SECTION TABLE OF CONTENTS

DIVISION 35 - WATERWAY AND MARINE CONSTRUCTION

SECTION 35 42 34

REINFORCED SOIL SLOPE

01/08

PART 1 GENERAL

1.1 MEASUREMENT AND PAYMENT
 1.1.1 Excavation
 1.1.2 Fill
 1.1.3 Soil Slope Reinforcement
 1.1.4 Soil Slope Drainage System
 1.1.5 Soil Slope Facing and Seeding

1.2 REFERENCES

1.3 DEFINITIONS
 1.3.1 Drainage Aggregate
 1.3.2 Fill
 1.3.3 Reinforced Fill
 1.3.4 Retained Fill
 1.3.5 Reinforcement
 1.3.6 Long Term Design Strength

1.4 SUBMITTALS

1.5 QUALITY ASSURANCE
 1.5.1 Manufacturer Representative
 1.5.2 Detailed Drawings
 1.5.3 Classification of soil materials

1.6 DELIVERY, STORAGE, AND HANDLING
 1.6.1 Labeling
 1.6.2 Handling
 1.6.3 Storage

PART 2 PRODUCTS

2.1 REINFORCEMENT
 2.1.1 Geogrid Reinforcement
 2.1.2 Geotextile Reinforcement
 2.1.3 Reinforcement Properties
 2.1.3.1 Primary Reinforcement Properties
 2.1.3.2 Secondary Reinforcement Properties
 2.1.3.3 Long Term Design Strength
 2.1.4 Reinforcement Splices
2.2 GEOTEXTILE FILTER
2.3 TURF REINFORCEMENT MAT
2.4 EROSION CONTROL BLANKET
2.5 SOILS AND AGGREGATES
2.6 DRAINAGE PIPE
2.7 SEED

PART 3 EXECUTION

3.1 SHORING
3.2 EARTHWORK
 3.2.1 Excavation
 3.2.2 Stockpiles
3.3 SUBGRADE PREPARATION
3.4 REINFORCEMENT INSTALLATION
3.5 FILL PLACEMENT
3.6 COMPACTION
 3.6.1 Degree of Compaction
 3.6.2 Moisture Control
 3.6.3 Compaction
3.7 SOIL TESTING
 3.7.1 General
 3.7.2 Transmittal
 3.7.3 Corrective Action
 3.7.4 Testing Schedule
3.8 REINFORCEMENT TESTING
3.9 DRAINAGE PIPE
3.10 SEEDING
3.11 CONSTRUCTION TOLERANCES
3.12 PROTECTION OF WORK

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for steepened soil slopes using geosynthetic soil reinforcement. This section was originally developed for USACE Civil Works projects.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This guide specification does not address requirements for dewatering, shoring, or earthwork below foundation level. Geometric requirements such as slope height, crest, toe, length, and construction limits should be shown on the drawings.

Notes before paragraphs are provided to present assumptions in preparation of the guide specification, make suggestions for conditions that warrant revisions, and provide background technical information or references for further information. They should be consulted prior to revising wording for project specifications.
1.1 MEASUREMENT AND PAYMENT

1.1.1 Excavation

The unit of measurement for excavation will be the cubic meter (CM) yard (CY), computed by the average end area method from cross sections taken before and after the excavation operations. The volume to be paid for will be the material measured in its original position and removed from the excavation areas when the material is acceptably utilized or disposed of as herein specified. The excavation shall be unclassified and include material of all types. The measurement will not include material excavated without authorization. Payment will be made at the respective unit price listed on the bidding schedule. Payment will be full compensation for furnishing all material, labor, equipment, supplies and incidentals to complete the work. Shoring shall be incidental to excavation.

1.1.2 Fill

Materials of all types not otherwise paid for shall be included under the unit price for fill. The unit of measurement for fill will be the cubic meter (CM) yard (CY) computed by the average end area method from cross sections taken of the final slope and after the excavation operations. The volume to be paid for will be the material measured in its final position and placed within the designated areas when the material is acceptably placed and compacted as herein specified. Payment will be made at the respective unit price listed on the bidding schedule. Payment will be full compensation for furnishing all material, labor, equipment, supplies and incidentals to complete the work.

