DATE OF THIS VERSION (new)
June 1, 2013

TITLE OF DOCUMENT (new title if applicable):

DATE OF VERSION BEING SUPERSEDED (old):
October 1, 2006

DESCRIPTION OF DOCUMENT (previous title, number, other identifying data):
Communications Equipment Room Fittings, 27 11 00

SUMMARY OF CHANGES IN THIS VERSION:

1. The Guarantee Period of Service clause has been removed from this Spec. Section. It has been replaced with a requirement to comply with FAR clause, Warranty. See Article 3.4
SECTION 27 11 00
COMMUNICATIONS EQUIPMENT ROOM FITTINGS

(It is required that all Veterans Health Administration (VHA) telecommunication cable distribution (and/or signal) plants and/or systems conform to this document. It is the responsibility of the spec writer to select, edit, delete, and renumber the appropriate portions of in this document to conform to the respective distribution system where deviations occur in order to provide the respective system. The spec writer shall contact the appropriate authorities below for technical assistance and approval before the final contract document can be approved.)

Spec writer notes:
1. Contact Department of Veterans Affairs, Veterans Health Administration (VHA), Telecommunications Support Service (TSSO-005N2), Telephone (301/427-3950) for technical assistance.
2. Edit between //---//. Delete if not applicable to project. Also delete any other item or paragraph not applicable in the section and renumber the remaining paragraphs. Defer to VHA TSSO-005N2 for technical assistance and approval concerning all issues.

Part 1 - General

1.1 Description

A. This Section specifies the furnishing, installing, certification, testing, and guaranty of a complete and operating Voice and Digital Cable Distribution System (here-in-after referred to as “the System”), and associated equipment and hardware to be installed in the VA Medical Center, Out Patient Clinic, Nursing Home Care Unit, Domiciliary, or____________________ here-in-after referred to as “the Facility”. The System shall include, but not be limited to: equipment cabinets, interface enclosures, and relay racks; necessary combiners, traps, and filters; and necessary passive devices such as: splitters, couplers, cable “patch”, “punch down”, and cross-connector blocks or devices, voice and data distribution sub-systems, and associated hardware. The System shall additionally include, but not be limited to: telecommunication closets (TC); telecommunications outlets (TCO); copper and fiber optic, and analog radio frequency (RF) systems coaxial distribution cables, connectors, “patch” cables, and/or “break out” devices.
B. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.

C. The term “provide”, as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.

D. The Voice and Digital // and Analog // Telecommunication Distribution Cable Equipment and System provides the media which voice and data information travels over and connects to the Telephone System which is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Therefore, since the System connects to or extends the telephone system, the System’s installation and operation shall adhere to all appropriate National, Government, and/or Local Life Safety and/or Support Codes, which ever are the more stringent for this Facility. At a minimum, the System shall be installed according to NFPA, Section 70, National Electrical Code (NEC), Article 517 and Chapter 7; NFPA, Section 99, Health Care Facilities, Chapter 3-4; NFPA, Section 101, Life Safety Code, Chapters 7, 12, and/or 13; Joint Commission on Accreditation of Health Care Organization (JCAHCO), Manual for Health Care Facilities, all necessary Life Safety and/or Support guidelines; this specification; and the original equipment manufacturer's (OEM) suggested installation design, recommendations, and instructions. The OEM and Contractor shall ensure that all management, sales, engineering, and installation personnel have read and understand the requirements of this specification before the System is designed, engineered, delivered, and provided.

E. The VA Project Manager (PM) and/or if delegated, Resident Engineer (RE) are the approving authorities for all contractual and mechanical changes to the System. The Contractor is cautioned to obtain in writing, all approvals for system changes relating to the published contract specifications and drawings, from the PM and/or the RE before proceeding with the change.

F. System Performance:

1. At a minimum, the System shall be able to support the following voice and data // and analog RF // operations for Category 6 Certified Telecommunication Service:

 a. Provide the following interchange (or interface) capabilities:

 1) Basic Rate (BRI).
2) Primary Rate (PRI).

b. ISDN measured at // _________ //:
 1) Narrow Band BRI:
 a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 b) D Channel: 16 kBps, minimum.
 c) H Channel: 384 kBps, minimum.
 2) Narrow Band PRI:
 a) B Channel: 64 kBps, minimum.
 b) D Channel: 64 kBps, minimum.
 c) H Channel: 1,920 kBps, minimum.
 3) Wide (or Broad) Band: All channels: 140 mega(m)-Bps, minimum, capable to 565 mBps at “T” reference.

c. ATM operation and interface: ATM 155 mBps measured at // ________________________ //

d. Frame Relay: All stated compliance’s measured at // ________________________ //

e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at // ________________________ //

f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at // ________________________ //

g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at // ________________________ // (shall be Synchronous Optical Network [SONET] compliant).

h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data // and analog RF // locations.
 // i. Other // ________________________ //

2. At a minimum the System shall support the following operating parameters:
 a. EPBX connection:
 1) System speed: 1.0 gBps per second, minimum.
 2) Impedance: 600 Ohms.
 3) Cross Modulation: -60 deci-Bel (dB).
 4) Hum Modulation: -55 dB.
 5) System data error: 10 to the -10 Bps, minimum.
6) Loss: Measured at the frame output with reference Zero (0) decibel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
 a) Trunk to station: 1.5 dB, maximum.
 b) Station to station: 3.0 dB, maximum.
 c) Internal switch crosstalk: -60 dB when a signal of + 10 decibel measured (dBm), 500-2,500 Hz range is applied to the primary path.
 d) Idle channel noise: 25 dBm “C” or 3.0 dBm “O” above reference (terminated) ground noise, whichever is greater.
 e) Traffic Grade of Service for Voice and Data:
 (1) A minimum grade of service of P-01 with an average traffic load of 7.0 CCS per station per hour and a traffic overload in the data circuits will not interfere with, or degrade, the voice service.
 (2) Average CCS per voice station: The average CCS capacity per voice station shall be maintained at 7.0 CCS when the EPBX is expanded up to the projected maximum growth as stated herein.

b. Telecommunications Outlet (TCO):
 1) Voice:
 a) Isolation (outlet-outlet): 24 dB.
 b) Impedance: 600 Ohms, balanced (BAL).
 c) Signal Level: 0 decibel per mili-Volt (dBmV) + 0.1 dBmV.
 d) System speed: 100 mBps, minimum.
 e) System data error: 10 to the -6 Bps, minimum.

 2) Data:
 a) Isolation (outlet-outlet): 24 dB.
 b) Impedance: 600 Ohms, BAL.
 c) Signal Level: 0 dBmV + 0.1 dBmV.
 d) System speed: 120 mBps, minimum.
 e) System data error: 10 to the -8 Bps, minimum.

 3) Fiber optic:
 a) Isolation (outlet-outlet): 36 dB.
 b) Signal Level: 0 dBmV + 0.1 dBmV.
 c) System speed: 540 mBps, minimum.
 d) System data error: 10 to the -6 bps, minimum.
//4) Analog RF Service:

a) Broadcast or "off air" RF (or television) analog service is considered to be at RF (below 900 mHz in frequency bandwidth). Usually a RF television circuits require a single coaxial cable plant from the headend to each TC location.//

SPEC WRITER NOTE: For RF Television Distribution Cable Systems, refer to Specification Section 27 41 31, MASTER ANTENNA TV EQUIPMENT AND SYSTEMS or Section 27 41 41, MASTER ANTENNA TV EQUIPMENT AND SYSTEMS-EXTENSION and edit according to the System requirements.

b) Isolation (outlet-outlet): 14 dB.

c) Impedance: 75 Ohms, Unbalanced (UNBAL).

d) Signal Level: 10 dBmV + 5.0 dBmV.

e) Bandwidth: 6.0 mHz per channel, fully loaded. //

//5) Closed Circuit Analog Video Service: Analog video service is considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum operating parameters shall be capable over each installed analog video circuit:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>75 Ohm, unbalanced</td>
</tr>
<tr>
<td>Output Level</td>
<td>1.0 V peak to peak (P-P), for 87.5% depth of Modulation (Mod)</td>
</tr>
<tr>
<td>Diff Gain</td>
<td>±1 dB at 87.5% Mod</td>
</tr>
<tr>
<td>Diff Phase</td>
<td>±1.5 at 87.5% Mod</td>
</tr>
<tr>
<td>Signal to Noise (S/N) ratio</td>
<td>44 dB, minimum</td>
</tr>
<tr>
<td>Hum Modulation</td>
<td>-55 dB</td>
</tr>
<tr>
<td>Return Loss</td>
<td>-14 dB (or 1.5 Voltage Standing Wave Ratio [VSWR]), maximum</td>
</tr>
<tr>
<td>Isolation (outlet-outlet)</td>
<td>24 DB, MINIMUM</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>6.0 mHz per channel, fully loaded, minimum</td>
</tr>
</tbody>
</table>

