SECTION TABLE OF CONTENTS

DIVISION 35 - WATERWAY AND MARINE CONSTRUCTION

SECTION 35 59 13.14 20

POLYMERIC FENDER PILES

02/10

PART 1 GENERAL

1.1 REFERENCES
1.2 Glossary
1.3 SUBMITTALS
1.4 DELIVERY, STORAGE, AND HANDLING
1.5 BASIS OF BIDS
 1.5.1 Fender Piles

PART 2 PRODUCTS

2.1 PILE CLASSIFICATION
2.2 POLYMERIC PILES
2.3 PERFORMANCE REQUIREMENTS
2.4 PERFORMANCE CHARACTERISTICS
 2.4.1 Energy Absorption
 2.4.2 Maximum Elastic Deflection
 2.4.3 Allowable Flexural Stress
 2.4.4 Crushing Resistance
2.5 SIZE TOLERANCES
 2.5.1 Circular Piles
 2.5.2 Square Piles
2.6 MATERIALS
 2.6.1 Physical Properties
 2.6.2 Type 2 and 3 Polymeric Piles
 2.6.2.1 Placement of Reinforcing
 2.6.3 Type 5 Polymeric Piles
 2.6.3.1 Polymeric Composite Tube
 2.6.3.2 Outer Surface
 2.6.3.3 Inner Surface
 2.6.3.4 Concrete Fill
 2.7 PILE FINISHING
 2.7.1 Polymeric Pile Protection
 2.7.2 Surface Condition
2.7.3 Pile Tops
 2.7.3.1 Pile Top Caps

2.8 SOURCE QUALITY CONTROL
 2.8.1 Plant Inspection
 2.8.2 Curing
 2.8.2.1 Type 1, 2, 3 and 4 Polymeric Piles
 2.8.2.2 Type 5 Polymeric Piles

2.9 MANUFACTURER’S WARRANTY

2.10 CONTRACTOR’S WARRANTY

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Type 5 Polymeric Piles
 3.1.1.1 On Site Storage
 3.1.2 Preexcavation
 3.1.2.1 Jetting of Piles
 3.1.2.2 Spudding of Piles
 3.1.2.3 Predrilling of Piles
 3.1.3 Driving Piles
 3.1.3.1 Equipment
 3.1.3.2 Protection of Piles
 3.1.3.3 Tolerances in Driving
 3.1.4 Buoyant Piles
 3.1.5 Pile Cut-Off
 3.1.6 Fastening

3.2 FIELD TREATMENT
 3.2.1 Polymeric Work

3.3 FIELD QUALITY CONTROL
 3.3.1 Inspections
 3.3.1.1 Straightness
 3.3.1.2 Cracks and Defects
 3.3.2 Pile Driving Inspection
 3.3.3 Pile Records

ATTACHMENTS:

Pile Driving Log

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for polymeric fender piling. These fender piles are typically used for secondary fender systems.

Use of electronic communication is encouraged.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information. Brackets are used in the text to indicate designer choices or locations where text must be supplied by the designer.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: The extent and location of the work to be accomplished should be indicated on the project drawings or included in the project specification.

NOTE: The following information shall be shown on the drawings:

1. Locations of the fender piles. (If more than one type of fender is used, the location of each type should be indicated)

2. Fender design loads.
3. Size, shape, and length of piles.

5. Length of polymeric pile protection. (The camels, separators or watercraft should bear on the protective layer throughout the entire tidal range.

6. Soil data, where available.

7. Embedment depth. (The piles are typically designed as pinned/pinned, therefore the bottom of the piles should have lateral restraint but not fixity.

**

PART 1 GENERAL

1.1 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Do not use the Reference Wizard's Check Reference feature to update the issue dates, as this document is specific to the standards listed. This guide specification will be updated when the standards are updated.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 318 (2014; Errata 2014) Building Code Requirements for Structural Concrete and Commentary

ACI 318M (2011; Errata 2013) Building Code Requirements for Structural Concrete &
<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D2310</td>
<td>(2006; R 2012) Machine-Made "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe</td>
</tr>
<tr>
<td>ASTM D2996</td>
<td>(2001; E 2007; R 2007) Filament-Wound "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe</td>
</tr>
<tr>
<td>ASTM D792</td>
<td>(2013) Density and Specific Gravity (Relative Density) of Plastics by Displacement</td>
</tr>
<tr>
<td>ASTM D883</td>
<td>(2011) Terminology Relating to Plastics</td>
</tr>
</tbody>
</table>
1.2 Glossary

See ASTM D883 for standard terminology related to plastics.

