SECTION 23 22 13
STEAM AND CONDENSATE HEATING PIPING

SPEC WRITER NOTE:
1. Delete between // ---- // if not applicable to project. Also delete any other item or paragraph not applicable in the section and renumber the paragraphs.
2. References to pressure in this section are gage pressure unless otherwise noted.

PART 1 - GENERAL

1.1 DESCRIPTION
A. Steam, condensate and vent piping inside buildings. Boiler plant and outside steam distribution piping is covered in specification Section 33 63 00, STEAM ENERGY DISTRIBUTION and Section 23 21 11, BOILER PLANT PIPING SYSTEMS.

1.2 RELATED WORK
A. Excavation and backfill: Section 31 20 00, EARTH MOVING.
B. Underground steam and condensate distribution: Section 33 63 00, STEAM ENERGY DISTRIBUTION.

C. Seismic restraints for piping: Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS./
D. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
E. Pumps: Section 23 22 23, STEAM CONDENSATE PUMPS.
F. Piping insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
G. Boiler piping: Section 23 21 11, BOILER PLANT PIPING SYSTEMS.
H. Water treatment for open and closed systems: Section 23 25 00, HVAC WATER TREATMENT.
I. Heating Coils and Humidifiers: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS and SECTION 23 31 00, HVAC DUCTS AND CASING.
J. Heating and cooling radiant panels: Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
K. Heating coils: Section 23 82 16, AIR COILS.
L. Temperature and pressure sensors and valve operators: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE
A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications.
1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Manufacturer's Literature and Data:
 1. Pipe and equipment supports. //Submit calculations for variable spring and constant support hangers//.
 2. Pipe and tubing, with specification, class or type, and schedule.
 3. Pipe fittings, including miscellaneous adapters and special fittings.
 4. Flanges, gaskets and bolting.
 5. Valves of all types.
 7. Pipe alignment guides.
 8. Expansion joints.
 11. All specified steam system components.
 13. Thermometers and test wells.
 //15. Seismic bracing details for piping.//

C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 1. Heat Exchangers (Steam-to-Hot Water).
 2. Flash tanks.

D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 1. One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 2. One set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI):
 B1.20.1-83(R2006) Pipe Threads, General Purpose (Inch)
 B16.4-2006 Gray Iron Threaded Fittings
C. American Society of Mechanical Engineers (ASME):
B16.1-2005 Gray Iron Pipe Flanges and Flanged Fittings
B16.3-2006 Malleable Iron Threaded Fittings
B16.9-2007 Factory-Made Wrought Buttwelding Fittings
B16.11-2005 Forged Fittings, Socket-Welding and Threaded
B16.14-91 Ferrous Pipe Plugs, Bushings, and Locknuts with
 Pipe Threads
B16.22-2001 Wrought Copper and Copper Alloy Solder-Joint
 Pressure Fittings
B16.23-2002 Cast Copper Alloy Solder Joint Drainage Fittings
B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged
 Fittings, Class 150, 300, 400, 600, 900, 1500
 and 2500
B16.39-98 Malleable Iron Threaded Pipe Unions, Classes
 150, 250, and 300
B31.1-2007 Power Piping
B31.9-2008 Building Services Piping
B40.100-2005 Pressure Gauges and Gauge Attachments
Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels,
Division 1
D. American Society for Testing and Materials (ASTM):
A47-99 Ferritic Malleable Iron Castings
A53-2007 Pipe, Steel, Black and Hot-Dipped, Zinc-Coated,
 Welded and Seamless
A106-2008 Seamless Carbon Steel Pipe for High-Temperature
 Service
 for Valves, Flanges, and Pipe Fittings
A181-2006 Carbon Steel Forgings, for General-Purpose
 Piping
A183-2003 Carbon Steel Track Bolts and Nuts
A216-2008 Standard Specification for Steel Castings,
 Carbon, Suitable for Fusion Welding, for High
 Temperature Service
A285-01 Pressure Vessel Plates, Carbon Steel, Low-and-
 Intermediate-Tensile Strength
A307-2007 Carbon Steel Bolts and Studs, 60,000 PSI Tensile
 Strength
A516-2006 Pressure Vessel Plates, Carbon Steel, for
 Moderate-and- Lower Temperature Service
B32-2008 Solder Metal
B61-2008 Steam or Valve Bronze Castings
B62-2009 Composition Bronze or Ounce Metal Castings
B88-2003 Seamless Copper Water Tube
F439-06 Socket-Type Chlorinated Poly (Vinyl Chloride)
 (CPVC) Plastic Pipe Fittings, Schedule 80
 Pipe, Schedules 40 and 80

