SECTION TABLE OF CONTENTS

DIVISION 33 - UTILITIES

SECTION 33 73 00.00 40

UTILITY TRANSFORMERS

11/14

PART 1 GENERAL

1.1 REFERENCES
1.2 ADMINISTRATIVE REQUIREMENTS
 1.2.1 Pre-Installation Meeting
1.3 SUBMITTALS
1.4 QUALITY CONTROL
 1.4.1 Manufacturers Qualifications
 1.4.2 Certificates of Compliance
1.5 DELIVERY, STORAGE, AND HANDLING

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Design Requirements
 2.1.2 Performance Requirements
 2.1.2.1 Impedance
 2.1.2.2 Short-Circuit Withstand
 2.1.2.3 Voltage Ratings
 2.1.2.4 Insulation Class
 2.1.2.5 Basic Impulse Insulation Levels
2.2 FABRICATION
 2.2.1 Painting
2.3 COMPONENTS
 2.3.1 Tank
 2.3.2 Bushings
 2.3.3 Cores
 2.3.4 Coils
 2.3.5 Cooling Provisions
 2.3.6 Automatic Load-Tap Changing Equipment
 2.3.7 Insulating Oil
2.4 ACCESSORIES
 2.4.1 Space Heaters
 2.4.2 External Voltage Source
 2.4.3 Miscellaneous
2.5 FACTORY TESTING
PART 3 EXECUTION

3.1 INSTALLATION
3.2 FIELD QUALITY CONTROL
 3.2.1 Tests
3.3 CLOSEOUT ACTIVITIES
 3.3.1 Test Reports
 3.3.2 Maintenance

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for station power transformers, single- and three-phase. Indicate rating, size, and installation details on drawings.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: If Section 26 00 00.00 20 BASIC ELECTRICAL MATERIALS AND METHODS is not included in the project specification, insert applicable requirements and delete the following paragraph.

Section 26 00 00.00 20 BASIC ELECTRICAL MATERIALS AND METHODS applies to work specified in this section.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in
the text by basic designation only and listed in
this paragraph by organization, designation, date,
and title.

Use the Reference Wizard's Check Reference feature
when you add a RID outside of the Section's
Reference Article to automatically place the
reference in the Reference Article. Also use the
Reference Wizard's Check Reference feature to update
the issue dates.

References not used in the text are automatically
deleted from this section of the project
specification when you choose to reconcile
references in the publish print process.

**

The publications listed below form a part of this specification to the
extent referenced. The publications are referred to within the text by the
basic designation only.

ASTM INTERNATIONAL (ASTM)

Flat-Rolled Electrical Steels for Magnetic
Applications

Soft Rectangular and Square Bare Copper
Wire for Electrical Conductors

Methods, Specifications and Guide for
Electrical Insulating Oils of Petroleum
Origin

Insulating Liquids by Coulometric Karl
Fischer Titration

Insulating Oil Used in Electrical Apparatus

Analysis of Gases Dissolved in Electrical
Insulating Oil by Gas Chromatography

Dielectric Breakdown Voltage of Insulating
Liquids Using Disk Electrodes

ASTM D92 (2012b) Standard Test Method for Flash and
Fire Points by Cleveland Open Cup Tester

Dissipation Factor (or Power Factor) and
Relative Permittivity (Dielectric
Constant) of Electrical Insulating Liquids
1.2 ADMINISTRATIVE REQUIREMENTS

1.2.1 Pre-Installation Meeting

Within [30] [_____] calendar days after [date of award] [date of receipt by him of notice of award], submit for the approval of the Contracting Officer [six (6)] [_____] copies of specified drawings of all equipment to be furnished under this contract, together with weights and overall dimensions. Submit the following data and drawings:

a. Connection diagrams

b. Fabrication drawings

c. Installation drawings

Submit Equipment and Performance Data for the following items including life, test, system functional flows, safety features, and mechanical automated details.
a. Power transformers
b. Transformer tanks
c. Bushings
d. Enclosures
e. Coils
f. Automatic load-tap changing equipment
g. Accessories
h. Equipment foundation data

Submit factory test reports for the following tests on power transformers in accordance with IEEE C57.12.90 and IEEE C57.12.00, Table 16.;

a. High-voltage tests
b. Insulation-resistance test
c. Temperature-rise tests
d. Insulation power factor
e. Oil power factor
f. Impulse Tests
g. Impedance and load losses
h. Sound tests
i. Bushing tests
j. Short-circuit tests

Submittal of certificates of compliance of previous tests on similar units (type-testing) under actual conditions for temperature-rise tests, bushing tests, impulse tests, and short-circuit tests in lieu of factory tests on actual units furnished is acceptable upon approval.