//6) Closed Circuit Analog Audio Service: Analog audio service is considered to be at baseband (below 10 mHz in frequency bandwidth). Usually an analog audio circuit requires separate
audio connectors and video connectors even though both are considered baseband signals. However, since each TCO has multiple 600 (or 120) Ohm BAL line pairs, the analog audio circuit may be designated to one of the provided pairs of UTP or STP for each TCO and as shown on the drawings, in lieu of providing a separate baseband audio run to the TCO. The following minimum operating parameters shall be capable over each installed analog audio circuit:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>600 Ohm, BAL</td>
</tr>
<tr>
<td>Input Level</td>
<td>59 mV Root Mean Squared (RMS), minimum</td>
</tr>
<tr>
<td>Output Level</td>
<td>0 dBm</td>
</tr>
<tr>
<td>S/N ratio</td>
<td>55 dB, minimum</td>
</tr>
<tr>
<td>Hum Modulation</td>
<td>-50 dB, minimum</td>
</tr>
<tr>
<td>Return Loss</td>
<td>-14 dB (or 1.5 VSWR), maximum</td>
</tr>
<tr>
<td>Isolation (outlet-outlet)</td>
<td>24 DB, MINIMUM</td>
</tr>
<tr>
<td>Frequency Bandwidth</td>
<td>100 Hz - 10K Hz, minimum</td>
</tr>
</tbody>
</table>

1.2 RELATED WORK

A. Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Specification Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
C. Specification Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
D. Specification Section 27 10 00, STRUCTURED CABLING.
E. Specification Section 26 27 26, WIRING DEVICES.
F. Specification Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
G. Specification Section 26 41 00, FACILITY LIGHTNING PROTECTION.
H. Specification Section 27 32 41, TWO-WAY RADIO EQUIPMENT.
I. Specification Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.
J. Specification Section 27 31 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION.
L. Specification Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.
1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only. Except for a specific date given the issue in effect (including amendments, addenda, revisions, supplements, and errata) on the date the system’s submittal is technically approved by VA, shall be enforced.

B. National Fire Protection Association (NFPA):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>NATIONAL ELECTRICAL CODE (NEC)</td>
</tr>
<tr>
<td>75</td>
<td>Protection of Electronic Computer/Data Processing Equipment</td>
</tr>
<tr>
<td>77</td>
<td>Recommended Practice on Static Electricity</td>
</tr>
<tr>
<td>101</td>
<td>Standard for Health Care Facilities</td>
</tr>
<tr>
<td>1221</td>
<td>Life Safety Code</td>
</tr>
<tr>
<td>1221</td>
<td>Emergency Services Communication Systems</td>
</tr>
</tbody>
</table>

C. Underwriters Laboratories, Inc. (UL):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Wired Cabinets</td>
</tr>
<tr>
<td>96</td>
<td>Lightning Protection Components</td>
</tr>
<tr>
<td>96A</td>
<td>INSTALLATION REQUIREMENTS FOR LIGHTNING PROTECTION SYSTEMS</td>
</tr>
<tr>
<td>467</td>
<td>Grounding and Bonding Equipment</td>
</tr>
<tr>
<td>497/497A/497B</td>
<td>PROTECTORS FOR PAIRED CONDUCTORS/COMMUNICATIONS CIRCUITS/DATA COMMUNICATIONS AND FIRE ALARM CIRCUITS</td>
</tr>
<tr>
<td>884</td>
<td>Underfloor Raceways and Fittings</td>
</tr>
</tbody>
</table>

D. ANSI/EIA/TIA Publications:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>568B</td>
<td>Commercial Building Telecommunications Wiring Standard</td>
</tr>
<tr>
<td>569B</td>
<td>Commercial Building Standard for Telecommunications Pathways and Spaces</td>
</tr>
<tr>
<td>606A</td>
<td>ADMINISTRATION STANDARD FOR THE TELECOMMUNICATIONS INFRASTRUCTURE OF COMMERCIAL BUILDINGS</td>
</tr>
</tbody>
</table>
1.4 QUALITY ASSURANCE

A. The authorized representative of the OEM, shall be responsible for the design, satisfactory total operation of the System, and its certification.

B. The OEM shall meet the minimum requirements identified in Paragraph 2.1.A. Additionally, the Contractor shall have had experience with three or more installations of systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identification of these installations shall be provided as a part of the submittal as identified in Paragraph 1.5.

C. The System Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The System Contractor shall be authorized by the OEM to certify and warranty the installed equipment. In addition, the OEM and System Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certification must be provided in writing as part of the Contractor’s Technical Submittal.
D. All equipment, cabling, terminating hardware, TCOs, and patch cords shall be sourced from the certifying OEM or at the OEM’s direction, and support the System design, the OEM’s quality control and validity of the OEM’s warranty.

E. The Contractor’s Telecommunications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.

1.5 SUBMITTALS

A. Provide submittals in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. The RE shall retain one copy for review and approval.

1. If the submittal is approved the RE shall retain one copy for Official Records and return three (3) copies to the Contractor.

2. If the submittal is disapproved, three (3) copies will be returned to the Contractor with a written explanation attached that indicates the areas the submittal deviated from the System specifications. The RE shall retain one copy for Official Records.

B. Environmental Requirements: Technical submittals shall confirm the environmental specifications for physical TC areas occupied by the System. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

1. Floor loading for batteries and cabinets.
2. Minimum floor space and ceiling heights.
3. Minimum size of doors for equipment passage.
4. Power requirements: The Contractor shall provide the specific voltage, amperage, phases, and quantities of circuits required.
5. Air conditioning, heating, and humidity requirements. The Contractor shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
6. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
7. Proposed floor plan, based on the expanded system configuration of the bidder's proposed EPBX for this FACILITY.
8. Conduit size requirement (between main TC, computer, and console rooms).

9. Main trunk line and riser pathways, cable duct, and conduit requirements between each MTC, TC, and TCO.

C. Documents: The submittal shall be separated into sections for each subsystem and shall contain the following:

1. Title page to include:
 a. VA Medical Center.
 b. Contractor’s name, address, and telephone (including FAX) numbers.
 c. Date of Submittal.
 d. VA Project No.

2. List containing a minimum of three locations of installations of similar size and complexity as identified herein. These locations shall contain the following:
 a. Installation Location and Name.
 b. Owner’s or User’s name, address, and telephone (including FAX) numbers.
 c. Date of Project Start and Date of Final Acceptance by Owner.
 d. System Project Number.
 e. Brief (three paragraphs minimum) description of each system’s function, operation, and installation.

3. Narrative Description of the system.

4. A List of the equipment to be furnished. The quantity, make, and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system and edit between the // - //, Delete equipment items that are not required and add additional items required, and renumber section as per system design. The following is the minimum equipment required by the system:

 SPEC WRITER NOTE: Select the required equipment items quantities that will satisfy the needs of the system and edit between the // - //, Delete equipment items that are not required and renumber section as per system design.

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>//As required//</td>
<td>Cabinet Assembly(s)</td>
</tr>
<tr>
<td>//As required//</td>
<td>Environmental Cabinet</td>
</tr>
</tbody>
</table>
5. Pictorial layouts of each MTC, IMTC, and RTCs; MCCS, IMCCS, VCCS, and HCCS termination cabinet(s), each distribution cabinet layout drawing, and TCO as each is expected to be installed and configured.

6. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.

7. Engineering drawings of the System, showing calculated signal levels at the EPBX output, each input and output distribution point, proposed TCO values, and signal level at each TCO multipin, fiberoptic, //, and coaxial cable // jack.

8. List of test equipment as per paragraph 1.5.D. below.

9. Letter certifying that the Contractor understands the requirements of the SAMPLES Paragraph 1.5.E.

10. Letter certifying that the Contractor understands the requirements of Section 3.2 concerning acceptance tests.

D. Test Equipment List:

1. The Contractor is responsible for furnishing all test equipment required to test the system in accordance with the parameters specified. Unless otherwise stated, the test equipment shall not be
considered part of the system. The Contractor shall furnish test equipment of accuracy better than the parameters to be tested.

2. The test equipment furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 a. Spectrum Analyzer.
 b. Signal Level Meter.
 c. Volt-Ohm Meter.
 d. Time Domain Reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
 e. Bit Error Test Set (BERT).
 f. Camera with a minimum of 60 pictures to that will develop immediately to include appropriate test equipment adapters. A video camera in VHS format is an acceptable alternate.
 g. Video Waveform Monitor.
 h. Video Vector Scope.
 i. Color Video Monitor with audio capability.
 j. 100 mHz Oscilloscope with video adapters

E. Samples: A sample of each of the following items shall be furnished to the RE for approval prior to installation.

1. TCO Wall Outlet Box 4" x 4"x 2.5" with:
 a. One each telephone (or voice) rj45 jack installed.
 b. Two each multi pin data rj45 jacks installed.
 c. Cover Plate installed.
 d. Fiber optic ST jack(s) installed. //
 e. RF (F)/video (BNC)/audio (XL) jack(s) installed. //

2. Data CCS patch panel, punch block or connection device with RJ45 connectors installed.

3. Telephone CCS system with IDC and/or RJ45 connectors and cable terminal equipment installed.

4. Fiber optic CCS patch panel or breakout box with cable management equipment and “ST” connectors installed.

5. 610 mm (2 ft.) section of each copper cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.
6. 610 mm (2 ft.) section of each fiber optic cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.