Extrusion - A manufacturing process where molten polymer is forced through a die of a desired shape, to encapsulate fiberglass reinforced plastic or steel bars, which run continuously throughout the length of the product without joints.

FRP - Fiber reinforced polymer. A polymer matrix, either thermoset or thermoplastic, reinforced with a fiber or other material with a sufficient aspect ratio (length to thickness) to provide a discernable reinforcing function in one or more directions.

GFRP - Glass fiber reinforced plastic. A composite made from fiberglass reinforcement in a plastic (polymer) matrix.

Polymer - Any of numerous natural and synthetic compounds of usually high molecular weight consisting of up to millions of repeated linked units, each a relatively light and simple molecule.

Polymeric Pile - Piling products characterized by the use of polymers, where by (1) the pile strength or stiffness requires the inclusion of the polymer or (2) a minimum of 50 percent of the weight or volume is derived from the polymer. Polymeric piles may be reinforced by composite design for increased stiffness or strength.

Pultrusion - A continuous process for manufacturing composites that have a cross sectional shape. The process consists of pulling a fiber reinforcing material through a resin impregnation bath and through a shaping die, where the resin is subsequently cured.

Resin - Any of numerous physically similar polymerized synthetics or chemically modified natural resins. Two main types of polymers used for resins include thermoset and thermoplastic materials.

Thermoset Plastics (thermosets) - Refer to a range of polymer materials that once cured do not flow, or melt when heated. Thermoset materials are transformed, through the addition of energy, to a stronger substance. Thermoset materials are usually liquid or malleable prior to curing, and designed to be molded into their final form, or used as adhesive. Thermoset polymer resins can be transformed into plastics or rubbers by cross-linking. A thermoset material cannot be melted and re-molded after it is cured. Thermoset materials are generally stronger than thermoplastic materials. They are also better suited to high temperature applications. They are not easily recyclable like thermoplastics, which can be melted and re-molded. Examples of thermoset plastics include: natural rubber, Bakelite, Urea-Formaldehyde, Melamine, Polyester Resin, and Epoxy Resin.

Thermoplastics - Most thermoplastics are high molecular weight polymer chains, mostly joined through weak dispersion forces and more rarely dipole-dipole interactions. Thermoplastic polymers are usually contrasted with thermosetting polymers, which cannot go through melt/freeze cycles. Many thermoplastic materials are addition polymers (chain growth polymers), such as polyethylene and polypropylene.
1.3 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02, Shop Drawings
Polymeric piles; G[, [_____]]

SD-03, Product Data
Polymeric piles; G[, [_____]]

SECTION 35 59 13.14 20 Page 7
Include dimensions, material specifications, and method of manufacture.

Pile driving equipment; G[, [____]]

Driving helmet; G[, [____]]

Pile caps; G[, [____]]

Pile driving tips; G[, [____]]

Driving pads; G[, [____]]

Pile tops; G[, [____]]

Manufacturer's Warranty; G[, [____]]

Contractor's Warranty; G[, [____]]

SD-05 Design Data

Polymeric piles; G[, [____]]

Design calculations; G[, [____]]

Fender pile reaction load

Allowable bending moment

Allowable flexural stress

Maximum elastic deflection

Concrete mix design; G[, [____]]

SD-06, Test Reports

Material Test Reports; G[, [____]]

Performance Test Data; G[, [____]]

**
NOTE: Allowable flexural stress per ASTM D7258 and Maximum load per ASTM C496/C496M
**

Allowable flexural stress

Maximum load

Delivery inspection list

Field inspect and submit a verification list of each pile indicating the condition of the polymeric. Do not incorporate materials damaged in transport from plant to site.

SD-07, Certificates

Driving hammer; G[, [____]]
Polymeric piles; G[, [____]]

SD-11, Closeout Submittals

Pile records

Submit the close out version of the pile driving records in a type written format within 14 calendar days after completion of driving.

1.4 DELIVERY, STORAGE, AND HANDLING

The Contractor shall inspect each pile, upon delivery, for surface damage, cracks, blemishes, scarification and straightness. The condition of each pile shall be recorded and the delivery inspection list shall be submitted to the Contracting Officer. The Contractor shall handle the piles with ropes or nylon slings without dropping, breaking, bruising or penetrating outer surface with tools. Do not use cant dogs, peaveys, hooks or pikepoles. Protect piles from damage. Store piles above the ground on blocking which is shaped or padded and prevent scarification or sagging of the piles. Storage racks shall be arranged to permit air circulation and shall be covered.