1.1.3 Soil Slope Reinforcement

The unit of measurement for reinforcement will be the square meter (SM) yard (SY). The pay lines of the reinforcement will be neat lines taken off the approved shop drawings. Overlaps for splicing (if allowed) and for the Contractors convenience will not be measured for payment. Overlaps in curved sections will be measured assuming the slope is linear. Payment will be made at the respective unit price listed on the bidding schedule. Payment will be full compensation for furnishing all material, labor, equipment, supplies and incidentals to complete the work.

1.1.4 Soil Slope Drainage System

The drainage system, including associated pipe, geotextile, and aggregate will not be measured for payment and will be paid for on a job basis (JB), complete. Payment will be full compensation for furnishing all material, labor, equipment, supplies and incidentals to complete the work.

1.1.5 Soil Slope Facing and Seeding

Facing and seeding of the soil slope will be measured by the square meter (SM) yard (SY) of exposed face, measured in the plane of the slope face. The pay lines will be neat lines taken off the approved shop drawings. The work shall include [seed, mulch, turf reinforcement mat, erosion control blankets, erosion control netting, and staples]. Payment will be made at the respective unit price listed on the bidding schedule, and will be full compensation for furnishing all material, labor, equipment, supplies and incidentals to complete the work.
REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

<table>
<thead>
<tr>
<th>Organization</th>
<th>Designation</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
</table>

ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>Organization</th>
<th>Designation</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D1556</td>
<td>(2007)</td>
<td>Density and Unit Weight of Soil in Place by the Sand-Cone Method</td>
<td></td>
</tr>
<tr>
<td>ASTM D2487</td>
<td>(2011)</td>
<td>Soils for Engineering Purposes (Unified Soil Classification System)</td>
<td></td>
</tr>
<tr>
<td>ASTM D4355/D4355M</td>
<td>(2014)</td>
<td>Deterioration of Geotextiles from Exposure to Light, Moisture and Heat in a Xenon-Arc Type Apparatus</td>
<td></td>
</tr>
<tr>
<td>ASTM D448</td>
<td>(2012)</td>
<td>Sizes of Aggregate for Road and Bridge Construction</td>
<td></td>
</tr>
<tr>
<td>ASTM D4491</td>
<td>(1999a; R 2014; E 2014)</td>
<td>Water Permeability</td>
<td></td>
</tr>
</tbody>
</table>
of Geotextiles by Permittivity

ASTM D4595
(2011) Tensile Properties of Geotextiles by the Wide-Width Strip Method

ASTM D4632/D4632M
(2008; R 2013; E 2013; E 2014) Grab Breaking Load and Elongation of Geotextiles

ASTM D4751
(2012) Determining Apparent Opening Size of a Geotextile

ASTM D4873
(2002; R 2009) Identification, Storage, and Handling of Geosynthetic Rolls and Samples

ASTM D5035
(2011) Breaking Force and Elongation of Textile Fabrics (Strip Method)

ASTM D5199
(2012) Measuring Nominal Thickness of Geosynthetics

ASTM D5261
(2010) Measuring Mass Per Unit Area of Geotextiles

ASTM D5321/D5321M
(2014) Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method

ASTM D6637

ASTM D6706

ASTM D6938
(2010) Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

ASTM D698
(2012; E 2014) Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/cu. ft. (600 kN-m/cu. m.))

GEOSYNTHETIC INSTITUTE (GSI)

GSI GRI GG6
(1996) Grip Types for Use in Wide Width Testing of Geotextiles and Geogrids

NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)

NCMA TR127B
1.3 DEFINITIONS

**
NOTE: Subparagraph "Reinforcement" - This guide specification only applies to geosynthetic (extensible) reinforcement. There are differences in design and construction applicable to steel soil (inextensible) reinforcement.
**

1.3.1 Drainage Aggregate

Granular soil or aggregate which is placed in or around drains.

1.3.2 Fill

Soil or aggregate placed in, behind, or below the embankment or slope will be referred to as fill.

1.3.3 Reinforced Fill

Soil which is placed and compacted within the neat line volume of reinforcement as outlined on the plans.

1.3.4 Retained Fill

Soil which is placed and compacted behind the reinforced fill

1.3.5 Reinforcement

Reinforcement consisting of a geogrid or a geotextile product manufactured for use as reinforcing. Reinforcement does not include steel products.