7. 610 mm (2 ft.) section of each analog RF, video coaxial and audio cable to be used with cable sweep tags as specified in paragraph 2.4.H and connectors installed.

8. Analog video CCS patch panel or breakout box with cable management equipment and “BNC” connectors installed.

9. Analog audio CCS patch panel or breakout box with cable management equipment and “XL” connectors installed.

10. Analog RF patch panel or breakout box with cable management equipment and “F” connectors installed.

F. Certifications:

1. Submit written certification from the OEM indicating that the proposed supervisor of the installation and the proposed provider of the contract maintenance are authorized representatives of the OEM. Include the individual’s exact name and address and OEM credentials in the certification.

2. Submit written certification from the OEM that the wiring and connection diagrams meet National and/or Government Life Safety Guidelines, NFPA, NEC, UL, this specification, and JCAHCO requirements and instructions, requirements, recommendations, and guidance set forth by the OEM for the proper performance of the System as described herein. The VA will not approve any submittal without this certification.

3. Preacceptance Certification: This certification shall be made in accordance with the test procedure outlined in paragraph 3.2.B.

G. Equipment Manuals: Fifteen (15) working days prior to the scheduled acceptance test, the Contractor shall deliver four complete sets of commercial operation and maintenance manuals for each item of equipment furnished as part of the System to the RE. The manuals shall detail the theory of operation and shall include narrative descriptions, pictorial illustrations, block and schematic diagrams, and parts list.

H. Record Wiring Diagrams:

1. Fifteen (15) working days prior to the acceptance test, the Contractor shall deliver four complete sets of the Record Wiring Diagrams of the System to the RE. The diagrams shall show all inputs and outputs of electronic and passive equipment correctly identified.
according to the markers installed on the interconnecting cables, Equipment and room/area locations.

2. The Record Wiring Diagrams shall be in hard copy and two compact disk (CD) copies properly formatted to match the Facility’s current operating version of Computer Aided Drafting (AutoCAD) system. The RE shall verify and inform the Contractor of the version of AutoCAD being used by the Facility.

I. Surveys Required As A Part Of The Technical Submittal: The Contractor shall provide the following surveys that depict various system features and capacities are required in addition to the on site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal survey requirements), as a minimum:

1. The required EPBX connections (each CSU shall be compatible with) shall be compatible with the following:
 a. Initially connect:

<table>
<thead>
<tr>
<th>EQUIPPED ITEM</th>
<th>CAPACITY</th>
<th>WIREDCAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Station Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi Line (Equipped for direct input dial [DID])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Office (CO) Trunks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWO WAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-way DRTL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign Exchange (FX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Paging Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Paging Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Premise Extensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO Trunk By-pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRT w/keyboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendant Consoles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b. Projected Maximum Growth: The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.1.a. as a part of the technical submittal. For this purpose, the following definitions and sample connections are provided to detail the system's capability:

<table>
<thead>
<tr>
<th>EQUIPPED ITEM</th>
<th>CAPACITY</th>
<th>WIRED CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projected Maximum Growth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Contractor shall clearly and fully indicate this category for each item identified in Paragraph 1.4.H.2.a. as a part of the technical submittal.

2. Cable Distribution System Design Plan: A design plan for the entire cable distribution systems requirements shall be provided with this document. A specific cable count shall coincide with the total growth items as described herein. It is the Contractor’s responsibility to provide the Systems entire cable requirements and engineer a distribution system requirement plan using the format of the following paragraph(s), at a minimum:

a. UTP (and/or STP) Requirements/Column Explanation:

<table>
<thead>
<tr>
<th>Column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM BUILDING</td>
<td>Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from</td>
</tr>
<tr>
<td>BUILDING</td>
<td>Identifies the building by number, title, or location cabling is to be provided in</td>
</tr>
<tr>
<td>TO BUILDING IMC</td>
<td>Identifies building main terminal signal closet, by room number or location, to which cabling is provided too, in, and from</td>
</tr>
<tr>
<td>FLOOR</td>
<td>Identifies the floor by number (i.e. 1st, 2nd, etc.) cabling and TCOs are to be provided</td>
</tr>
</tbody>
</table>
TC ROOM NUMBER | Identifies the floor signal closet room, by room number, which cabling shall be provided
---|---
ROOM NUMBER | Identifies the room, by number, from which cabling and TCOs shall be provided
NUMBER OF CABLE PAIR | Identifies the number of cable pair required to be provided on each floor designated OR the number of cable pair (VA Owned) to be retained
NUMBER OF STRANDS USED/SPARE | Identifies the number of strands provided in each run

b. Fiber Optic Cabling Requirements/Column Explanation:

<table>
<thead>
<tr>
<th>Column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM BUILDING</td>
<td>Identifies the building by number, title, or location, and main signal closet or intermediate signal closet cabling is provided from</td>
</tr>
<tr>
<td>TO BUILDING IMC</td>
<td>Identifies building, by number, title, or location, to which cabling is provided</td>
</tr>
<tr>
<td>FLOOR</td>
<td>Identifies the floor by number (i.e. 1st, 2nd, etc.)</td>
</tr>
<tr>
<td>TC ROOM NUMBER</td>
<td>Identifies the room, by number, from which cabling shall be installed</td>
</tr>
<tr>
<td>NUMBER OF STRANDS</td>
<td>Identifies the number of strands in each run of fiber optic cable</td>
</tr>
<tr>
<td>INSTALLED METHOD</td>
<td>Identifies the method of installation in accordance with as designated herein</td>
</tr>
<tr>
<td>NOTES</td>
<td>Identifies a note number for a special feature or equipment</td>
</tr>
<tr>
<td>BUILDING MTC</td>
<td>Identifies the building by number or title</td>
</tr>
</tbody>
</table>

//c. Analog RF Cabling Requirements/Column Explanation:

<table>
<thead>
<tr>
<th>Column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOOR</td>
<td>Identifies the floor by number (i.e. 1st, 2nd, etc.)</td>
</tr>
<tr>
<td>TC ROOM NUMBER</td>
<td>Identifies the room, by number, from which cabling shall be installed</td>
</tr>
<tr>
<td>TO FLOOR TC</td>
<td>Identifies building, by number or location, to which cabling is installed</td>
</tr>
<tr>
<td>NUMBER OF STRANDS</td>
<td>Identifies the number of strands in each run of RF cable</td>
</tr>
</tbody>
</table>
3. Telecommunication Outlets: The Contractor shall clearly and fully indicate this category for each outlet location and compare the total count to the locations identified above as a part of the technical submittal. Additionally, the Contractor shall indicate the total number of spares.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. System Requirements:

SPEC WRITER NOTE: Confer with the respective Facility Chiefs of Medical Media, IRM, and Engineering Services; plus, technical assistance and approval from the VA’s TSSO-005N2 in order to select and insert the following paragraph(s) required by system design. At least one or more of these paragraphs must be used to ensure patient data access from each patient bed location.
1. The System shall provide the following minimum services that are designed in accordance with and supported by an Original Equipment Manufacturer (OEM), and as specified herein. The System shall provide continuous inter and/or intra-Facility voice and data, and analog RF service. The System shall be capacity sized so that loss of connectivity to external telephone systems shall not affect the Facilities operation in specific designated locations. The System shall:

a. Be capable of inter-connecting and functioning fully with the existing Local Telephone Exchange (LEC) Network(s), Federal Telephone System (FTS) Inter-city Network(s), Inter-exchange Carriers, Integrated Services Digital Network (ISDN), Electronic Private Branch Exchange (EPBX) switches, asynchronous/synchronous data terminals and circuits including Automatic Transfer Mode (ATM), Frame Relay, and local area networks (LAN), at a minimum.

b. Be a voice and data cable distribution system that is based on a physical “Star”, and/or “Ring”, and/or “Bus” Topology. An Analog RF coaxial cable distribution system shall be provided in a “home run” configuration from each associated riser TC to identified locations and as shown on the drawings.

c. Be compatible with and able to provide direct digital connection to trunk level equipment including, but not limited to: directly accessing trunk level equipment including the telephone system, audio paging, Industry Standard “T” and/or “DS” carrier services and external protocol converters. Additionally, connections to “T” and/or “DS” access/equipment or Customer Service Units (CSU) that are used in FTS and other trunk applications shall be included in the System design. Provide T-1 access/equipment (or CSU), as required for use, in FTS and other trunk applications by system design if this equipment is not provided by the existing telephone system and/or will be deactivated by the installation of the System. The Contractor shall provide all T-1 equipment necessary to terminate and make operational the quantity of circuits designated. The CSU’s shall be connected to the System’s emergency battery power supply. The System shall be fully capable.
of operating in the Industry Standard “DS” protocol and provide that service when required.

d. Where the System connects to an existing or future telephone system, refer to specification Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT // OR specification Section 27 31 31, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT - EXTENSION // for specific telephone equipment and system operational performance standards.