1.5 BASIS OF BIDS

1.5.1 Fender Piles

Base bids on the number, circumference, and length of piles as indicated. Should the total number of piles vary from that specified as the basis for bidding, the Contract price will be adjusted in accordance with Contract Clause entitled "Changes". Adjustment in Contract price will not be made for cutting off piles, for any portion of a pile remaining above the cutoff elevation, or for broken, damaged or rejected piles.

PART 2 PRODUCTS

2.1 PILE CLASSIFICATION

1. Type 1 - Polymeric only

**
NOTE: Type 1 piles are not recommended for fender pile applications.
**

**
NOTE: Hollow piles are included in the Type 1 pile classification.
**

2. Type 2 - Polymeric with reinforcement in the form of chopped, milled or continuous fiber or mineral

**
NOTE: Type 2 piles are not recommended for fender pile applications.
**

3. Type 3 - Polymeric with reinforcement in the form of metallic bars, or cages, or shapes
4. Type 4 - Polymeric with reinforcement in the form of non-metallic bars or cages

NOTE: The most common Type 4 fender piles are plastic piles with fiberglass reinforcing.

5. Type 5 - Polymeric composite tube with a concrete core

NOTE: The most common Type 5 fender piles are fiberglass tubes with concrete fill.

6. Type 6 - Any other polymeric piling meeting the requirements of this specification and not otherwise described above

NOTE: The Type 6 fender pile section provides for new types of polymeric pilings and are not recommended for fender pile applications.

2.2 POLYMERIC PILES

Provide polymeric piles manufactured as specified. All polymeric fender piles of a particular type shall be the product of a single manufacturer. Each pile shall be permanently tagged with the pile's serial number, date of fabrication and manufacturer's name. The stamp or tag shall be placed two to four feet from the top of the pile and shall be visible after installation. The tags shall not be placed on the outer face (berthing side) of the pile. Piles shall be in one piece. Splices will not be permitted, unless approved by the Contracting Officer. Provide pile driving tips, when required, per Manufacturer's recommendations. All polymeric fender piles shall be delivered to the job site complete and ready to drive. Pile diameter shall be as indicated.

2.3 PERFORMANCE REQUIREMENTS

NOTE to Designer: Polymeric piles are not recommended for the replacement of single piles when the polymeric pile stiffness is different than that of the pile being replaced. When this occur, the less stiff pile will not carry its share of the berthing load. As an example, polymeric piles will usually be more flexible than timber piles, in which case the timber piles adjacent to the polymeric piles will take increased loads, which may cause the piles to fail. Therefore, single or limited replacement of the timber piles are not recommended.
Transverse misalignment of the piles can also cause individual piles to fail, and precautions to minimize this occurrence should be taken.

The cross-sectional dimensions of piles shall be determined on the basis of the ability to perform satisfactorily under the physical loading and environmental conditions imposed and to effectively perform the energy absorption properties desired. The Contractor shall submit the Performance Test Data and or Design Calculations to substantiate the performance.

2.4 PERFORMANCE CHARACTERISTICS

NOTE: The designer shall select the appropriate pile types and fill in the required performance characteristics for each pile.

Each fender pile shall have the following performance characteristics:

<table>
<thead>
<tr>
<th>PERFORMANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PILE TYPE</td>
</tr>
<tr>
<td>[1]</td>
</tr>
<tr>
<td>[2]</td>
</tr>
<tr>
<td>[3]</td>
</tr>
<tr>
<td>[4]</td>
</tr>
<tr>
<td>[5]</td>
</tr>
<tr>
<td>[6]</td>
</tr>
</tbody>
</table>

2.4.1 Energy Absorption

Based upon the energy absorption specified herein, contractor shall provide the fender pile reaction load for the particular pile selected. Contractor shall calculate the allowable bending moment for the particular pile selected.

2.4.2 Maximum Elastic Deflection

Contractor shall calculate the maximum elastic deflection for the particular pile selected and demonstrate that it is less than the maximum elastic deflection specified herein.
2.4.3 Allowable Flexural Stress

Contractor shall calculate allowable flexural stress. A factor of safety of 2 shall be used when comparing to allowable flexural stress derived from test procedures specified in ASTM D7258.

2.4.4 Crushing Resistance

Contractor shall determine maximum reaction load at top of pile connection point with pier/wharf. A factor of safety of 2 \([3] \) \([4] \) shall be used for crushing when comparing to maximum load derived from test procedures specified in ASTM C496/C496M.