1.3.6 Long Term Design Strength

The long term design strength (LTDS) is:

\[\text{LTDS} = \frac{T_{ult}}{(RF_D \times RF_ID \times RF_CR)} \]

where:

- \(T_{ult} \) is the ultimate strength
- \(RF_D \) is the reduction factor for chemical and biological durability
- \(RF_ID \) is the reduction factor for installation damage

SECTION 35 42 34 Page 7
RF_{CR} is the reduction factor for creep

1.4 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detailed Drawings; G[, [_____]].

Shoring

SD-03 Product Data
Geotextile Reinforcement
Field Testing Results
Calculations; G[, [____]].

SD-04 Samples
Reinforcement
SD-07 Certificates
Certificates of Compliance

1.5 QUALITY ASSURANCE

1.5.1 Manufacturer Representative

Provide a qualified and experienced representative from the reinforcement manufacturer available on an as-needed basis during the construction. The representative shall visit the site for consultation [at least once during construction] [as requested by the Contracting Officer].

1.5.2 Detailed Drawings

Submit the fabrication and installation drawings indicating fabrication and erection details for the slope, including sequencing and construction procedures. If approved by the Contracting Officer, shop drawings may consist of marked up contract drawings showing exact dimensions for the reinforcement supplied, and other minor revisions. The design and layout of the internal reinforcement shall be subject to the following:

a. All features indicated in the contract documents shall be incorporated in the final design and construction.

b. Each reinforcement level shall run as continuous as practical throughout the profile. If a geotextile filter is present, the reinforcement shall be laid out so that interference with the geotextile is minimized.

c. Any reinforcement not placed with the machine direction as the design reinforcement direction shall be identified on the shop drawings.

1.5.3 Classification of soil materials

Classification of soil materials shall be performed by the Contractor in accordance with ASTM D2488. The Contracting Officer reserves the right to revise the Contractor classifications. In the case of disagreement, the Contracting Officer's classification will govern unless the soils are classified in accordance with ASTM D2487. All testing completed by the Contractor in conjunction with soil material classification will be considered incidental to the contract work.

1.6 DELIVERY, STORAGE, AND HANDLING

Check products upon delivery to assure that the proper material has been received and is undamaged. Protect the materials from damage and exposure following the guidelines presented in ASTM D4873.
1.6.1 Labeling

Label each roll with the manufacturer's name, product identification, roll dimensions, lot number, and date manufactured.

1.6.2 Handling

Geosynthetic rolls shall be handled and unloaded by hand, or with load carrying straps, a fork lift with a stinger bar, or an axial bar assembly. Geosynthetic rolls shall not be dragged, lifted by one end, lifted by cables or chains, or dropped to the ground.

1.6.3 Storage

Protect geosynthetics from cement, paint, excessive mud, chemicals, sparks and flames, temperatures in excess of 70 degrees C 160 degrees F, and any other environmental condition that may degrade the physical properties. If stored outdoors, elevate the rolls from the ground surface. Protect geosynthetics, except for extruded grids, with an opaque waterproof cover. Deliver geosynthetics to the site in a dry and undamaged condition. Geotextiles shall not be exposed to direct sunlight for more than 7 days.

PART 2 PRODUCTS

2.1 REINFORCEMENT

**

NOTES: Polyester is susceptible to hydrolysis in alkaline conditions. A high molecular weight and low carboxyl end group number limit the hydrolysis. Normally, a mill certificate or certification of these properties is adequate. The molecular weight of polyester geosynthetics is determined from GSI GRI GG6, "Determination of the Number Average Molecular Weight of Polyethylene Terephthalate (PET) yarns Based on a Relative Viscosity Value", and ASTM D4603, "Determining Inherent Viscosity of Poly(Ethylene Terephthalate) (PET) by Glass Capillary Viscometer." The carboxyl end group number is determined from GSI GRI GG7, "Carboxyl End Group Content of Polyethylene Terephthalate (PET) Yarns."

Survivability - The AASHTO M 288 requirements are minimum requirements and will not normally control in the product selection. The AASHTO reference can be avoided by listing the grab, tear, burst, and puncture strengths. These properties are listed in AASHTO M 288. The puncture strength (ASTM D4833/D4833M), the trapezoidal tear strength (ASTM D4533) and the mullen burst strength (ASTM D3786) are recognized as important geotextile properties. For the intended application, the commonly specified values for puncture, burst and tear seldom control the product selection.

Geosynthetic Selection - The Federal Acquisition Regulations require full and open competition. Usually justification is not necessary if 3 products
meet the specifications. In combining various material requirements, it is easy to specify a geosynthetic product that does not exist. Design utilizing geosynthetics should include a listing with the calculations that verify the specified products are commercially available. The Geosynthetics Fabrics Report magazine publishes an annual specifiers guide that is ideal for this purpose.