2. Specific Subsystem Requirements: The System shall consist, as a minimum, of the following independent sub-systems to comprise a complete and functional voice and digital // and analog RF// telecommunications cabling system: “Main” (MTC), “intermediate” (IMTC), and “riser” (RTC) TC’s; “vertical” (or “riser”) trunk cabling system; vertical cross-connection (VCC) cabling systems, and TCO’s with a minimum of three (3) RJ-45 jacks for the appropriate telephone, Data connections, and additional jacks, connectors, drop and patch cords, terminators, and adapters provided.

a. Telecommunication Closet (TC):

1) There shall be a minimum of one TC for the MTC, each building IMTC, and each RTC per building floor location. However, in large building(s), where the horizontal distance to the farthest voice and digital work area may exceed 90 Meters (M) (or 295 feet [ft]), additional TC’s shall be provided as described herein. The maximum DC resistance per cable pair shall be no more than 28.6 Ohms per 305 M (1,000 feet). Each TC shall be centrally located to cover the maximum amount of local floor space. The TC’s house in cabinets or enclosures, on relay racks, and/or on backboards, various telecommunication data equipment, controllers, multiplexers, bridges, routers, LAN hub(s), telephone cross-connecting, active and passive equipment.

2) Additionally, the TC’s may house fire alarm, nurses call, code one (or blue), video, public address, radio entertainment, intercom, and radio paging equipment. Regardless of the method of installation, mounting, termination, or cross-connecting used, all vertical copper and fiber optic // and analog RF coaxial // cables shall be terminated on appropriate cross-connection systems (CCS) containing patch panel(s), punch
blocks, and/or breakout devices provided in enclosures and tested as described herein. A cable and/or wire management system shall be a part of each CCS.

a) A minimum of three 110-120 VAC active quad outlets shall be provided, each with “U” grounded receptacles at a minimum of one outlet for each front, side and back wall. These outlets shall be separately protected by an AC circuit breaker provided in the designated Government Emergency Critical Care AC power panel, that is connected to the Facilities Emergency AC Power Distribution System. For larger building TC applications, a minimum of one additional quad AC outlet shall be provided for every 800M² (or 8,000 ft²) of useable floor space. Additional outlets shall be equally spaced along the wall.

b) Climate control shall be provided in each TC 24 hours a day, seven days per week and 52 week per year to prevent failure of electronic components and for mission critical functional applications. The RE and/or Facility Chief Engineering Officer are responsible for informing the Contractor regarding the minimum climate control requirements. In identified hostile TC locations where it has been determined (by the RE or Facility Chief Engineer) that proper TC climate or external signal radiation cannot be properly maintained or controlled, the Contractor may, at his/her option, provide a minimum of two individual and properly sized self contained climate controlled equipment cabinet enclosures; one designated for voice, and one designated for data, and one additional cabinet designated for analog RF service, in each TC location identified on the drawings, in lieu of providing additional required TC air handling capability.

B. System Performance:

1. At a minimum, the System shall be able to support the following voice and data and analog RF operations for Category 6 Certified Telecommunication Service:

 a. Provide the following interchange (or interface) capabilities:

 1) Basic Rate (BRI).

 2) Primary Rate (PRI).
b. ISDN measured at // _________ //:

1) Narrow Band BRI:
 a) B Channel: 64 kilo-Bits per second (kBps), minimum.
 b) D Channel: 16 kBps, minimum.
 c) H Channel: 384 kBps, minimum.

2) Narrow Band PRI:
 a) B Channel: 64 kBps, minimum.
 b) D Channel: 64 kBps, minimum.
 c) H Channel: 1,920 kBps, minimum.

3) Wide (or Broad) Band:
 a) All channels: 140 mega (m)-Bps, minimum, capable to 565 mBps at "T" reference.

c. ATM operation and interface: ATM 155 mBps measured at // ____________________. //

d. Frame Relay: All stated compliance’s measured at // ____________________. //

e. Integrated Data Communications Utility (IDCU) operation and interface: Measured at // ____________________. //

f. Government Open Systems Interconnection Profile (GOSSIP) compliant: Measured at // ____________________. //

g. Fiberoptic Distributed Data Interface (FDDI): A minimum 100 mBps to a maximum of 1.8 giga(g)-Bps data bit stream speed measured at // ____________________ // (shall be Synchronous Optical Network [Sonet] compliant).

h. System Sensitivity: Satisfactory service shall be provided for at least 3,000 feet for all voice and data // and analog RF // locations.

//i. Other: ____________________. //

2. At a minimum the System shall support the following operating parameters:

a. EPBX connection:
 1) System speed: 1.0 gBps per second, minimum.
 2) Impedance: 600 Ohms.
 3) Cross Modulation: -60 deci-Bel (dB).
 5) System data error: 10 to the -10 Bps, minimum loss measured at the frame output with reference Zero (0) deciBel measured (dBm) at 1,000 Hertz (Hz) applied to the frame input.
a) Trunk to station: 1.5 dB, maximum.
b) Station to station: 3.0 dB, maximum.
c) Internal switch crosstalk: -60 dB when a signal of + 10
deciBel measured (dBm), 500-2,500 Hz range is applied to
the primary path.
d) Idle channel noise: 25 dBm “C” or 3.0 dBm “O” above
reference (terminated) ground noise, whichever is greater.
e) Traffic Grade of Service for Voice and Data:
 (1) A minimum grade of service of P-01 with an average
 traffic load of 7.0 CCS per station per hour and a traffic
 overload in the data circuits will not interfere with, or
degrade, the voice service.
 (2) Average CCS per voice station: The average CCS capacity
 per voice station shall be maintained at 7.0 CCS when the
 EPBX is expanded up to the projected maximum growth as
 stated herein.

b. Telecommunications Outlet (TCO):
 1) Voice:
 a) Isolation (outlet-outlet): 24 dB.
 b) Impedance: 600 Ohms, balanced (BAL).
 c) Signal Level: 0 deciBel per mili-Volt (dBmV) ± 0.1 dBmV.
 d) System speed: 100 mBps, minimum.
 e) System data error: 10 to the −6 Bps, minimum.
 2) Data:
 a) Isolation (outlet-outlet): 24 dB.
 b) Impedance: 600 Ohms, BAL.
 c) Signal Level: 0 dBmV ± 0.1 dBmV.
 d) System speed: 120 mBps, minimum.
 e) System data error: 10 to the −8 Bps, minimum.
 3) Fiber optic:
 a) Isolation (outlet-outlet): 36 dB.
 b) Signal Level: 0 dBmV ± 0.1 dBmV.
 c) System speed: 540 mBps, minimum.
 d) System data error: 10 to the −6 BPS, minimum.

//4) Analog RF Service: Broadcast or “off air” RF (or television)
analog service is considered to be at RF (below 900 mHz in
frequency bandwidth). Usually a RF television circuits require
a single coaxial cable plant from the headend to each TC location.

SPEC WRITER NOTE: For RF Television Distribution Cable Systems, refer to Specification Section 27 41 31, MASTER ANTENNA TV EQUIPMENT AND SYSTEMS or Section 27 41 41, MASTER ANTENNA TV EQUIPMENT AND SYSTEMS-EXTENSION and edit according to the System requirements.//

a) Isolation (outlet-outlet): 14 dB.
b) Impedance: 75 Ohms, Unbalanced (UNBAL).
c) Signal Level: 10 dBmV + 5.0 dBmV.
d) Bandwidth: 6.0 mHz per channel, fully loaded //

//5) Closed Circuit Analog Video Service: Analog video service is considered to be at baseband (below 100 mHz in frequency bandwidth). An analog video circuit requires a separate analog video from the audio connector. The following minimum operating parameters shall be capable over each installed analog video circuit:
a) Impedance: 75 Ohm, unbalanced.
b) Output Level: 1.0 V peak to peak (P-P), for 87.5% depth of Modulation (Mod).
c) Diff Gain: ±1 dB at 87.5% Mod.
d) Diff Phase: ±1.5 at 87.5% Mod.
e) Signal to Noise (S/N) ratio: 44 dB, minimum.
f) Hum Modulation: -55 dB.
g) Return Loss: -14 dB (or 1.5 Voltage Standing Wave Ratio [VSWR]), maximum.
h) Isolation (outlet-outlet): 24 dB, minimum.
i) Bandwidth: 6.0 mHz per channel, fully loaded, minimum.

//6) Closed Circuit Analog Audio Service: Analog audio service is considered to be at baseband (below 10 mHz in frequency bandwidth). Usually an analog audio circuit requires separate audio connectors and video connectors even though both are considered baseband signals. However, since each TCO has multiple 600 (or 120) Ohm BAL line pairs, the analog audio circuit may be designated to one of the provided pairs of UTP or STP for each TCO and as shown on the drawings, in lieu of providing a separate baseband audio run to the TCO. The
following minimum operating parameters shall be capable over each installed analog audio circuit:

a) Audio (NOT TELEPHONE VOICE):
 (1) Impedance: 600 Ohm, BAL.
 (2) Input Level: 59 mV Root Mean Squared (RMS), minimum.
 (3) Output Level: 0 dBm.
 (4) S/N ratio: 55 dB, minimum.
 (6) Return Loss: -14 dB (or 1.5 VSWR), maximum.
 (7) Isolation (outlet-outlet): 24 dB, minimum.
 (8) Frequency Bandwidth: 100 Hz - 10K Hz, minimum.