2.5 SIZE TOLERANCES

2.5.1 Circular Piles

The tolerance against the specified diameter shall be plus or minus 3 percent. The maximum eccentricity (out of roundness) at any cross-section is \(e=0.2 \) when calculated as follows:

\[
e=(\text{square root of } (a^2-b^2)) \div a; \text{ where } 2a = \text{major diameter and } 2b = \text{minor diameter.}
\]

2.5.2 Square Piles

The dimensions shall not vary from the specified dimension by more than 3 percent. The squareness of the piles shall not be greater than 3 percent when calculated as follows: the percentage shall be determined by measuring the opposing diagonals and using the larger diameter as the numerator and the smaller diagonal as the denominator.

2.6 MATERIALS

2.6.1 Physical Properties

**
NOTE: The designer shall select the appropriate pile types and fill in the required physical properties for each pile. Properties which do not apply to a particular pile type may be deleted or indicated as n/a.
**

The physical properties for each type of material shall be as follows: The Contractor shall submit Material Test Reports, as applicable, for each type of material.
<table>
<thead>
<tr>
<th>Physical Properties of Polymeric Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>Density ASTM D792 kg/m³ lb/ft³</td>
</tr>
<tr>
<td>Water Absorption ASTM D570 at 24 hours</td>
</tr>
<tr>
<td>Brittleness ASTM D746 at minus 40 degrees C F</td>
</tr>
<tr>
<td>Hardness ASTM D2240 Shore D</td>
</tr>
<tr>
<td>Ultraviolet ASTM D4329 Change in Shore D Durometer Hardness after 500 hours Exposure</td>
</tr>
<tr>
<td>Weatherability ASTM D6662 Change in Flexural Modulus and Strength after 2000 hours Exposure</td>
</tr>
<tr>
<td>Flame Spread Rating ASTM E84</td>
</tr>
</tbody>
</table>
Physical Properties of Polymeric Material

<table>
<thead>
<tr>
<th>Property</th>
<th>Type 1</th>
<th>Types 2, 3 & 4</th>
<th>Type 5</th>
<th>Type 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion ASTM D4060</td>
<td><0.5g</td>
<td><0.5g</td>
<td>n/a</td>
<td>[_____]</td>
</tr>
<tr>
<td>Weight loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5-3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycles: 10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive Modulus ASTM D695</td>
<td>24,000</td>
<td>275,000</td>
<td>340,000</td>
<td>[_____]</td>
</tr>
<tr>
<td>kPa psi, minimum</td>
<td>3,500</td>
<td>40,000</td>
<td>50,000</td>
<td></td>
</tr>
<tr>
<td>Tensile Properties ASTM D638</td>
<td>3,450</td>
<td>3,450</td>
<td>410,000</td>
<td>[_____]</td>
</tr>
<tr>
<td>kPa psi, minimum</td>
<td>500</td>
<td>500</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength Circumferential ASTM D1599</td>
<td>[_____]</td>
<td>[_____]</td>
<td>240,000</td>
<td>35,000</td>
</tr>
<tr>
<td>kPa psi, minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexural Properties ASTM D6109, except as modified herein</td>
<td>[_____]</td>
<td>[_____]</td>
<td>[_____]</td>
<td>[_____]</td>
</tr>
<tr>
<td>kPa psi, minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber Percent by Volume</td>
<td>[_____] n/a</td>
<td>[_____]</td>
<td>50</td>
<td>[_____]</td>
</tr>
<tr>
<td>minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber Percent by Weight</td>
<td>[_____] n/a</td>
<td>[_____]</td>
<td>68</td>
<td>[_____]</td>
</tr>
<tr>
<td>minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laminate Void Content percent</td>
<td>[_____] n/a</td>
<td>[_____] n/a</td>
<td>minus 2</td>
<td>[_____]</td>
</tr>
</tbody>
</table>
2.6.2 Type 2 and 3 Polymeric Piles

2.6.2.1 Placement of Reinforcing

Longitudinal reinforcement shall remain within 5 percent of the specified radial location as measured from centroid of the cross-section of the pile. Longitudinal reinforcement shall not twist more than 5 degrees over any 6.1 m 20 foot section of the pile. The minimum cover shall be 25 mm 1 inch.

2.6.3 Type 5 Polymeric Piles

2.6.3.1 Polymeric Composite Tube

The polymeric composite pile shall be comprised of material which provides the tube strength. The polymeric material shall be "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin). The tube shall be manufactured in accordance with ASTM D2996 and ASTM D2310.