The geogrid sample is intended to be for visual demonstration prior to product delivery. Quality assurance testing, if performed, should be obtained from material actually delivered to the job. If testing is to be performed for pre qualification, the minimum sample size should be 1 meter (36 inches) in length and the full roll width. Although 1 square meter (yard) will provide enough material for testing, the full roll width should be sampled since it provides a better selection of specimen locations, it clearly shows the machine and cross directions, and the difference in waste and shipping costs is negligible.

**
Submit Certificates of Compliance for the materials; and calculations of the long term design strength for the reinforcement in accordance with the NCMA TR127B or FHWA NHI-00-043. Submit an affidavit certifying that the reinforcement meets the project specifications. The affidavit shall be signed by an official authorized to certify on behalf of the manufacturer and shall be accompanied by a mill certificate that verifies physical properties were tested during manufacturing and lists the manufacturer's quality control testing. [If the affidavit is dated after award of the contract and/or is not specific to the project, the supplier shall attach a statement certifying that the affidavit addressed to the wholesale company is representative of the material supplied.] The documents shall include a statement confirming that all purchased resin used to produce reinforcement is virgin resin. The mill certificate shall include the tensile strength tested in accordance with either ASTM D4595 or ASTM D6637. The ultimate strength or index strength shall be based on the minimum average roll value tensile strength of the product using the wide width strength test in ASTM D4595 or the single rib test in ASTM D6637. The calculation shall itemize each reduction factor and include backup data to justify each reduction factor. Demonstrate splice efficiency from testing, if used. Submit samples of each type of reinforcement. The samples shall be labeled and have a minimum size 200 by 250 mm 8 by 10 inches. Geogrid shall include at least 2 apertures in each direction.

2.1.1 Geogrid Reinforcement

Provide geogrid which is a geosynthetic manufactured for reinforcement applications. The geogrid shall be a regular network of integrally connected polymer tensile elements with aperture geometry sufficient to permit significant mechanical interlock with the surrounding soil, aggregate, or other fill materials. The geogrid structure shall be dimensionally stable and able to retain its geometry under manufacture, transport and installation. The geogrid shall be manufactured with 100 percent virgin resin consisting of polyethylene, polypropylene, or polyester, and with a maximum of 5 percent in-plant regrind material.
Polyester resin shall have a minimum molecular weight of 25,000 and a carboxyl end group number less than 30. Polyethylene and polypropylene shall be stabilized with long term antioxidants.

2.1.2 Geotextile Reinforcement

Submit descriptive technical data on the reinforcement and geotextile filter materials. Include all material properties specified under paragraph PRODUCTS. Geotextile shall be a pervious sheet of polymeric material and shall consist of long-chain synthetic polymers composed of at least 95 percent by weight polyethylene, polypropylene, or polyesters. The geotextile shall be manufactured with 100 percent virgin resin, and with a maximum of 5 percent in-plant regrind material. Geotextile shall be formed into a network such that the filaments or yarns retain dimensional stability relative to each other, including the selvages. Polyester resin shall have a minimum molecular weight of 20,000 and a carboxyl end group number less than 50. Polyethylene and polypropylene shall be stabilized with long term antioxidants. For survivability during installation, and in addition to installation damage used in calculating the long term design strength, the geotextile shall meet the minimum requirements in AASHTO M 288 Class 1, and shall have a minimum mass per unit area of 270 g/m² 8 oz/sy.

2.1.3 Reinforcement Properties

**
NOTES: Permittivity - Reinforcement geotextiles should not puddle or impede infiltration or seepage. AASHTO M 288 provides some default guidance.
**

2.1.3.1 Primary Reinforcement Properties

The reinforcement shown on the contract drawings shall meet the property requirements listed in Table 1. Reinforcement strength requirements represent minimum average roll values in the machine direction.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Term Design Strength</td>
<td>[_____] kN/m lb/inch</td>
<td>NCMA TR127B, Method A</td>
</tr>
<tr>
<td>Permittivity</td>
<td>[0.5][_____] per second</td>
<td>ASTM D4491</td>
</tr>
<tr>
<td>UV Resistance</td>
<td>70 percent after 500 hours</td>
<td>ASTM D4355/D4355M</td>
</tr>
<tr>
<td>Coefficient of Interaction for Pullout</td>
<td>[.85][_____]</td>
<td>ASTM D6706</td>
</tr>
<tr>
<td>Coefficient for Direct Shear</td>
<td>[_____]</td>
<td>ASTM D5321/D5321M</td>
</tr>
</tbody>
</table>