Submit manufacturer's instructions for the power transformers including special provisions required to install equipment components and system packages. Provide special notices that detail impedances, hazards and safety precautions.

1.3 SUBMITTALS

**

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have
designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, use a code of up to three characters within the submittal tags following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that reviews the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Connection Diagrams[; G, [____]]][; G][; G, [____]]
Fabrication Drawings[; G, [____]][; G][; G, [____]]
Installation Drawings[; G, [____]]

SD-03 Product Data

Power Transformers[; G, [____]]
Transformer Tanks[; G, [____]]
Bushings[; G, [____]]
Enclosures[; G, [____]]
Coils

Automatic Load-Tap Changing Equipment

Accessories

Equipment Foundation Data

Manufacturer's Catalog Data

SD-06 Test Reports

Factory Test Reports

High-Voltage Tests

Insulation-Resistance Test

Temperature-Rise Tests

Insulation Power Factor

Oil Power Factor

Impulse Tests

Impedance and Load Losses

Sound Tests

Bushing Tests

Short-Circuit Tests

SD-07 Certificates

Certificates of Compliance

SD-08 Manufacturer's Instructions

Power Transformers

SD-09 Manufacturer's Field Reports

Insulation Power Factor

Oil Power Factor

Oil Acidity Test

Water-in-oil (Karl Fischer) Tests

Dissolved Gas Analysis

Turns Ratio Tests

SD-10 Operation and Maintenance Data

Power Transformers
1.4 QUALITY CONTROL

1.4.1 Manufacturers Qualifications

Provide material and equipment under this specification that is the standard catalog product of a manufacturer regularly engaged in the manufacture of oil filled transformers and their component parts and equipment. Provide equipment that is of the latest standard design for outdoor service and has been in repetitive manufacture for at least 150 units.

1.4.2 Certificates of Compliance

Submit certificates of compliance of previous tests on similar units under actual conditions for temperature rise, bushing tests, and short-circuit tests in lieu of factory tests on actual units furnished is acceptable upon approval.

1.5 DELIVERY, STORAGE, AND HANDLING

Ship no transformer to the site until all factory tests and their results are approved by the Contracting Officer and the equipment is inspected and approved by the Contracting Officer unless he has given the manufacturer a written waiver.

After the transformer arrives on site the Government will perform an insulation power factor test and take an oil sample for a dielectric test, dissolved gas analysis, water-in-oil (Karl Fischer) test, oil acidity test, and PCB content determination.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

2.1.1 Design Requirements

Provide station power transformers with primary connections to [overhead] [underground] high-voltage incoming lines and [bus connected secondary] [secondary connections to underground cables] [secondary connections to underground distribution lines] that are two-winding, three-phase, 60-hertz (Hz), oil-immersed, 55/65-degree C rise, self-cooled, Class OA, or forced-air-cooled Class OA/FA, or forced-air-oil-cooled Class OA/FA/FOA, outdoor type conforming to IEEE C57.12.00 and IEEE C57.12.80.

Submit connection diagrams for power transformers, cores, coils and automatic load-tap changing equipment. Provide connection diagrams that indicate the relations and connections of the following items by showing the general physical layout of all controls, the interconnection of one system (or portion of system) with another, and internal tubing, wiring, and other devices.

Submit fabrication drawings for power transformers, transformer tanks, bushings, enclosures, cores, coils, automatic load-tap changing equipment and accessories. Provide fabrication drawings that consist of
manufacturers original fabrication and assembly details to be performed at
the factory for the project.

Provide power transformers, transformer tanks, bushings, enclosures, cores,
coils, automatic load-tap changing equipment and accessories that meet or
exceed specified material and performance requirements and reference
standards.

Submit manufacturer's catalog data for power transformers, transformer
tanks, bushings, enclosures, cores, coils, automatic load-tap changing
equipment, sheet metal and accessories.

Provide equipment foundation data for power transformers that includes plan
dimensions of foundations and relative elevations, equipment weight and
operating loads, horizontal and vertical loads, horizontal and vertical
clearances for installation, and size and location of anchor bolts.