2.6.3.2 Outer Surface

The outer surface is to provide a protective barrier as well as wear and impact resistance and shall be comprised of a suitable, high impact, marine grade coating. It shall provide an ultraviolet and chemical resistant barrier of at least 0.75 mm 0.03 inch thickness and be of a black opaque color.

2.6.3.3 Inner Surface

The inner surface shall be comprised of a pure polymeric liner layer of at least 0.64 mm 0.025 inch thickness for alkalinity resistance. The inner surface shall be roughened or wrinkled to provide adhesion of the inner shell to the concrete fill.

2.6.3.4 Concrete Fill

The concrete fill shall be secured and engaged within the polymeric composite tube and act compositely. The concrete fill shall have a minimum 28-day compressive strength of 41.4 MPa 6,000 psi. Core concrete shall be expansive in nature and must set to a permanent positive stress, with a minimum outward expansion of 0.14 MPa 20 psi. Submit a concrete mix design certifying that the proportioning of the mix is in accordance with ACI 211.1 or ACI 318M ACI 318 for specified strength and is based upon aggregate data which has been determined by laboratory tests during the last twelve months. All material to be provided by an approved batch plant.

2.7 PILE FINISHING

2.7.1 Polymeric Pile Protection

The top of the polymeric piles shall have an abrasion resistance less than 0.5g per ASTM D4060. If the materials are reactive to seawater, the pile shall be protected by encasement in an abrasion resistant polymer. [The protective encasement shall extend, as a minimum, from 0.6 m 2 feet below the lowest low water to 0.6 m 2 feet above the highest high water, unless indicated otherwise.]

**

NOTE: For barges or other flat sided vessels and...
for systems supporting deep draft separators, the length of protection may need to be increased. For barges, the contact surface may be near the deck level if there is a rail, or if the piles are sloped the contact area may be near the bottom of the hull. For deep draft separators, the contact areas will be at the upper and lower rub strips.

2.7.2 Surface Condition

The pile surface exhibiting roughness or corrugations due to manufacturing processes, shall not have depressions or projections greater than 12 mm 1/2 inch and less than 5,800 mm2 9 in2 in surface area. The surface of the pile shall contain no cracks or splits, in any orientation.

2.7.3 Pile Tops

The tops of the polymeric piles shall be covered with an approved cap or encapsulated in polymeric material.

2.7.3.1 Pile Top Caps

The caps shall be made of a polyethylene material, have a thickness of approximately 3 mm 0.125 inches and be colored to match the pile. The caps shall be secured in place with 6 mm diameter by 38 mm 1/4 inch diameter by 1 1/2 inch long stainless steel screws spaced a maximum of 200 mm 8 inches on center. The screws shall be centered in the ribbon band of the cap. The screw types shall be appropriate for the matrix material and be placed in pilot holes.

2.8 SOURCE QUALITY CONTROL

2.8.1 Plant Inspection

The Contracting Officer reserves the right to perform plant inspection of the polymeric pile manufacturing process. Provide the Contracting Officer with a minimum 2-week advance notice, indicating the date manufacturing is to start, and tests that are to be conducted. Allow the Contracting Officer unlimited access to the plant and inspection privileges for each facet of the manufacturing process.

2.8.2 Curing

2.8.2.1 Type 1, 2, 3 and 4 Polymeric Piles

The polymeric piles, Types 1, 2, 3 and 4 shall cure at the plant a minimum of three weeks prior to shipment to the site.

2.8.2.2 Type 5 Polymeric Piles

Concrete filled piles shall be filled with concrete prior to driving. Support the pile to prevent sag during concrete placement and curing. The Type 5 polymeric piles shall cure a minimum of one week prior to placement of the concrete fill. Piles shall be moved to curing table within 20 minutes of wet concrete placement. Do not handle or transport piles for seven days or until concrete has reached 17 MPa 2,500 psi strength. Drive piles after full strength has been obtained or after 28 days of curing.
2.9 MANUFACTURER'S WARRANTY

In addition to the Manufacturer's standard one year warranty, the Manufacturer shall warranty all polymeric piles to be free from defects in materials and workmanship for a period of ten years. The Contracting Officer has the right to require complete replacement of any pile with material or workmanship defects. The Manufacturer shall cover all construction costs related to the repair or replacement of the defective piles. This warranty need not cover repairs required as a result of normal wear and tear, misuse, mishandling, extreme weather or other acts of God, failure to perform routine maintenance, non-recommended or improperly executed alterations by anyone other than the Manufacturer, tampering, loading of the pile beyond its rated capacity, improper installation, or other use inconsistent with Manufacturer's specifications.