2.1.3.2 Secondary Reinforcement Properties

The reinforcement shown on the contract drawings shall meet the property requirements listed in Table 2. Reinforcement strength requirements
represent minimum average roll values in the machine direction.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Term Design Strength</td>
<td>[_____] kN/m lb/inch</td>
<td>NCMA TR127B, Method A</td>
</tr>
<tr>
<td>Permittivity</td>
<td>[0.5][_____] per second</td>
<td>ASTM D4491</td>
</tr>
<tr>
<td>UV Resistance</td>
<td>70 percent after 500 hours</td>
<td>ASTM D4355/D4355M</td>
</tr>
<tr>
<td>Coefficient of Interaction for Pullout</td>
<td>[.85][_____]</td>
<td>ASTM D6706</td>
</tr>
<tr>
<td>Coefficient for Direct Shear</td>
<td>[_____]</td>
<td>ASTM D5321/D5321M</td>
</tr>
</tbody>
</table>

2.1.3.3 Long Term Design Strength

Base the long term design strength on reduction factors for installation damage and durability that are applicable to the fill that will be used. Minimum reduction factors for durability include: 1.1 for polyethylene and polypropylene geosynthetics, 1.15 for coated polyester geogrids, and 1.6 for polyester geotextiles.

2.1.4 Reinforcement Splices

Splices in reinforcement shall consist of a standard method or device recommended and approved by the manufacturer of the reinforcing. Splices shall be not less than 90 percent efficient (width wide tensile strength of splice to mean average roll value tensile strength of reinforcing). The splice efficiency shall be demonstrated from testing and shall be submitted. Splicing may consist of overlaps, fusion wedge welding, sewing, or bodkin connections. Splicing methods that are dependent on installer experience and skill level, such as hot air and torch-applied open flame, are not acceptable. Sewing shall include 2 lines of stitching with a Federal 401 double thread lock stitch with a thread of the same polymer type and UV protection as the geotextile. Overlaps shall be separated by 50 mm 2 inches of soil.

2.2 GEOTEXTILE FILTER

Geotextiles used as filters shall meet the requirements specified in Table 3. The property values (except for AOS) represent minimum average roll values (MARV) in the weakest principal direction. For survivability during installation, the geotextile shall meet the minimum requirements in AASHTO M 288 Class 2, and shall have a minimum mass per unit area of 270 g/m 2 8 oz/sq yd.
TABLE 3. GEOTEXTILE PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST REQUIREMENT</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Tensile</td>
<td>[700 N160 lbs. nonwoven]</td>
<td>ASTM D4632/D4632M</td>
</tr>
<tr>
<td></td>
<td>[1100 N250 lbs. woven]</td>
<td></td>
</tr>
<tr>
<td>Apparent Opening Size</td>
<td>150 - 212 um70 - 100 U.S. Sieve</td>
<td>ASTM D4751</td>
</tr>
<tr>
<td>UV Resistance</td>
<td>80 percent after 500 hours</td>
<td>ASTM D4355/D4355M</td>
</tr>
<tr>
<td>Permittivity, sec⁻¹</td>
<td>0.5</td>
<td>ASTM D4491</td>
</tr>
</tbody>
</table>

2.3 TURF REINFORCEMENT MAT

Turf Reinforcement Mat (TRM) shall consist of nondegradable monofilaments; and shall meet the requirements specified in Table 4. The property values (except for AOS) represent minimum average roll values (MARV) in the weakest principal direction.

TABLE 4. TRM PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST REQUIREMENT</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>[_____] kN/mlbs/ft</td>
<td>ASTM D5035</td>
</tr>
<tr>
<td>UV Resistance</td>
<td>80 percent after 500 hours</td>
<td>ASTM D4355/D4355M</td>
</tr>
<tr>
<td>Thickness</td>
<td>8 mm300 mils</td>
<td>ASTM D5199</td>
</tr>
</tbody>
</table>

2.4 EROSION CONTROL BLANKET

Note: In 1999, there are 4 proposed ASTM standards for ECB's: (1) Measuring Mass per Unit Area of Erosion Control Blankets, (2) Determination of Erosion Control Blanket (ECB) Performance in Protecting Earthen Channels from Stormwater-Induced Erosion, (3) Determination of Erosion Control Blanket (ECB) Performance in Protecting Hillslopes from Rainfall-Induced Erosion, and (4) Tensile Properties Breaking Force and Elongation of Erosion Control Blankets.