E. American Welding Society (AWS):
 A5.8-2004 Filler Metals for Brazing and Braze Welding
 B2.1-00 Welding Procedure and Performance Qualifications

F. Manufacturers Standardization Society (MSS) of the Valve and Fitting
 Industry, Inc.:
 SP-67-95 Butterfly Valves
 SP-70-98 Cast Iron Gate Valves, Flanged and Threaded Ends
 SP-71-97 Gray Iron Swing Check Valves, Flanged and
 Threaded Ends
 SP-72-99 Ball Valves with Flanged or Butt-Welding Ends
 for General Service
 SP-78-98 Cast Iron Plug Valves, Flanged and Threaded Ends
 SP-80-97 Bronze Gate, Globe, Angle and Check Valves
 SP-85-94 Cast Iron Globe and Angle Valves, Flanged and
 Threaded Ends

G. Military Specifications (Mil. Spec.):
 Machinery, Equipment, and Systems

H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving
 Capacities of Safety Valves and Relief Valves

PART 2 – PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES
 A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR
 HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING
 A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B,
 Seamless; Schedule 40.
 B. Steam Condensate and Pumped Condensate Piping:
 1. Concealed above ceiling, in wall or chase: Copper water tube ASTM
 B88, Type K, hard drawn.
2. All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.

C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

A. 50 mm (2 inches) and Smaller: Screwed or welded.
 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 2. Forged steel, socket welding or threaded: ASME B16.11.
 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.

B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 2. Welding flanges and bolting: ASME B16.5:
 a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.
 b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.

C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

A. Solder Joint:
1. Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.

2.5 DIELECTRIC FITTINGS

A. Provide where copper tubing and ferrous metal pipe are joined.
B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
E. Contractor’s option: On pipe sizes 2” and smaller, screwed end brass gate valves // or dielectric nipples // may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

A. Asbestos packing is not acceptable.
B. All valves of the same type shall be products of a single manufacturer.
C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2100 mm (7 feet) or more above the floor or operating platform.
D. Shut-Off Valves
 1. Gate Valves:
 a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 lb.), wedge disc, rising stem, union bonnet.
 b. 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke.
 1) High pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 2) All other services: MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
 E. Globe and Angle Valves:
 1. Globe Valves:
a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
b. 65 mm (2 1/2 inches) and larger:
 1) Globe valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 2) All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.

2. Angle Valves
 a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
 b. 65 mm (2 1/2 inches) and larger:
 1) Angle valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 2) All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle valves.

F. Swing Check Valves
 1. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 psig), 45 degree swing disc.
 2. 65 mm (2-1/2 inches) and Larger:
 a. Check valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 b. All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.

2.8 STRAINERS

A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.

B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.
 1. 50 mm (2 inches) and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).
2. 65 mm (2-1/2 inches) and larger: Flanged cast steel or 1723 kPa (250 psig) cast iron.
C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 1. 50 mm (2 inches) and smaller: Cast iron or bronze.
 2. 65 mm (2-1/2 inches) and larger: Flanged, iron body.
D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 1. 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids.

2.9 PIPE ALIGNMENT
A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
 DESIGNER NOTE: Pipe loops are preferred. Provide pipe loops where possible.

2.10 EXPANSION JOINTS
A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
B. Minimum Service Requirements:
 1. Pressure Containment:
 a. Steam Service 35-200 kPa (5-30 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 b. Steam Service 214-850 kPa (31-125 psig): Rated 1025 kPa (150 psig) at 186 degrees C (366 degrees F).
 c. Steam Service 869-1025 kPa (126-150 psig): Rated 1375 kPa (200 psig) at 194 degrees C (382 degrees F).
 d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C (310 degrees F).
 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 3. Movement: As shown on drawings plus recommended safety factor of manufacturer.
C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
D. Bellows - Internally Pressurized Type:
1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
2. Internal stainless steel sleeve entire length of bellows.
3. External cast iron equalizing rings for services exceeding 340 kPa (50 psig).
5. Design shall conform to standards of EJMA and ASME B31.1.
6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
7. Integral external cover.