2.10 CONTRACTOR'S WARRANTY

The Contractor shall warranty all polymeric piles to be free from defects in materials caused by mishandling prior to installation and improper installation for a period of 5 years. The Contracting Officer has the right to require complete replacement of any pile deemed by the Contracting Officer to have defects due to mishandling or improper installation. The Contractor shall cover all construction costs related to the repair or replacement of the defective piles.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Type 5 Polymeric Piles

3.1.1.1 On Site Storage

Piles shall be stored and continually supported in a manner which minimizes creep, saddling and sag.

3.1.2 Preexcavation

3.1.2.1 Jetting of Piles

Jetting of piles shall not be permitted without the approval of the Contracting Officer.

3.1.2.2 Spudding of Piles

Spudding of piles shall not be permitted without the approval of the Contracting Officer. If spudding is allowed, it shall be limited to an elevation 5 feet above the specified pile tip elevation.

3.1.2.3 Predrilling of Piles

Predrilling of piles shall not be permitted without the approval of the Contracting Officer.

3.1.3 Driving Piles

3.1.3.1 Equipment

Pile driving equipment shall be an air, steam, or diesel powered hammer,
and be of an approved type. The driving hammer shall have a capacity at least equal to the hammer Manufacturer's recommendation for the total weight of pile and character of subsurface material to be encountered. Provide driving helmet, pile caps, pile driving tips and driving pads as recommended by the pile Manufacturer for the polymeric piles. If a pile fails to reach the indicated tip elevation, notify Contracting Officer, provide pile record and perform corrective measures as directed. Provide hearing protection when noise levels exceed 140 dB.

3.1.3.2 Protection of Piles

Square the heads and tips of piles to the driving axis. Laterally support piles during driving, but do not unduly restrain piles from rotation in the leads. The use of swinging or hanging leads shall be at Contractor's risk. Any damage incurred by such use shall be repaired by the Contractor at the Contractor's expense.

3.1.3.3 Tolerances in Driving

Piles shall be driven in the locations indicated. Each fender pile, at its contact with the design mudline or mudline elevation indicated in the construction documents, shall be placed a maximum of 40 mm per meter 0.5 inch per foot of free pile length (length in meters feet above the average soil contact line at each pile) in a direction parallel to the pier face and 10 mm per meter 0.125 inch per foot of the free pile length in a direction perpendicular to the pier face. Remove and replace with new piles those damaged, mislocated, driven below the design cutoff, or driven out of alignment.

3.1.4 Buoyant Piles

After driving buoyant piles, the contractor shall provide temporary framing or weights to prevent the pile from floating up out of the ground. The temporary framing or weights shall remain in place until the pile is secured in place. If there is sufficient friction provided by the soil to prevent the pile from floating, the Contractor may, at his own risk, waive the temporary framing or weight requirement.

3.1.5 Pile Cut-Off

Each polymeric pile provided shall be a minimum of 0.6 meter 2 feet longer than the specified length to allow the top to be cut-off if it is damaged during driving. Cut off piles with a smooth level cut using pneumatic tools, sawing, or other suitable methods per the polymeric pile Manufacturer's recommendations. Use of explosives for cutting is not permitted. Pile heads at cut-off shall be level and sound. The Contractor shall cut off piles at no additional cost to the Government.

3.1.6 Fastening

Fasten the polymeric piles to the existing pier as indicated.

3.2 FIELD TREATMENT

3.2.1 Polymeric Work

Field treat cuts, bevels, notches, refacing and abrasions made in the field in accordance with the Manufacturer's recommendations. The tops of the piles shall be covered with an approved cap. The cover shall be applied
per the Manufacturer's recommendations.

3.3 FIELD QUALITY CONTROL

3.3.1 Inspections

Inspect piles when delivered and when in the leads immediately before driving. Secure piles in their proper alignment.

When Government inspections result in product rejection, the Contractor shall promptly segregate and remove rejected material from the premises. The Government may also charge the Contractor an additional cost of inspection or testing when prior rejection makes reinspection or retesting necessary.

3.3.1.1 Straightness

Each pile shall be measured for straightness prior to driving by placing a straight line from the center of the top to the center of the tip. The line shall lie entirely within a 250 mm 10 inch diameter circle centered at the centerline of the pile, when it is suspended from the head. The piles shall also be free of short crooks that deviate more than 64 mm 2½ inch from straightness in any 6 meter 20 feet length. Piles not meeting with criteria shall be rejected.