Erosion control blanket (ECB) shall consist of biodegradable open weave blankets used for establishing vegetation. The ECB shall have a minimum
mass per unit area of [_____] g/m² oz/SY, determined in accordance with ASTM D5261.

2.5 SOILS AND AGGREGATES

All material placed as fill shall consist of material classified by ASTM D2487 as GW, GP, GC, GM, SP, SM, SC, CL, ML, or SW. The material shall be free of ice; snow; frozen earth; trash; debris; sod; roots; organic matter; contamination from hazardous, toxic or radiological substances; or stones larger than 75 mm 3 inches in any dimension. Each material shall be obtained entirely from one borrow source, unless the Contracting Officer determines that quality control is adequate and the alternate source produces material that is similar in gradation, texture, and interaction with the reinforcement. All materials shall be of a character and quality satisfactory for the purpose intended.

a. Reinforced Fill. Soil placed in the reinforced fill zone shall consist of [granular material with less than 35 percent passing the 75 µm No. 200 sieve].

b. Retained Fill. Soil placed in the retained fill zone shall [meet the minimum requirements above].

c. Drainage Aggregate shall meet the requirements of ASTM D448, size No.7.

2.6 DRAINAGE PIPE

The drainage pipe shall be corrugated polyethylene pipe meeting requirements of AASHTO M 252.

2.7 SEED

State-certified seed of the latest season's crop shall be provided in original sealed packages bearing the producer's guaranteed analysis for mixture percentage, purity, germination, weed seed content, and inert material. Labels shall be in conformance with AMS Seed Act and applicable state seed laws. The seed mix shall be proportioned by weight as follows: [_____]..

PART 3 EXECUTION

3.1 SHORING

Construct shoring in accordance with the safety requirements of EM 385-1-1. Submit plans and design computations for all shoring used [at least 30 days prior to installation]. The Contractor is responsible for design and maintenance of all shoring to be installed. Unless otherwise authorized, all sheeting and bracing shall be removed when backfill is completed.

3.2 EARTHWORK

**

NOTE: Notification of the Contracting Officer – It is beyond the scope of a specification to provide remedies to all possible problems. If the specification indicates the Contracting Officer shall be notified, it is assumed qualified assistance will be utilized to assess the situation.

SECTION 35 42 34 Page 15
The reinforced fill zone shall bear on undisturbed native soils, or acceptably placed and compacted fill. In the event that it is necessary to remove material or place fill below the excavation lines shown on the drawings, or not otherwise provided for in the contract, the Contracting Officer shall be notified prior to work and an adjustment in the contract price will be considered in accordance with the contract. Additional work not authorized by the Contracting Officer shall be at the Contractor’s expense.

3.2.1 Excavation

Excavate foundation soil to the lines and grades shown on the construction drawings, and as required for reinforcement placement. Stockpile material for backfilling in a neat and orderly manner at a sufficient distance from the banks of the excavation to avoid overloading and to prevent slides or caving. Perform excavation and fill in a manner and sequence that will provide proper drainage at all times. The Contractor is responsible for disposal of surplus material, waste material, and material that does not meet specifications, including any soil which is disturbed by the work operations or softened due to exposure to the elements and water.

3.2.2 Stockpiles

Stockpiles of all material to be incorporated into the work shall be kept in a neat and well drained condition, giving due consideration to drainage at all times. The ground surface at stockpile locations shall be cleared, grubbed, and sealed. Topsoil shall be stockpiled separately from suitable backfill material. Stockpiles of aggregates and granular soils shall be protected from contamination which may destroy the quality and fitness of the stockpiled material. If the Contractor fails to protect the stockpiles, and any material becomes frozen, saturated, intermixed with other materials, or otherwise out of specification or unsatisfactory for the use intended, such material shall be removed and replaced with new material from approved sources at no additional cost to the Government.

