excel sheet with the exported Unreliability or Cumulative Distribution Function (CDF) from Availability Workbench. By linearizing the CDF as described on the sheet, the Weibull parameters for the hazard function are found.

35

From exported "Time Value" and "F" or Unreliability for the top gate from AWB

Years of "	Unreliability"		
Service	COF	LN(t)	LN(LN(1/(1-F(t))))
7	4.00E-05	1.945910149	-10.1266111
8	0.00008	2.079441542	-9.433443922
9	0.00014	2.197224577	-8.873798131
10	0.00024	2.302585093	-8.334751623
11	0.00028	2.397895273	-8.180580938
12	0.0004	2.48490665	-7.823845978
13	0.00062	2.564949357	-7.385481
15	0.00104	2,708050201	-6.86801434
16	0.00136	2.772588722	-6.599590194
17	0.00184	2.833213344	-6.297069001
18	0.00236	2.890371758	-6.047912498
19	0.0028	2.944438979	-5.876734226
20	0.00344	2.995732274	-5.670561337
22	0.00418	3.094522438	-5.475350383
23	0.00576	3.135494216	-5.153930868
24	0.00684	3.17805383	-4.98153776
25	0.00786	3.218875825	-4.842025741
26	0.00924	3.258096538	-4.679575507
27	0.01098	3.295836866	-4.506164559
28	0.01286	3.33220451	4.347168838
29	0.01462	3.36729583	-4.2180099
30	0.0166	3.401197382	-4.089994597
32	0.0209	3.455735903	-3.9509335390
33	0.02368	3.496507561	-3.73116596
34	0.02724	3.526360525	-3.589291635
35	0.03048	3.555348061	-3.475247384
36	0.03432	3.583518938	-3.354616439
37	0.03798	3.610917913	-3.251398022
38	0.0419	3.63758616	-3.151144228
39	0.0463	3.003501040	-3.049003894
41	0.05602	3.713572067	-2.948201333
42	0.06136	3.737669618	-2.759502563
43	0.06718	3.761200116	-2.665809685
44	0.07296	3.784189634	-2 58020378
45	0.079	3.80666249	-2.497441977
46	0.0856	3.828641396	-2.413660055
47	0.09324	3.850147602	-2.324038863
40	0.10054	3.871201011	-2.163934411
50	0.11754	3.912023005	2.079107062
51	0.1271	3.931825633	-1.995583766
52	0.13634	3.951243719	-1.92021049
53	0.14614	3.970291914	-1.845235989
54	0.15666	3.988984047	-1.769694222
55	0.16714	4.007333185	-1.698871941
57	0.18956	4.025351091	-1.628448033
58	0.20146	4.060443011	-1.491787247
59	0.2143	4.077537444	-1.422210746
60	0.22658	4.094344562	-1.358939772
61	0.23856	4.110873864	-1.299955571
62	0.25244	4.127134385	-1.23463578
63	0.26654	4.143134726	-1.171240351
64	0.28106	4.158883083	-1.108731191
65	0.2966	4.1/438727	-1.044608428
67	0 32638	4.204692619	-0.983278311
68	0.34258	4.219507705	-0.868853398
69	0.35832	4.234106505	-0.812684284
70	0.3746	4.248495242	-0.756377046
71	0.3914	4.262679877	-0.699982405
72	0.40936	4.276666119	-0.641411674
73	0.42658	4.290459441	-0.586740888
74	0.4447	4.304065093	-0.530608741
10	A.407.5	4.517466114	0.480302139

 $b = \beta \ln(a)$

 α is found by its relationship to β and the γ intercept of the line:

77	0.49662	4.343805422	-0.376280269
78	0.51404	4.356708827	-0.326244174
79	0.53164	4.369447852	-0.276388686
80	0.54894	4.382026635	-0.227961501
81	0.56692	4.394449155	-0.178130977
82	0.58468	4.406719247	-0.129304941
83	0.6015	4.418840608	-0.083329575
84	0.61888	4.430816799	-0.035999275
85	0.63668	4.442651256	0.012394164
86	0.65304	4.454347296	0.05689606
87	0.66976	4.465908119	0.102498478
88	0.6863	4.477336814	0.147832042
89	0.70246	4.48863637	0.192442343
90	0.71822	4.49980967	0.236358768
91	0.7337	4.510859507	0.280001492
92	0.75014	4.521788577	0.327038246
93	0.76406	4.532599493	0.367540124
94	0.77794	4.543294782	0.408665092
95	0.79274	4.553876892	0.453481154
96	0.8065	4.564348191	0.496205935
97	0.81888	4.574710979	0.535671679
98	0.83206	4.584967479	0.578941274
99	0.84398	4.59511985	0.619377422
100	0.85532	4.605170186	0.65919263
101	0.86586	4.615120517	0.697572996
102	0.8761	4.624972813	0.736340995
103	0.88708	4.634728988	0.779818184
104	0.89638	4.644390899	0.818468363
105	0.90552	4.65396035	0.858393408
106	0.9137	4.663439094	0.89605769
107	0.92114	4.672828834	0.93219603
108	0.9283	4.682131227	0.968983568
109	0.9352	4.691347882	1.006661341
110	0.94184	4.700480366	1.0454075
111	0.94702	4.709530201	1.077674888
112	0.95208	4.718498871	1.111272583
113	0.95692	4.727387819	1.14571736