E. Bellows - Externally Pressurized Type:
1. Multiple corrugations of Type 304 stainless steel.
2. Internal and external guide integral with joint.
3. Design for external pressurization of bellows to eliminate squirm.
6. Threaded connection at bottom, 25 mm (one inch) minimum, for drain or drip point.
7. Integral external cover and internal sleeve.

F. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.11 FLEXIBLE BALL JOINTS
A. Design and Fabrication: One piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1720 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 750 mm (30 inches). Joints through 350 mm (14 inches) shall have forged pressure retaining members; while size 400 mm (16 inches) through 760 mm (30 inches) shall be of one piece construction.
B. Material:
1. Cast or forged steel pressure containing parts and bolting in accordance with Section II of the ASME Boiler Code or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME Section II SA 515, Grade 70.
2. Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).

C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
1. Low pressure leakage test: 41 kPa (6psig) saturated steam for 60 days.
2. Flex cycling: 800 Flex cycles at 3445 kPa (500 psig) saturated steam.
3. Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
4. Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
5. Vibration: 170 hours on each of three mutually perpendicular axis at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.1 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.12 STEAM SYSTEM COMPONENTS

A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
1. Maximum tube velocity: 2.3 m/s (7.5 feet per second).
2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m²K/W (0.001 ft²hrF/Btu).
3. Materials:
 a. Shell: Steel.
 b. Tube sheet and tube supports: Steel or brass.
 c. Tubes: 20 mm (3/4 inch) OD copper.
 d. Head or bonnet: Cast iron or steel.

B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components supported on a welded steel frame.

C. Steam Pressure Reducing Valves in PRV Stations:
1. Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
2. Service: Provide controlled reduced pressure to steam piping systems.
3. Pressure control shall be smooth and continuous with maximum drop of 10 percent. Maximum flow capability of each valve shall not exceed capacity of downstream safety valve(s).

4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, monel, or similar durable material.
 a. Pressure rating for high pressure steam: Not less than 1034 kPa (150 psig) saturated steam.
 b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.

 DESIGNER NOTE: Evaluate the need to provide acoustical measures for maintaining the specified noise levels in the adjoining spaces.

5. Select pressure reducing valves to develop less than 85 dbA at 1500 mm (5 feet) elevation above adjacent floor, and 1500 mm (5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing valves shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.

 DESIGNER NOTE: Use pneumatically controlled valves for replacement of existing valves in existing facilities where continued use of pneumatics is required by the VA.

//6. Pneumatically controlled valve: May be furnished in lieu of steam-operation. All specification requirements for steam operated valves apply. Valves shall close on failure of air supply.//

D. Safety Valves and Accessories: Comply with ASME Boiler and Pressure Vessel Code, Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown.

E. Steam PRV for Individual Equipment: Cast iron or bronze body, screwed or flanged ends, rated 861 kPa (125 psig) working pressure. Single-seated, diaphragm operated, spring loaded, adjustable range, all parts renewable.

F. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516 or ASTM A285, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53 Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80. Corrosion allowance of 1.6 mm (1/16 inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.

1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.

2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be 5.
 Mechanism: Brass, stainless steel or corrosion resistant alloy rated for the pressure upstream of the PRV supplying the system.

3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.

4. Valves and seats: Suitable hardened corrosion resistant alloy.

5. Floats: Stainless steel.

6. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.

H. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.

DESIGNER NOTES:
1. Humidifiers should be located in the Air Handling Unit as far as possible and where mandated by the design.
2. Direct boiler plant steam can be used, provided the boiler water treatment chemicals are FDA and OSHA approved. Otherwise, an unfired clean steam generator shall be used.

I. Steam Humidifiers:

1. Steam separator type that discharges steam into the air stream through a steam jacketed distribution manifold or dispersion tube. Humidifiers shall be complete with Y-type steam supply strainer;
modulating, normally closed steam control valve; normally closed condensate temperature switch; and manufacturer's standard steam trap.

2. Steam separator: Stainless steel or cast iron.

3. Distribution manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
 a. Duct section height exceeds 900 mm (36 inches).
 b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute).
 b. If within 900 mm (3 feet) upstream of fan, damper or pre-filter.
 d. If within 3000 mm (10 feet) upstream of after-filter.