2.1.2 Performance Requirements

2.1.2.1 Impedance

Provide percent impedance voltage at the self-cooled rating in accordance
with IEEE C57.12.10.

2.1.2.2 Short-Circuit Withstand

Provide transformers capable of withstanding, without injury, the
mechanical and thermal stresses caused by short circuits on the external
terminals of the low-voltage windings in accordance with IEEE C57.12.00.

2.1.2.3 Voltage Ratings

Provide primary voltage section that is rated for connection to [69,000]
[115,000] [138,000] [230,000] volt, three-phase, 60 Hz power distribution
systems.

Provide secondary voltage section that is [13,800] [13,200] [12,470]
[_____] volt, three-phase, 60-Hz, for connection to solidly grounded power
distribution systems.

2.1.2.4 Insulation Class

Insulate transformer primary windings for [69,000] [115,000] [138,000]
[230,000] [_____] volts for connection to [69,000] [115,000] [138,000]
[230,000] [_____] volt, three-phase, 60-Hz, power transmission systems.

2.1.2.5 Basic Impulse Insulation Levels

Provide basic impulse insulation levels of the incoming and transforming
sections of the transformer in accordance with IEEE C37.121.

2.2 FABRICATION

2.2.1 Painting

NOTE: For all outdoor applications and all indoor
applications in a harsh environment refer to Section
09 96 00 HIGH-PERFORMANCE COATINGS. High
performance coatings are specified for all outdoor applications because ultraviolet radiation breaks down most standard coatings, causing a phenomena known as chalking, which is the first stage of the corrosion process. For additional information contact The Coatings Industry Alliance, specific suppliers such as Keeler and Long and PPG, and NACE International (NACE).

**

After fabrication, clean and paint all exposed ferrous metal surfaces of the transformer and component equipment. Provide the transformer with the standard finish by the manufacturer when used for most indoor installations. For harsh indoor environments (any area subjected to chemical and/or abrasive action), and all outdoor installations, refer to Section 09 96 00 HIGH-PERFORMANCE COATINGS.

2.3 COMPONENTS

Provide transformers that include a core and coil assembly enclosed in a sealed airtight and oiltight tank, with accessories and auxiliary equipment as indicated and specified.

2.3.1 Tank

Provide transformer tank with walls, bottom, and cover fabricated from hot-rolled steel plate with cooling tubes or radiators vertically mounted to the side walls of the tank.

Provide transformer tank that is welded construction with rectangular base designed for rolling in the direction of the centerline of the bushing segments.

[Provide tank that has a manhole in the cover. Provide circular manholes that are not less than 390 millimeter 15 inches in diameter. Provide rectangular or oval manholes that are not less than 250 by 400 millimeter 10 by 16-inches.

][Provide tank that has a handhole in the cover. Provide circular handholes that are not less than 150 millimeter 6-inches diameter. Provide rectangular handholes that are not less than 115 millimeter 4-1/2-inches wide and that have an area of not less than 42000 square millimeter 65-square inches.

] Provide lifting, moving, and jacking facilities conforming to IEEE C57.12.10.

Provide transformer base that is designed to provide natural draft ventilation under the transformer tank when the transformer is placed on a flat concrete foundation. Undercoat the bottom of the transformer tank with a heavy rubberized protective sealing material at least 0.8 millimeter 1/32 inch thick.

[Weld cooling tubes into headers which in turn are welded into the transformer tank wall.

] Provide a sealed-tank oil-preservation system that seals the interior of the transformer from the atmosphere throughout temperatures ranging to 100 degrees C. Provide constant gas and oil volume with internal gas pressure not exceeding 69 kilopascal positive or 55 kilopascal negative. 10 pounds
per square inch, gage (psig) positive or 8-psig negative. Make provision for the relief of excessive internal pressure in the transformer tank, by the installation of a pressure relief valve.

Provide a completely assembled transformer that is designed to withstand, without permanent deformation, a pressure 25 percent greater than the maximum operating pressure of the sealed-tank oil-preservation system.

Provide spare mounting gaskets for all bushings, terminal chambers, handholes, and the gasket between the relief cover and flange on the pressure relief valve.