C. General:

1. All equipment to be supplied under this specification shall be new and the current model of a standard product of an OEM or record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 a. Maintains a stock of replacement parts for the item submitted.
 b. Maintains engineering drawings, specifications, and operating manuals for the items submitted.
 c. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.

2. Specifications of equipment as set forth in this document are minimum requirements, unless otherwise stated, and shall not be construed as limiting the overall quality, quantity, or performance characteristics of items furnished in the System. When the Contractor furnishes an item of equipment for which there is a specification contained herein, the item of equipment shall meet or exceed the specification for that item of equipment.

3. The Contractor shall provide written verification, in writing to the RE at time of installation, that the type of wire/cable being provided is recommended and approved by the OEM. The Contractor is responsible for providing the proper size and type of cable duct and/or conduit and wiring even though the actual installation may be by another subcontractor.
4. The Telephone Contractor is responsible for providing interfacing cable connections for the telephone, PA, Radio Paging, and ______ systems with the System.

5. The telephone equipment and PA interface equipment shall be the interface points for connection of the PA / Radio interface cabling from the telephone switch via the system telephone interface unit.

6. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone equipment, systems, and service.

7. All passive distribution equipment shall meet or exceed -80 dB radiation shielding specifications.

8. All interconnecting twisted pair, fiber-optic or coaxial cables shall be terminated on equipment terminal boards, punch blocks, breakout boxes, splice blocks, and unused equipment ports/taps shall be terminated according to the OEM’s instructions for telephone cable systems without adapters. The Contractor shall not leave unused or spare twisted pair wire, fiber-optic, or coaxial cable unterminated, unconnected, loose or unsecured.

9. Color code all distribution wiring to conform to the Telephone Industry standard, EIA/TIA, and this document, which ever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance. Reference Specification Section 27 10 00, STRUCTURED CABLING and Section 27 31 00, VOICE COMMUNICATIONS SWITCHING AND ROUTING EQUIPMENT.

10. Connect the System’s primary input AC power to the Facility’s Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.

11. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the System OEM. Base-band cable systems shall utilize barrier terminal screw type connectors, at a minimum. Crimp type connectors installed
with a ratchet type installation tool are and acceptable alternate as long as the cable dress, pairs, shielding, grounding, and connections and labeling are provided the same as the barrier terminal strip connectors. Tape of any type, wire nuts, or solder type connections are unacceptable and will not be approved.

12. All equipment faceplates utilized in the System shall be stainless steel, anodized aluminum, or UL approved cycolac plastic for the areas where provided.

13. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.

 Spec Writer Note: Use non-detectable type at cemeteries only.

Underground warning tape shall be standard, 4-Mil polyethylene 76 mm (3 inch) wide tape // detectable // non-detectable type, red with black letters imprinted with “CAUTION BURIED ELECTRIC LINE BELOW”, orange with black letters imprinted with “CAUTION BURIED TELEPHONE LINE BELOW” or orange with black letters imprinted with “CAUTION BURIED FIBER OPTIC LINE BELOW”, as applicable.

D. Equipment Functional Characteristics:

<table>
<thead>
<tr>
<th>FUNCTIONS</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>105 to 130 VAC</td>
</tr>
<tr>
<td>POWER LINE FREQUENCY</td>
<td>60 HZ ±2.0 HZ</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 to 50 degrees (°) Centigrade (°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>80 percent (%) minimum rating</td>
</tr>
</tbody>
</table>

E. Equipment Standards and Testing:

1. The System has been defined herein as connected to systems identified as Critical Care performing Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory where such standards have been established for the supplies, materials or equipment. See paragraph minimum requirements Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, and the guidelines listed in paragraph 2.J.2.

3. The provided active and passive equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.

4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards.

2.2 EQUIPMENT ITEMS

A. Cabinet with Internal Equipment Mounting Rack:

1. The provided equipment cabinet shall be lockable, fabricated of heavy 16 gauge (ga) steel, and have fully adjustable internal equipment mounting racks or rails that allows front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief. It shall be floor or wall mounted with knock-out holes for cable entrance and conduit connection, contain ventilation ports and a quiet fan with non-disposable air filter for equipment cooling. Two keys shall be provided to the RE for each lock when the VA accepts the System.

2. A minimum of one cabinet shall be provided with blank rack space, for additional equipment. Blank panels shall be installed to cover any open or unused rack space. In addition, provide two 120 VAC power strips connected to surge protectors, a ventilation fan with non-disposable air filter, and a conduit or cable duct interfaced to adjacent cabinet(s), as part of this cabinet.

3. Blank panels shall be color matched to the cabinet, 3.175 mm (1/8in.) aluminum with vertical dimensions in increments of one rack
unit 45 mm (or 1.75in.) with mounting holes spaced to correspond to EIA 480 mm (or 19in.) rack dimensions. Single standard size blank panels shall be used to fill unused panel or rack spaces in lieu of numerous 45 mm (1.75in.) types. One blank 45 mm (1.75in.) high blank panel shall be installed between each item of equipment.

4. Technical Characteristics:

<table>
<thead>
<tr>
<th>Overall Height</th>
<th>2180 mm (85 7/8in.), maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Depth</td>
<td>650 mm (25 1/2in.), maximum</td>
</tr>
<tr>
<td>Overall Width</td>
<td>535 mm (21 1/16in.), maximum</td>
</tr>
<tr>
<td>Front Panel Opening Width</td>
<td>480 mm (19in.), EIA horizontal</td>
</tr>
<tr>
<td>Hole Spacing</td>
<td>per EIA and Industry Standards</td>
</tr>
</tbody>
</table>

5. Internal Cabinet Components (minimum required):

a. AC power outlet strip(s):

1) Power outlet strip(s) shall be provided as directed by the RE or the IRM. The additional equipment cabinet with no installed items in the cabinet, shall contain strip(s) with a minimum of 12 ea. AC power outlets. Each strip shall be mounted inside and at the rear of the cabinet. It shall contain “U” grounded AC outlets for distributing AC power to the installed electronic equipment. The strip shall be self-contained in a metal enclosure and may be provided with a 2 M (6 ft.) long (maximum) connecting cord with three prong plug.

2) Technical Characteristics:
 a) Power capacity 20 Ampere (AMP), 120 VAC continuous duty.
 b) Wire gauge: Three conductor, #12 AWG copper.

b. Cabinet AC Power Line Surge Protector and Filter:

1) Each cabinet shall be equipped with a AC Surge Protector and Filter. The Protector and Filter shall be housed in one single enclosure. The Protector and Filter shall perform instantaneous regulation of the AC input voltage and isolate and filter any noise present on the AC input line. The unit shall be equipped with AC voltage and current surge protectors to prevent damage to the electronic equipment from power line induced voltage spikes, surges, lightning, etc. It shall be cabinet mounted and the cabinet AC power strip (maximum of two
strips) may be connected to it as long as the system design is met.

2) Technical Characteristics:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage range</td>
<td>120 VAC ± 15%</td>
</tr>
<tr>
<td>Power capacity</td>
<td>20 AMP, 120 VAC</td>
</tr>
<tr>
<td>Voltage output regulation</td>
<td>+3.0%</td>
</tr>
<tr>
<td>Circuit breaker</td>
<td>15 AMP, may be self contain</td>
</tr>
<tr>
<td>Noise filtering</td>
<td>Greater than -45 dB</td>
</tr>
<tr>
<td>AC outlets</td>
<td>Four duplex grounded types, minimum</td>
</tr>
<tr>
<td>Response time</td>
<td>5.0 ns</td>
</tr>
<tr>
<td>Surge suppression</td>
<td>10,000 AMPS</td>
</tr>
<tr>
<td>Noise suppression</td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>-40 dB</td>
</tr>
<tr>
<td>Differential</td>
<td>-45 dB</td>
</tr>
</tbody>
</table>

3) Specific requirements for current and surge protection shall include:

a) Voltage protection threshold, line to neutral, starts at no more than 220 Volts peak. The transient voltage shall not exceed 300 volts peak. The Contractor shall furnish documentation on peak clamping voltage as a function of transient AMP.

b) Peak power dissipation minimum 35 Joules per phase, as measured for 1.0 mS at sub branch panels, 100 Joules per phase at branch panels and 300 Joules per phase at service entrance panels. The Contractor shall furnish an explanation of how the ratings were measured or empirically derived.

c) Surge protector must not short circuit the AC power line at any time.

(1) The primary surge protection components must be silicon semiconductors. Secondary stages, if used, may include other types of devices.
(2) Surge protectors shall incorporate a visual device which indicates whether the surge suppression component(s) is (are) functioning.
(3) Surge protection devices shall be UL listed.
(4) Voltage and current surge protectors shall be provided on all ancillary equipment provided by the Contractor.
 d) Power dissipation 12,000 Watts (W) for 1.0 mS (or 12 Joules).
 e) Voltage protection threshold starts at not more than 100 VAC.