3.3.1.2 Cracks and Defects

Each pile shall be inspected for cracks and defects prior to driving. After the piles are installed and all connections to the structure are completed, each pile shall again be inspected for cracks and defects. The Contractor shall notify the Contracting Officer of any cracking or other defects observed, and await direction. The Contracting Officer may reject any piles with defects. The Contractor shall be responsible for all costs incurred to replace the rejected piles.

3.3.2 Pile Driving Inspection

The Contractor shall perform special inspection of the pile installation. The Contractor shall employ approved Special Inspectors as required in the paragraph entitled "QC Specialist Duties and Qualifications" in Section 01 45 00 00 10 01 45 00 00 20 01 45 00 00 40 QUALITY CONTROL.

3.3.3 Pile Records

For each pile, keep a record of the number of blows required for each 0.30 m foot of penetration and the number of blows for the last 150 mm 6 inch penetration or fraction thereof. Include in the record the beginning and ending times of each operation during driving of pile, type and size of the hammer used, rate of operation, stroke or equivalent stroke for diesel hammer, type of driving helmet, and type and dimension of the hammer cushion (capblock) and pile cushion used. Record re-tap data and any unusual occurrence during driving of the pile. Include in the record performance characteristics of jet pump, unassisted penetration of pile, jet-assisted penetration of pile, and tip elevation before driving and at end of driving. Notify Contracting Officer 10 days prior to driving of piles. Submit complete and accurate records of installed piles to Contracting Officer within 15 calendar days after completion of the pile driving. Make pile-driving records available to the Contracting Officer at the job site within 24 hours of each day's pile driving. A preprinted form
for recording pile driving data, the Pile Driving Log, is included at the end of this section.
PILE DRIVING LOG

CONTRACT NO.________________________ CONTRACT NAME_______________________
CONTRACTOR_____________________________ TYPE OF PILE_____________________
PILE LOCATION_____________ PILE SIZE: BUTT/TIP: ________ LENGTH_________
GROUND ELEVATION_________________________ CUT OFF ELEVATION______________
PILE TIP ELEVATION_________________ VERTICAL (_____) BATTER 1 ON (____)
SPLICES ELEVATION____________________ COMPANY____________________________

HAMMER: MAKE & MODEL_________________ WT. RAM_____________________
STROKE______________________ RAM RATED ENERGY________________________
DESCRIPTION & DIMENSIONS OF DRIVING CAP_________________________________
CUSHION MATERIALS & THICKNESS___

INSPECTOR___

"DEPTH" COLUMN OF PILE DRIVING RECORD REFERENCED TO MUDLINE ELEVATION

TIME: START DRIVING_______ FINISH DRIVING________ DRIVING TIME_________
INTERRUPTIONS (TIME, TIP ELEV. & REASON)__________________________________
JET PRESSURE & ELEVATIONS___

DRIVING RESISTANCE

<table>
<thead>
<tr>
<th>DEPTH M</th>
<th>NO. OF BLOWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>_____</td>
<td>3.0</td>
<td>_____</td>
<td>7.0</td>
<td>_____</td>
<td>10.0</td>
<td>_____</td>
</tr>
<tr>
<td>0.3</td>
<td>_____</td>
<td>3.3</td>
<td>_____</td>
<td>7.3</td>
<td>_____</td>
<td>10.3</td>
<td>_____</td>
</tr>
<tr>
<td>0.6</td>
<td>_____</td>
<td>3.6</td>
<td>_____</td>
<td>7.6</td>
<td>_____</td>
<td>10.6</td>
<td>_____</td>
</tr>
<tr>
<td>0.9</td>
<td>_____</td>
<td>3.9</td>
<td>_____</td>
<td>7.9</td>
<td>_____</td>
<td>10.9</td>
<td>_____</td>
</tr>
<tr>
<td>1.2</td>
<td>_____</td>
<td>4.2</td>
<td>_____</td>
<td>8.2</td>
<td>_____</td>
<td>11.2</td>
<td>_____</td>
</tr>
<tr>
<td>1.5</td>
<td>_____</td>
<td>4.5</td>
<td>_____</td>
<td>8.5</td>
<td>_____</td>
<td>11.5</td>
<td>_____</td>
</tr>
<tr>
<td>1.8</td>
<td>_____</td>
<td>4.8</td>
<td>_____</td>
<td>8.8</td>
<td>_____</td>
<td>11.8</td>
<td>_____</td>
</tr>
<tr>
<td>2.1</td>
<td>_____</td>
<td>5.1</td>
<td>_____</td>
<td>9.1</td>
<td>_____</td>
<td>12.1</td>
<td>_____</td>
</tr>
<tr>
<td>2.4</td>
<td>_____</td>
<td>5.4</td>
<td>_____</td>
<td>9.4</td>
<td>_____</td>
<td>12.4</td>
<td>_____</td>
</tr>
<tr>
<td>2.7</td>
<td>_____</td>
<td>5.7</td>
<td>_____</td>
<td>9.7</td>
<td>_____</td>
<td>12.7</td>
<td>_____</td>
</tr>
</tbody>
</table>