 DESIGNER NOTE: Coordinate water quality requirements with manufacturer and local water quality conditions and provide additional equipment as recommended.

J. Unfired clean steam generator

1. Provide a packaged factory assembled, pre-piped unfired steam generator consisting of stainless steel shell, stainless steel tube coil, stainless steel steam piping, valves and controls. All stainless steel piping shall be type 304/316 factory-fabricated and provided as a part of the complete package.

2. Shell: Stainless steel ASME code construction with flanged piping connections. 345 kPa (50 psig) maximum WSP.

3. Tubes: Copper tubes suitable for 862 kPa (125 psig) working pressure.

4. Design: Heated fluid in shell and heating fluid (higher pressure steam) in tubes.

5. Each steam generator shall be furnished with the following accessories:
 a. Resilient insulation.
 b. Pilot operated modulating control valve with pressure controller.
 c. Control pilot to maintain constant steam output.
 d. Pressure relief valve.
 e. Vessel and tube side pressure gages.
 f. Liquid level controller with brass feed water solenoid valve, in check valve and strainer.
 g. Over-pressure limit system with auto-reset.
 h. Factory packaging.
 i. Dual F&T condensate traps.
 k. //Time based//TDS based// automatic blow down
1. Low water cut-off and high pressure cut-off.
m. Fully wired control box.
n. Automatic drain solenoid valve.

6. Provide solid state control module with LED backlit LCD display and LED pilot lights to indicate on-off, high pressure, low pressure, low water and water feed. Control module shall allow the local adjustment of pressure limits on display screen. Control module shall have alarm light and alarm horn with built in alarm silence relay. Control module shall be supplied with dry contact closure outputs to indicate to building automation controls (BAC) the occurrence of power on, high pressure, low pressure, low water and water feed. The control module shall allow the BAC to turn the unfired steam generator on or off through a remote relay suitable for 24 VAC, 1 amp. The control module shall allow the BAC to remotely monitor the operating pressure. Control module shall be supplied with an on-off switch and shall be mounted in a NEMA 1 panel. All solenoids and limits shall be 24 VAC.

K. Steam Gun Set: Furnish for ready coupling to building steam and cold water and designed for rinsing equipment (such as carts and racks) with hot or cold water, cleaning such articles with detergent-laden hot water or steam, or alternately sanitizing the articles with only live steam.

1. Gun: Fit gun for finger-tip release of steam. Design so siphoning action will automatically mix detergent with gun effluent. Equip gun with hardwood front and rear handgrips. Include a 25 mm (15/16-inch) diameter, double tube butyl hose reinforced with braid and designed for 1034 kPa (150 psig) pressure. Hose shall be 3600 mm (12 feet) long.

2. Detergent Tank: Furnish 9.5 L (2-1/2 gallon) polyethylene or fiberglass storage tank and fit for wall mounting. Also provide 13 mm (1/2 inch) diameter neoprene double wall detergent hose of the same length as steam hose. Fit hose-to-tank connection with strainer. Fit other end of hose with valve to regulate amount of detergent to be mixed with steam.

3. Steam/Water Selector: Furnish manifold for wall mounting; design manifold to deliver only steam or water, or steam and water mix to gun. Construct mounting panel of stainless steel. Valves and piping located in panel shall be brass.

4. Accessories: Provide one pair of protective gloves and three 50 mm (2 inch) diameter brushes, one nylon and two stainless-steel.

L. Steam Hose and Accessories: Hose shall be sufficiently flexible to be placed in a 100 mm (4 feet) diameter coil.
1. Furnish and install in the mechanical room housing each PRV station a 7500 mm (25 feet) length of 13 mm (1/2 inch) ID steam hose, rated 861 kPa (125 psig) and a hose rack. In one end of the hose install a quick-couple device, suitable for steam service, to match corresponding devices in the PRV blowdown connections.

2. Hose storage rack: Wall-mounted, steel, iron or aluminum, semi-circular shape, with capacity to store 7500 mm (25 feet) of 13 mm (1/2 inch) ID steam hose.

SPEC WRITER NOTE: Provide flow meters as shown in the design and coordinate the metering requirements with any on-going metering projects at the VA facility.

M. Steam Flow Meter/Recorder: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

SPEC WRITER NOTE: Steam exhaust head is used on steam turbines. Delete this item if not applicable.