B. Environmental Cabinet (if selected):
1. The Contractor shall provide this enclosure in lieu of a standard equipment cabinet identified in Paragraph 2.3.A to meet system design in hostile TC locations as identified on the drawings. The enclosure shall fully sustain the installed, including electronic, equipment in the same manner as the standard cabinet identified in Paragraph 2.3.A. Additionally, the enclosure shall fully support all installed equipment as if they were in a stand alone air handling area regardless of the local area’s air handling capabilities. The enclosure shall be a OEM’s fully assembled unit. If more than two enclosures are required in any system location, those enclosures shall be OEM assembled for consolidating or combining two or more enclosures in a single unit to meet system space and equipment handling designs.

2. Technical Characteristics:

<table>
<thead>
<tr>
<th>Environmental control</th>
<th>Automatic, heating and/or cooling, as required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature conditions (rated at 1,300 W of install equipment heat generation):</td>
<td></td>
</tr>
<tr>
<td>Internal Range</td>
<td>Maintains 80° to 105° of internal heat conditions, maximum</td>
</tr>
<tr>
<td>External Range</td>
<td>100° ± 25°, maximum</td>
</tr>
<tr>
<td>Forced air unit</td>
<td>Required with non disposable air filter unobstructed and uninterruptible</td>
</tr>
<tr>
<td>Air conditioning</td>
<td>As required, fully internal mounted</td>
</tr>
<tr>
<td>Heater</td>
<td>As required, fully internal mounted</td>
</tr>
<tr>
<td>Uninterruptible power supply</td>
<td>As required, fully internal mounted</td>
</tr>
</tbody>
</table>
Front door | Full length, see through, EMI resistant, and lockable

Rear door | Full length, non-see through, EMI resistant, and lockable

Conduit wiring entrance | TOP AND/OR BOTTOM, FULLY SEALED

Input power | 2 ea. minimum 120 VAC @ 20A, maximum, independent circuit, conduit for fixed or armored cable for moveable installations

Dimensions:
- Height: 1980 mm (78 in.), maximum
- Width: 635 mm (25 in.), maximum
- Depth: 965 mm (38 in.), maximum
- Front panel opening: 480 mm (19 in.), w/ EIA mounting hole spacing

C. Distribution or System Interface Cabinet:
1. The cabinet shall be constructed of heavy 16 gauge cold rolled steel, have top and side panels and hinged front and rear (front door only if wall mounted) doors. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the RE, contain integral and adjustable predrilled rack mounting rails or frame that allows front panel equipment mounting and access. When all equipment, doors and panels are installed, snap-in-place chrome trim strip covers are required to be installed that will cover all front panel screw fasteners. It shall be equipped the same as the equipment cabinet.
2. Technical Characteristics:

Overall height	2180 mm (85 7/8 in.), maximum
Overall depth	650 mm (25 1/2 in.), maximum
Overall width	535 mm (21 1/16 in.), maximum
Equipment vertical mounting space	1960 mm (77 1/8 in.), maximum
Front panel horizontal	484 mm (19 1/16 in.), maximum width

D. Stand Alone Equipment (or sometimes called Radio Relay) Rack:
1. The rack shall be constructed of heavy 16 gauge cold rolled steel and have fully adjustable equipment front mounting rails that allows
front panel equipment mounting and access. It shall have baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using Facility Service Chief or the RE. It shall be floor or wall mounted or mounted on casters as directed by the RE.

2. Technical Characteristics:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Height</td>
<td>2180 mm (85 7/8in.), maximum</td>
</tr>
<tr>
<td>Overall Depth</td>
<td>650 mm (25 1/2in.), maximum</td>
</tr>
<tr>
<td>Overall Width</td>
<td>535 mm (21 1/16in.), maximum</td>
</tr>
<tr>
<td>Front Panel Opening</td>
<td>480 mm (19in.), EIA horizontal width</td>
</tr>
<tr>
<td>Hole Spacing</td>
<td>per EIA and Industry Standards</td>
</tr>
</tbody>
</table>

E. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:

1. The connector panel(s) shall be made of flat smooth 3.175 mm (1/8 in.) thick solid aluminum, custom designed, fitted and installed in the cabinet. Bulkhead equipment connectors shall be mounted on the panel to enable all cabinet equipment’s signal, control, and coaxial cables to be connected through the panel. Each panel shall be color matched to the cabinet installed.

 a. Voice (or Telephone):

 1) The CSS for voice or telephone service shall be Industry Standard type 110 (minimum) punch blocks for voice or telephone, and control wiring in lieu of patch panels, each being certified for category six service. IDC punch blocks (with internal RJ45 jacks) are acceptable for use in all CCS and shall be specifically designed for category six telecommunications service and the size and type of UTP cable used as described herein. As a minimum, punch block strips shall be secured to an OEM designed physical anchoring unit on a wall location in the MTC, IMTC, RTC, and TC. However, console, cabinet, rail, panel, etc. mounting is allowed at the OEM recommendation and as approved by the RE. Punch blocks shall not be used for Class II or 120 VAC power wiring.

 2) Technical Characteristics:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of horizontal rows</td>
<td>100, MINIMUM</td>
</tr>
<tr>
<td>Number of terminals per row</td>
<td>4, minimum</td>
</tr>
<tr>
<td>Terminal protector</td>
<td>required for each used or</td>
</tr>
</tbody>
</table>
b. Digital or High Speed Data:

1) The CSS for digital or high-speed data service shall be a patch panel with modular female RJ45 jacks installed in rows. Patch panels and RJ45 jacks shall be specifically designed for category six telecommunications service and the size and type of UTP or STP cable used. Each panel shall be 480 mm (19in.) horizontal EIA rack mountable dimensions with EIA standard spaced vertical mounting holes.

2) **Technical Characteristics:**

<table>
<thead>
<tr>
<th>Number of horizontal rows</th>
<th>2, minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of jacks per row</td>
<td>24, MINIMUM</td>
</tr>
<tr>
<td>Type of jacks</td>
<td>RJ45</td>
</tr>
<tr>
<td>Terminal protector</td>
<td>required for each used or unused jack</td>
</tr>
<tr>
<td>Insulation</td>
<td>required between each row of jacks</td>
</tr>
</tbody>
</table>

c. Fiber optic //, and Analog Audio//:

1) Product reference of a Government Approved (US State Department) type is Telewire, PUP-17 with pre-punched chassis mounting holes arranged in two horizontal rows. This panel may be used for fiber optic, audio, control cable, and Class II Low Voltage Wiring installations when provided with the proper connectors. This panel is not allowed to be used for 120 VAC power connections.

2) **Technical Characteristics:**

<table>
<thead>
<tr>
<th>Height</th>
<th>Two rack units (RUs), 88 mm (3.5in.) minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>484 mm (19 1/16in.), EIA minimum</td>
</tr>
<tr>
<td>Number of connections</td>
<td>12 pairs, minimum</td>
</tr>
<tr>
<td>Connectors</td>
<td></td>
</tr>
<tr>
<td>Audio Service</td>
<td>Use RCA 6.35 mm (1/4in.) Phono, XL or</td>
</tr>
</tbody>
</table>
Barrier Strips, surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and RE approved)

Control Signal Service

Barrier strips surface mounted with spade lugs (punch block or wire wrap type strips are acceptable alternates for barrier strips as long as system design is maintained and RE approved)

Low voltage power (class II)

Barrier strips with spade lugs and clear full length plastic cover, surfaced mounted

Fiber optic

“ST” Stainless steel, female

d. Mounting Strips and Blocks:

1) Barrier Strips: Barrier strips are approved for AC power, data, voice, and control cable or wires. Barrier strips shall accommodate the size and type of audio spade (or fork type) lugs used with insulating and separating strips between the terminals for securing separate wires in a neat and orderly fashion. Each cable or wire end shall be provided with an audio spade lug, which is connected to an individual screw terminal on the barrier strip. The barrier strips shall be surface secured to a console, cabinet, rail, panel, etc. 120 VAC power wires shall not be connected to signal barrier strips.

2) Technical Characteristics:

<table>
<thead>
<tr>
<th>Terminal size</th>
<th>6-32, minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Count</td>
<td>ANY COMBINATION</td>
</tr>
<tr>
<td>Wire size</td>
<td>20 AWG, minimum</td>
</tr>
<tr>
<td>Voltage handling</td>
<td>100 V, minimum</td>
</tr>
<tr>
<td>Protective connector cover</td>
<td>Required for Class II and 120 VAC power connections</td>
</tr>
</tbody>
</table>

2. Solderless Connectors: The connectors (or fork connectors) shall be crimp-on insulated lug to fit a 6-32 minimum screw terminal. The fork connector shall be installed using a standard lug-crimping tool.
3. Punch Blocks: As a minimum, Industry Standard 110 type punch blocks are approved for data, voice, and control wiring. Punch blocks shall be specifically designed for the size and type of wire used. Punch block strips shall be secured to a console, cabinet, rail, panel, etc. Punch blocks shall not be used for Class II or 120 VAC power wiring.

4. Wire Wrap Strips: Industry Standard wire wrap strips (16.5 mm (0.065in.) wire wrap minimum) are approved for data, voice and control wiring. Wire wrap strips shall be secured to a cabinet, rail, panel, etc. Wire wrap strips shall not be used for Class II or 120 VAC power wiring.