REMARKS___

PILE TOP ELEVATION: FROM DRAWING ________________
TIP ELEVATION = GROUND ELEVATION - DRIVEN DEPTH = ________________
DRIVEN LENGTH = PILE TOP ELEVATION - TIP ELEVATION = ________________
CUT OFF LENGTH = PILE LENGTH - DRIVEN LENGTH = ________________
PILE DRIVING LOG

CONTRACT NO.________________________ CONTRACT NAME_______________________
CONTRACTOR_____________________________ TYPE OF PILE_____________________
PILE LOCATION_____________ PILE SIZE: BUTT/TIP: ________ LENGTH________
GROUND ELEVATION_________________________ PILE TOP ELEVATION________________
PILE TIP ELEVATION_________________ COMPANY_____________________________
HAMMER: MAKE & MODEL_________________ WT. RAM______________________
STROKE______________________ RAM RATED ENERGY____________________________
DESCRIPTION & DIMENSIONS OF DRIVING CAP___________________________________
CUSHION MATERIALS & THICKNESS___
INSPECTOR___

"DEPTH" COLUMN OF PILE DRIVING RECORD REFERENCED TO MUDLINE ELEVATION

TIME: START DRIVING_______ FINISH DRIVING________ DRIVING TIME________
INTERRUPTIONS (TIME, TIP ELEV. & REASON)__________________________________
JET PRESSURE & ELEVATIONS___

DRIVING RESISTANCE

<table>
<thead>
<tr>
<th>DEPTH (FT.)</th>
<th>NO. OF BLOWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>_____</td>
<td>10</td>
<td>_____</td>
<td>20</td>
<td>_____</td>
<td>30</td>
<td>_____</td>
</tr>
<tr>
<td>1</td>
<td>_____</td>
<td>11</td>
<td>_____</td>
<td>21</td>
<td>_____</td>
<td>31</td>
<td>_____</td>
</tr>
<tr>
<td>2</td>
<td>_____</td>
<td>12</td>
<td>_____</td>
<td>22</td>
<td>_____</td>
<td>32</td>
<td>_____</td>
</tr>
<tr>
<td>3</td>
<td>_____</td>
<td>13</td>
<td>_____</td>
<td>23</td>
<td>_____</td>
<td>33</td>
<td>_____</td>
</tr>
<tr>
<td>4</td>
<td>_____</td>
<td>14</td>
<td>_____</td>
<td>24</td>
<td>_____</td>
<td>34</td>
<td>_____</td>
</tr>
<tr>
<td>5</td>
<td>_____</td>
<td>15</td>
<td>_____</td>
<td>25</td>
<td>_____</td>
<td>35</td>
<td>_____</td>
</tr>
<tr>
<td>6</td>
<td>_____</td>
<td>16</td>
<td>_____</td>
<td>26</td>
<td>_____</td>
<td>36</td>
<td>_____</td>
</tr>
<tr>
<td>7</td>
<td>_____</td>
<td>17</td>
<td>_____</td>
<td>27</td>
<td>_____</td>
<td>37</td>
<td>_____</td>
</tr>
<tr>
<td>8</td>
<td>_____</td>
<td>18</td>
<td>_____</td>
<td>28</td>
<td>_____</td>
<td>38</td>
<td>_____</td>
</tr>
<tr>
<td>9</td>
<td>_____</td>
<td>19</td>
<td>_____</td>
<td>29</td>
<td>_____</td>
<td>39</td>
<td>_____</td>
</tr>
</tbody>
</table>

REMARKS___
__
__

PILE TOP ELEVATION: FROM DRAWING

TIP ELEVATION = GROUND ELEVATION - DRIVEN DEPTH =
DRIVEN LENGTH = PILE TOP ELEVATION - TIP ELEVATION =
CUT OFF LENGTH = PILE LENGTH - DRIVEN LENGTH =

-- End of Section --

SECTION 35 59 13.14 20 Page 22