N. Steam Exhaust Head: Cast iron, fitted with baffle plates, to trap and drain condensed water.

2.13 GAGES, PRESSURE AND COMPOUND

A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.

B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.

C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

<table>
<thead>
<tr>
<th>Low pressure steam and steam condensate to 103 kPa (15 psig)</th>
<th>0 to 207 kPa (30 psig).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium pressure steam and steam condensate nominal 413 kPa (60 psig)</td>
<td>0 to 689 kPa (100 psig).</td>
</tr>
<tr>
<td>High pressure steam and steam condensate nominal 620 kPa to 861 kPa (90 to 125 psig)</td>
<td>0 to 1378 kPa (200 psig).</td>
</tr>
<tr>
<td>Pumped condensate, steam condensate, gravity or vacuum (30" HG to 30 psig)</td>
<td>0 to 415 kPa (60 psig).</td>
</tr>
</tbody>
</table>
2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Provide one each of the following test items to the Resident Engineer:
1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range.
3. 0 - 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.15 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

SPEC WRITER NOTE: Verify that the extent of freeze protection for outdoor steam, condensate, and pumped condensate piping is clearly described and that electrical drawings show power supply to heat tracing.

2.16 ELECTRICAL HEAT TRACING SYSTEMS

//A. Systems shall meet requirements of the National Electrical Code (NEC), Section 427.

B. Provide tracing for outdoor piping subject to freezing temperatures (Below 38 degrees F) as follows:
//1. Steam piping exposed to weather. //
//2. Steam condensate exposed to weather.//
//3. Pumped condensate piping exposed to weather.//

C. Heat tracing shall be provided to the extent shown on the drawings (Floor Plans and Elevations). Heat tracing shall extend below grade to below the defined frost line.

D. Heating Cable: Flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conductive inner core material between two parallel copper bus wires, designed for cut-to-length at the job site and for wrapping around valves and complex fittings. Self-regulation shall prevent overheating and burnouts even where the cable overlaps itself.
1. Provide end seals at ends of circuits. Wires at the ends of the circuits are not to be tied together.
2. Provide sufficient cable, as recommended by the manufacturer, to keep the pipe surface at 2.2 degrees C (36 degrees F) minimum during winter outdoor design temperature, but not less than the following:
a. 75 mm (3 inch) pipe and smaller with 25 mm (1 inch) thick insulation: 4 watts per foot of pipe.
b. 100 mm (4 inch) pipe and larger 38 mm (1-1/2 inch) thick insulation: 8 watts per feet of pipe.

SPEC WRITER NOTE: Coordinate the need for emergency power with project drawings (electric discipline).

E. Electrical Heating Tracing Accessories:
1. Power supply connection fitting and stainless steel mounting brackets. Provide stainless steel worm gear clamp to fasten bracket to pipe.
2. 13 mm (1/2 inch) wide fiberglass reinforced pressure sensitive cloth tape to fasten cable to pipe at 300 mm (12 inch) intervals.
3. Pipe surface temperature control thermostat: Cast aluminum, NEMA 4 (watertight) enclosure, 13 mm (1/2 inch) NPT conduit hub, SPST switch rated 20 amps at 480 volts AC, with capillary and copper bulb sensor. Set thermostat to maintain pipe surface temperature at not less than 1.1 degrees C (34 degrees F).
4. Signs: Manufacturer's standard (NEC Code), stamped "ELECTRIC TRACED" located on the insulation jacket at 3000 mm (10 feet) intervals along the pipe on alternating sides.

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.

C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convetors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.

E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.

G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.

H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.

I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

J. Where copper piping is connected to steel piping, provide dielectric connections.

K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M (8 feet) above grade with down turned elbow.

3.2 PIPE JOINTS
 A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder’s qualification requirements under "Quality
Assurance” in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.

C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.

B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.

C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.

D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

//3.5 SEISMIC BRACING

A. Provide is accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.//

3.6 LEAK TESTING

A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.

B. An operating test at design pressure, and for hot systems, design maximum temperature.

C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment
(convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.7 FLUSHING AND CLEANING PIPING SYSTEMS
A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.8 OPERATING AND PERFORMANCE TEST AND INSTRUCTION
A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Adjust red set hand on pressure gages to normal working pressure.

--- END ---