F. Wire Management System and Equipment:
1. Wire Management System: The system(s) shall be provided as the management center of the respective cable system, CCS, and TC it is incorporated. It shall perform as a platform to house peripheral equipment in a standard relay rack or equipment cabinet. It shall be arranged in a manner as to provide convenient access to all installed management and other equipment. All cables and connections shall be at the rear of each system interface to IDC and/or patch panels, punch blocks, wire wrap strips, and/or barrier strip.

2. Wire Management Equipment: The wire management equipment shall be the focal point of each wire management system. It shall provide an orderly interface between outside and inside wires and cables (where used), distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide a uniform connection media for all system fire retardant wires and cables and other subsystems. It shall be fully compatible and interface to each cable tray, duct, wireway, or conduit used in the system. All interconnection or distribution wires and cables shall enter the system at the top (or from a wireway in the floor) via a overhead protection system and be uniformly routed down either side (or both at the same time) of the frames side protection system then laterally via a anchoring or routing shelf for termination on the rear of each respective terminating assembly. Each system shall be custom configured to meet the System design and user needs.
2.3 ENVIRONMENTAL REQUIREMENTS

Technical submittals shall identify the environmental specifications for housing the system. These environmental specifications shall identify the requirements for initial and expanded system configurations for:

A. Floor loading for batteries and cabinets.
B. Minimum floor space and ceiling heights.
C. Minimum size of doors for equipment passage.
D. Power requirements: The bidders shall provide the specific voltage, amperage, phases, and quantities of circuits required.
E. Air conditioning, heating, and humidity requirements. The bidder shall identify the ambient temperature and relative humidity operating ranges required preventing equipment damage.
F. Air conditioning requirements (expressed in BTU per hour, based on adequate dissipation of generated heat to maintain required room and equipment standards).
G. Proposed floor plan based on the expanded system configuration of the bidder's proposed EPBX for this Facility.
H. Conduit size requirement (between equipment room and console room).

2.4 INSTALLATION KIT

The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

A. System Grounding:
 1. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 2. This includes, but is not limited to:
 a. Coaxial Cable Shields.
 b. Control Cable Shields.
c. Data Cable Shields.
d. Equipment Racks.
e. Equipment Cabinets.
f. Conduits.
g. Duct.
h. Cable Trays.
i. Power Panels.
j. Connector Panels.
k. Grounding Blocks.

B. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.

C. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.

D. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.

E. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.

F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.

G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.
PART 3 – EXECUTION

3.1 INSTALLATION

A. Product Delivery, Storage and Handling:

1. Delivery: Deliver materials to the job site in OEM’s original unopened containers, clearly labeled with the OEM’s name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.

2. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.

B. System Installation:

1. After the contract’s been awarded, and within the time period specified in the contract, the Contractor shall deliver the total system in a manner that fully complies with the requirements of this specification. The Contractor shall make no substitutions or changes in the System without written approval from the RE and PM.

2. The Contractor shall install all equipment and systems in a manner that complies with accepted industry standards of good practice, OEM instructions, the requirements of this specification, and in a manner which does not constitute a safety hazard. The Contractor shall insure that all installation personnel understands and complies with all the requirements of this specification.

3. The Contractor shall install suitable filters, traps, directional couplers, splitters, TC’s, and pads for minimizing interference and for balancing the System. Items used for balancing and minimizing interference shall be able to pass telephone and data //, and lightwave //, and analog // signals in the frequency bands selected, in the direction specified, with low loss, and high isolation, and with minimal delay of specified frequencies and signals. The Contractor shall provide all equipment necessary to meet the requirements of Paragraph 2.1.C and the System performance standards.

4. All passive equipment shall be connected according to the OEM’s specifications to insure future correct termination, isolation, impedance match, and signal level balance at each telephone/data outlet.

5. Where TCOs are installed adjacent to each other, install one outlet for each instrument.
6. All lines shall be terminated in a suitable manner to facilitate future expansion of the System. There shall be a minimum of one spare 25 pair cable at each distribution point on each floor.

7. All vertical copper and fiber optic, and coaxial cables shall be terminated so any future changes only requires modifications of the existing EPBX or signal closet equipment only.

8. Terminating resistors or devices shall be used to terminate all unused branches, outlets, equipment ports of the System, and shall be devices designed for the purpose of terminating fiber optic or twisted pair, and coaxial, and lightwave cables carrying telephone and data, and analog signals in telephone and data, and analog video, and lightwave systems.

9. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.

10. Equipment installed indoors shall be installed in metal cabinets with hinged doors and locks with two keys.

C. Conduit and Signal Ducts:

1. Conduit:
 a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weatherheads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed. The minimum conduit size shall be 19 mm (3/4 in.).
 b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow telephone cables to be installed in partitioned cable tray with data cables may be granted in writing by the RE if requested.) Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
 c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
d. When "innerduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it’s installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.

e. Conduit (including GFE) fill shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.

f. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.

g. Ensure that Critical Care // Nurse Call // // , and PA //, and Radio Paging // Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.

2. Signal Duct, Cable Duct, or Cable Tray:
 a. The Contractor shall use existing signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.

F. Connectors: Circuits, transmission lines, and signal extensions shall have continuity, correct connection and polarity. A uniform polarity shall be maintained between all points in the system.

1. Wires:
a. Wire ends shall be neatly formed and where insulation has been cut, heat shrink tubing shall be employed to secure the insulation on each wire. Tape of any type is not acceptable.
b. Audio spade lugs shall be installed on each wire (including spare or unused) end and connect to screw terminals of appropriate size barrier strips. AC barrier strips shall be provided with a protective cover to prevent accidental contact with wires carrying live AC current. Punch blocks are approved for signal, not AC wires. Wire Nut or "Scotch Lock" connectors are not acceptable for signal wire installation.

2. Cables: Each connector shall be designed for the specific size cable being used and installed with the OEM's approved installation tool. Typical system cable connectors include; but, are not limited to: Audio spade lug, punch block, wirewrap, etc.

3. Line or Microphone Audio: Each connector shall be installed according to the cable or connector OEM's instructions and use the OEM's approved installation tool. Install the connector's to provide and maintain the following audio signal polarity:
a. XLR type connectors Signal or positive conductor is pin 3; common or neutral conductor is pin 2; ground conductor is pin 1.
b. Two and 3 conductor 1/4" Signal or positive conductor is tip; neutral or 1/8" phono plugs conductor is ring and ground or shield and jacks conductor is sleeve.
c. RCA Phono Plugs the Signal or positive conductor is tip; and Jacks neutral or shield conductor is sleeve.

4. Speaker Line Audio:
a. Each connector shall be installed according to the cable, transformer or speaker OEM instructions and using the OEM’s approved installation tool. The Contractor shall ensure each speaker is properly phased and connected in the same manner throughout the System using two conductor type wires.
b. One of the conductors shall be color coded to aid in establishing speaker signal polarity. Each speaker line shall be permanently soldered or audio spade lug connected to each appropriate speaker or line matching transformer connection terminal. Speaker line connection to each audio amplifier shall use audio spade lugs, as described herein.

G. AC Power: AC power wiring shall be run separately from signal cable.
H. Grounding:

1. General: The Contractor shall ground all Contractor Installed Equipment and identified Government Furnished Equipment to eliminate all shock hazards and to minimize, to the maximum extent possible, all ground loops, common mode returns, noise pickup, crosstalk, etc. The total ground resistance shall be 0.1 Ohm or less.
 a. The Contractor shall install lightning arrestors and grounding in accordance with the NFPA and this specification.
 b. Gas protection devices shall be provided on all circuits and cable pairs serving building distribution frames located in buildings other than the building in which the // _________ // is located or in any area served by an unprotected distribution system (manhole, aerial, etc.). The Contractor shall install the gas protection devices at the nearest point of entrance in buildings where protection is required and on the same circuits on the MDF in the telephone switch room.
 c. Under no conditions shall the AC neutral, either in a power panel or in a receptacle outlet, be used for system control, subcarrier or audio reference ground.
 d. The use of conduit, signal duct or cable trays as system or electrical ground is not acceptable and will not be permitted. These items may be used only for the dissipation of internally generated static charges (not to be confused with externally generated lightning) that may applied or generated outside the mechanical and/or physical confines of the System to earth ground. The discovery of improper system grounding shall be grounds to declare the System unacceptable and the termination of all system acceptance testing.

2. Cabinet Buss: A common ground buss of at least #10 AWG solid copper wire shall extend throughout each equipment cabinet and be connected to the system ground. Provide a separate isolated ground connection from each equipment cabinet ground buss to the system ground. Do not tie equipment ground busses together.

3. Equipment: Equipment shall be bonded to the cabinet bus with copper braid equivalent to at least #12 AWG. Self grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternates.
4. Cable Shields: Cable shields shall be bonded to the cabinet ground buss with #12 AWG minimum stranded copper wire at only one end of the cable run. Cable shields shall be insulated from each other, faceplates, equipment racks, consoles, enclosures or cabinets; except, at the system common ground point. Coaxial and audio cables, shall have one ground connection at the source; in all cases, cable shield ground connections shall be kept to a minimum.