3.3 SUBGRADE PREPARATION

Do not place material on surfaces that are muddy, frozen, contain frost, or where unsatisfactory material remains in or under the fill. For cohesionless soils, the subgrade surface shall be compacted with the same compactor and rolling pattern to be used for compaction of the fill. For cohesive soils, the subgrade shall be proof rolled with rubber tired equipment and any soft areas shall be brought to the Contracting Officer's attention.

3.4 REINFORCEMENT INSTALLATION

a. Before placing reinforcement, compact the subgrade or subsequent lift of fill and level-grade it. The surface shall be smooth and free of windrows, sheepsfoot impressions, and rocks.

b. Reinforcement shall be placed at the elevations and to the extent shown on the construction drawings and the approved shop drawing submittal. Orient the reinforcement with the design strength axis perpendicular to the slope face. Place reinforcement strips immediately next to adjacent strips to provide 100 percent coverage.
c. Install the reinforcement in tension. The reinforcement shall be pulled taut and anchored with staples or stakes prior to placing the overlying lift of fill. The tension shall be uniform along the length of the slope and consistent between layers.

d. All reinforcement shall be 100 percent covered by soil so that reinforcement panels do not contact in overlaps. Where the slope bends, a veneer of fill shall be placed to a nominal thickness of 75 mm 3 inches to separate overlapping reinforcement.

e. Splicing. Splicing shall not be allowed unless identified on the shop drawings. Splicing shall be limited to only one splice per reinforcing strip and no two consecutive reinforcing strips shall include a splice. Splices shall be located randomly without a pattern. Individual reinforcing lengths less than 3 meters 10 feet shall be discarded. Seams shall be placed facing upward for inspection purposes.

3.5 FILL PLACEMENT

**
NOTE: Subparagraph "b." below - Studies have documented rubber tired heavy equipment traveling on geogrids with minimal or no damage. However, it is regarded as poor practice and usually unnecessary. Problematic conditions include coarse crushed gravel and coated geogrids. The intent of the specification is to minimize equipment on the geogrid so that it occurs only when necessary.
**

a. Reinforced fill shall be placed from the slope face back toward the fill area to ensure that the reinforcement remains taut. Fill shall be placed, spread, and compacted in such manner that minimizes the development of wrinkles in or movement of the reinforcement.

b. A minimum fill thickness of 150 mm 6 inches is required prior to operation of vehicles over the reinforcement. Sudden braking and sharp turning shall be avoided. Tracked equipment shall not turn within the reinforced fill zone to prevent tracks from displacing the fill and damaging the reinforcement. Construction equipment shall not be operated directly upon the reinforcement as part of the planned construction sequence. Rubber tired equipment may operate directly on the reinforcement if the travel is infrequent, equipment travels slow, turning is minimized, and no damage or displacement to the reinforcement is observed.

c. At the end of each day, slope the last lift of fill away from chimney drains in a manner that will allow drainage and direct runoff away from aggregate.

3.6 COMPACTION

Fill shall not be placed on surfaces that contain mud, frost, organic soils, fill soils that have not met compaction requirements, or where the Contracting Officer determines that unsatisfactory material remains in or under the fill. Fill shall be spread and compacted in lifts not exceeding [the height of the face wrapping].
3.6.1 Degree of Compaction

Degree of compaction required is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D698. The maximum density is hereafter abbreviated as the "Standard Proctor" value.

3.6.2 Moisture Control

**
NOTE: Moisture content limits for compaction should be included in these paragraphs when necessary for obtaining strength and stability in embankments and fill, for controlling movement of expansive soils and when, in the opinion of the project geotechnical engineer, moisture control is required for the soils being used. Specify an acceptable variation from the optimum moisture if justified from experience with similar soils or where demonstrated from moisture-density tests for the borrow material during planning.
**

Control of moisture in the fill shall be maintained to provide acceptable compaction. Disking and plowing will not be allowed in the reinforced fill zone. Moisture content of cohesive soils shall be adjusted at the borrow source before placement. Adding water directly to the reinforced fill zone shall only be conducted under conditions where the soil has sufficient porosity and capillarity to provide uniform moisture throughout the fill during compaction.

3.6.3 Compaction

Reinforced and retained fill shall be compacted to 95 percent of the Standard Proctor Density.

3.7 SOIL TESTING

3.7.1 General

All testing expenses shall be the Contractor's responsibility. Prior to sampling and testing the work, testing laboratories shall be inspected and approved in accordance with Section 01 45 00.00 1001 45 00.00 20 01 45 00.00 40 QUALITY CONTROL. The Contracting Officer reserves the right to direct the location and select the material for samples to be tested and to direct where and when moisture-density tests shall be performed. Nuclear density testing equipment shall be used in general accordance with ASTM D6938.