I. Equipment Assembly:

1. Cabinets:
 a. Each enclosure shall be: floor or wall mounted with standard knockout holes for conduit connections or cable entrance; provide for ventilation of the equipment; have front and rear locking doors (except wall mounted cabinets that require only a front locking door); power outlet strip(s), and connector or patch panel(s).
 b. Rack (including freestanding radio relay) mounted equipment shall be installed in the enclosure’s equipment adjustable mounting racks with equipment normally requiring adjustment or observation mounted so operational adjustment(s) can be conveniently made. Heavy equipment shall be mounted with rack slides or rails allowing servicing from the front of the enclosure. Heavy equipment shall not depend only upon front panel mounting screws for support. Equipment shall be provided with sufficient cable slack to permit servicing by removal of the installed equipment from the front of the enclosure. A color matched blank panel (spacer) of 44 mm (1.75 in.) high, shall be installed between each piece of equipment (active or passive) to insure adequate air circulation. The enclosure shall be designed for efficient equipment cooling and air ventilation. Each console or cabinet shall be equipped with a quiet fan and nondisposable air filter.
 c. Enclosures and racks shall be installed plumb and square. Each shall be permanently attached to the building structure and held firmly in place. Fifteen inches of front vertical space opening shall be provided for additional equipment.
 d. Signal connector, patch, and bulkhead panels (i.e.: audio, data, control, analog video, etc.) shall be connected so that outputs from each source, device or system component shall enter the panel at the top row of jacks, beginning left to right as viewed.
from the front, which will be called "inputs". Each connection to a load, device or system component shall exit the panel at the bottom row of jacks, beginning left to right as viewed from the front, which will be called "outputs".

1) Equipment located indoors shall be installed in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
2) Cables shall enter the equipment racks or enclosures in such a manner that allows all doors or access panels to open and close without disturbing or damaging the cables.
3) All distribution hardware shall be securely mounted in a manner that allows access to the connections for testing and provides sufficient room for the doors or access panels to open and close without disturbing the cables.

J. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for voice and data circuits shall be stenciled using // laser printers // // thermal ink transfer process // //--------//. Handwritten labels are not acceptable.

1. Cable and Wires (Hereinafter referred to as “Cable”): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System “Record Wiring Diagrams”.

2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.

3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

4. Termination Hardware: The Contractor shall label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the “Record Wiring Diagrams”.

3.2 TESTS

SPEC WRITER NOTE: If this document is being used in conjunction with specification Section 27 31 00, VOICE
A. Interim Inspection:

1. This inspection shall verify that the equipment provided adheres to the installation requirements of this document. The interim inspection will be conducted by a factory-certified representative and witnessed by a Government Representative. Each item of installed equipment shall be checked to insure appropriate UL certification markings. This inspection shall verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B // T568A // pin assignments and cabling connections are in compliance with ANSI/EIA/TIA standards. Visually confirm // Category 6 // // ------- // marking of outlets, faceplates, outlet/connectors and patch cords.

2. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.

SPEC WRITER NOTE: Two methods for measuring the installed single mode fiber optic cable plant are described in ANSI/EIA/TIA-526-7. Method A uses optical power measurement equipment. Method B uses an optical time domain reflector (OTDR). Method B is not recommended for installations containing branching devices and/or isolators. ANSI/EIA/TIA-526-14 does not recommend using a OTDR for testing multimode fiber optic cables. Building Industry Consulting Service International (BICSI) recommends using Method A for all testing and implementing Method B testing to isolate optical disparities in fiber links that fail Method A testing. Consult with TSSO-00SN2 regarding recommended testing procedures.
3. The Contractor shall notify the RE, in writing, of the estimated date the Contractor expects to be ready for the interim inspection, at least 20 working days before the requested inspection date.

4. Results of the interim inspection shall be provided to the RE and PM. If major or multiple deficiencies are discovered, a second interim inspection may be required before permitting the Contractor to continue with the system installation.

5. The RE and/or the PM shall determine if an additional inspection is required, or if the Contractor will be allowed to proceed with the installation. In either case, re-inspection of the deficiencies noted during the interim inspection(s), will be part of the proof of performance test. The interim inspection shall not affect the Systems’ completion date. The Contracting Officer shall ensure all test documents will become a part of the Systems record documentation.

B. Pretesting:

1. Upon completing the installation of the System, the Contractor shall align and balance the system. The Contractor shall pretest the entire system.

2. Pretesting Procedure:
 a. During the system pretest, the Contractor shall verify (utilizing the approved spectrum analyzer and test equipment) that the System is fully operational and meets all the system performance requirements of this standard.
 b. The Contractor shall pretest and verify that all System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. The Contractor shall measure and record the aural carrier levels of each system telephone and data channel, at each of the following points in the system:
 1) Local Telephone Company Interfaces or Inputs.
 2) EPBX interfaces or inputs and outputs.
 3) MDF interfaces or inputs and outputs.
 4) EPBX output S/NR for each telephone and data channel.
 5) Signal Level at each interface point to the distribution system, the last outlet on each trunk line plus all outlets installed as part of this contract.
3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.

C. Acceptance Test:

1. After the System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 days written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of a Government Representative and an OEM certified representative. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety compliance. The test shall verify that the total System meets the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

//D. Verification Tests:

1. Test the // UTP // // STP // copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test the operation of shorting bars in connection blocks. Test cables after termination and prior to cross-connection.

E. Performance Testing:

1. Perform Category 6 // 5 // // 5e // tests in accordance with ANSI/EIA/TIA-568-B.1 and ANSI/EIA/TIA-568-B.2. Test shall include the following: wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.

2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with ANSI/EIA/TIA-568-B.3.
F. Total System Acceptance Test: The Contractor shall perform verification tests for // UTP // STP // copper cabling system(s) // and the // multimode // and // single mode // fiber optic cabling system(s) after the complete telecommunication distribution system and workstation outlet are installed.

SPEC WRITER NOTE: Voice tests require dial tone service from the Local Exchange Company (LEC) before the voice testing can be completed. Data tests require the installation of network devices by the IRM to complete data testing.

1. Voice Testing: Connect to the network interface device at the demarcation point. Go off-hook and receive dial tone from the LEC. If a test number is available, place and receive a local, long distance, and FTS telephone call.
2. Data Testing: Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network is achieved.

3.3 TRAINING
A. Furnish the services of a factory-trained engineer or technician for a total of two four hour classes to instruct designated Facility IRM personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the System and equipment.
B. Before the System can be accepted by the VA, this training must be accomplished. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.

3.4 WARRANTY
A. Comply with FAR clause 52.246-21, except that warranty shall be as follows:
1. The Contractor shall warranty that all installed material and equipment will be free from defects, workmanship, and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM’s equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building(s)), that certifies each item of equipment installed conforms to OEM published specifications.
2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and
logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. The Contractor and OEM shall provide this contact capability at no additional cost to the VA.

3. All Contractor installation, maintenance, and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.

4. Additionally, the Contractor shall accomplish the following minimum requirements during the one year warranty period:
 a. Response Time:
 1) The RE (or facility Contracting Officer if the facility has taken possession of the building[s]) are the Contractor’s reporting and contact officials for the System trouble calls, during the guarantee period.
 2) A standard workweek is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal Holidays.
 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 a) A routine trouble call within one working days of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 b) An emergency trouble call within 6 hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at anytime. Additionally, the loss of a minimum of 50 station or system lines shall be deemed as this type of a trouble call.
 4) The Contractor shall respond on-site to a catastrophic trouble call within 4 hours of its report. A catastrophic trouble call is considered total system failure.
 a) If a system failure cannot be corrected within four hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate system CSS or TCO equipment, or cables. The alternate equipment and/or cables shall be operational within four hours after the four hour trouble shooting time.
b) Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as a catastrophic trouble call if so determined by the RE or Facility Director. The RE or Facility Contracting Officer shall notify the Contractor of this type of trouble call at the direction of the Facilities Director.

b. Required on-site visits during the one year warranty period

1) The Contractor shall visit, on-site, for a minimum of eight hours, once every 12 weeks, during the guarantee period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this SPEC.

a) The Contractor shall arrange all Facility visits with the RE or Facility Contracting Officer prior to performing the required maintenance visits.

b) The Contractor in accordance with the OEM’s recommended practice and service intervals shall perform preventive maintenance during a non-busy time agreed to by the RE or Facility Contracting Officer and the Contractor.

c) The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE or Facility Contracting Officer.

2) The Contractor shall provide the RE or Facility Contracting Officer a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Total System Acceptance Test. The following reports are the minimum required:

a) Monthly Report: The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this guarantee period to RE or Facilities Contracting Officer by the fifth working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and Systems for preventive and predictive maintenance
b) Contractor Log: The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.

3) The RE or Facility Contracting Officer shall provide the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 a) The RE or Facility Contracting Officer shall ensure copies of these reports are entered into the System’s official acquisition documents.
 b) The Facilities Chief Engineer shall ensure copies of these reports are entered into the System’s official technical as-installed documents.

B. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use, accidents, other vendor, contractor, owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render findings concerning any Contractor’s responsibility.

--- END ---