3.7.2 Transmittal

Inform the Contracting Officer of test results daily for direction on corrective action required. Draft copies of field testing results shall be furnished to the Contracting Officer on a frequent and regular basis, as directed. Submit testing data specific to the reinforcement to be supplied:

a. The coefficient for direct shear of the reinforcement on a soil similar in gradation and texture to the material that will be used for fill in the reinforced zone shall be established in accordance with ASTM D5321/D5321M.
b. The coefficient of interaction for pull-out resistance of the reinforcement in a soil similar in gradation and texture to the material that will be used for fill in the reinforced zone shall be established in accordance with ASTM D6706.

3.7.3 Corrective Action

Tests of materials which do not meet the contract requirements (failing test) will not be counted as part of the required testing. Each such failing test must be retaken at the same location as the failing test was taken. If testing indicates material does not meet the contract requirements, the material represented by the failing test shall not be placed in the contract work or shall be recompacted or removed. The quantity of material represented by the failing test shall be determined by the Contracting Officer up to the quantity represented by the testing frequency. The Contractor may increase testing frequency in the vicinity of a failing test in order to reduce removal requirements, as approved by the Contracting Officer. Such increases in testing frequency shall be at the Contractor's expense and at no additional cost to the Government.

3.7.4 Testing Schedule

a. Moisture-Density Relations (ASTM D698)

 One test for each material variation[, not less than [_____] tests total].

b. In-Place Densities (ASTM D1556 or ASTM D6938)

 Not less than 1 test for each 670 vertical mm/100 linear m 2 vertical feet/300 linear feet along slope face.

c. Sieve Analysis, (ASTM C136)

 Drainage Aggregate, [1 test for each source].

3.8 REINFORCEMENT TESTING

**

NOTE: Primary reasons for testing geosynthetics include verification of quality control by the manufacturer, detecting degradation during shipping and storage, and verifying the correct product is supplied. Verification of quality control by the manufacturer and detecting degradation during shipping and storage is not economically justified for small jobs. Unlike reinforcing steel for concrete, geosynthetics are difficult to identify in the field, and even experienced personnel can sometimes mistake the product identity of unlabeled material. Testing after delivery to verify the correct product was supplied may be advisable for critical structures. The strength is usually the most critical property to verify an acceptable product is furnished.

**

All testing expenses shall be the Contractor's responsibility. Testing
shall be performed by a commercial testing laboratory selected by the Contractor and approved by the Contracting Officer or performed by the Contractor if approved by the Contracting Officer. The Contracting Officer reserves the right to direct the location and select the material for samples.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST DESIGNATION</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide Width Strip Tensile Strength</td>
<td>ASTM D4595</td>
<td>[_____]</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Rib Tensile Strength</td>
<td>ASTM D6637</td>
<td>[_____]</td>
</tr>
</tbody>
</table>

ASTM D4595 shall be modified for geogrids considering recommendations in GSI GRI GG6; and the tensile strength shall be expressed on a unit length basis by substituting \(n \times a \) for \(W_s \), where:

\[
W_s = \text{specimen width, (mm inches)} \\
N = \text{number of ribs in the sample (must be a whole number)} \\
a = \text{nominal rib spacing for the product tested, (mm inches)}
\]

3.9 DRAINAGE PIPE

Drain pipe shall be placed as indicated on the drawings. Drain lines shall be laid to true grades and alignment with a continuous fall in the direction of flow. The interior of the pipe shall be kept clean from soil and debris; and open ends shall be temporarily capped as necessary.

3.10 SEEDING

Seed shall be applied at the rate of 18 square m/kg 10 square yards per pound of seed. The seed shall be evenly distributed by hand or using broadcast seeders. Seed shall be covered to a nominal 13 mm 1/2 inch depth by rakes.

3.11 CONSTRUCTION TOLERANCES

a. Horizontal: The slope crest and toe shall be within 150 mm 6 inches of the plan location.

b. Vertical: The slope crest elevations shall be within 90 mm 0.3 feet above to 90 mm 0.3 feet below the prescribed elevations shown on the drawings.

3.12 PROTECTION OF WORK

Work shall be protected against damage from subsequent operations.

-- End of Section --