2.3.2 Bushings

Terminate primary windings of the transformer in cover-mounted high-voltage bushings. Terminate secondary windings of the transformer in sidewall bushings enclosed with throats or flanges that are an integral part of the transformer and terminal chambers for electrical connections to the underground distribution system. Provide same insulation class of bushings as the insulation class of the windings to which they are connected. Provide electrical characteristics of transformer bushings in accordance with IEEE C57.12.00. Provide dimensions of transformer bushings in accordance with IEEE C57.19.00.

2.3.3 Cores

Provide cores that are built up with laminated, nonaging, high-permeability, grain-oriented, cold-rolled, silicon sheet steel. Ensure laminations are coated with an insulating film or finish to minimize eddy-current losses. Ensure sheet steel conforms to ASTM A345.

2.3.4 Coils

Provide high- and low-voltage coil sections that consist of insulated copper conductors wound around the core. Provide coil sections that are [concentric] [rectangular] to counteract forces incurred under short-circuit conditions. Provide coil sections with oil ducts to dissipate the heat generated in the windings. Provide coil sections that are electrically connected together and to the respective terminal bushings of the transformer. Ensure copper conductors in the high- and low-voltage coil sections conform to ASTM B48, Type B for applications involving edgewise bending.

Provide primary winding of the transformer that is equipped with four 2.5 percent full-capacity taps, two above and two below normal voltage, brought out to an externally operated manual tap changer. Provide tap changer handles capable of being padlocked in each tap position and is operable when the transformer is deenergized.

2.3.5 Cooling Provisions

Provide radiators that are detachable all-welded [mild steel] [hot-dipped galvanized steel] construction, with top and bottom connections to the transformer tank wall. Provide tank wall top and bottom connections to radiators that are equipped with valves that permit removal of radiator without draining oil from the transformer tank.

Provide transformer that is equipped with automatically controlled fans to provide forced-air-cooled transformer ratings in accordance with
IEEE C57.12.10. Provide equipment that includes a thermally operated control device, manually operated bypass switch, motor-driven fans, and electrical conduit and wire connections.

[Make provision for future installation of automatically controlled motor-driven fans to give forced-air-cooled transformer ratings conforming to IEEE C57.12.10. Provide necessary mechanical arrangements for a thermally operated control device to be mounted in a well for top liquid-temperature control as described in IEEE C57.12.00. Make provision for the future mounting of control cabinets, conduit, and fans.]

**

NOTE: When fans are to be provided, select from one of the two following paragraphs.
**

[Provide a thermally operated control device that consists of a top oil temperature relay with a thermal element mounted in a well responsive to the top liquid-level temperature of the transformer.]

[Provide thermally operated control device that consists of a hot-spot temperature relay with thermal element mounted in a well and a bushing type current transformer. Add energy from the current transformer to the top oil temperature of the transformer to indicate the simulated hot-spot condition in one phase of the transformer winding.]

Provide well that conforms to IEEE C57.12.00. Connect manually operated bypass switch in parallel with the automatic control contacts and enclose in a weatherproof cabinet located on the side of the transformer at a height not greater than 1500 millimeter 60-inches above the concrete foundation. Provide fan motors that are [230] [120] -volt, single-phase, 60-hertz, without centrifugal switch and are [individually fused] [thermally] protected.

2.3.6 Automatic Load-Tap Changing Equipment

**

NOTE: Delete the following paragraphs if automatic load-tap changers are not applicable to the project.
**

Provide transformer that is equipped with three-phase automatic load-tap changing equipment that provides 10 percent voltage adjustment in 16 equal steps above and below rated secondary voltage in accordance with IEEE C57.12.10.

Provide load-tap changing equipment that consists of an arcing tap switch or tap selector and arcing switch, a motor-driving mechanism, position indicator, and automatic control devices contained in weatherproof enclosures mounted on the sidewalls of the transformer tank.

Locate arcing tap switch or tap selector and arcing switch in one or more oil-immersed welded steel plate compartments. Compartments have removable, bolted, external access covers, drain and sampling valve, filling plug, and magnetic liquid-level gage. Make provision for the escape of gas generated by the arcing contacts. Isolate oil in the arcing switch compartment from the oil within the transformer tank.

Provide a motor-drive mechanism that is equipped with a 120-volt,
single-phase, 60-hertz motor and [hand crank] [hand wheel] for automatic and manual operation of the driving mechanism. Provide mechanically operated electric limit switches to prevent overtravel beyond the maximum lower and raise positions.

House automatic control devices in a weatherproof sheet metal cabinet with breather and hinged doors to provide access to the control devices. Make provisions for padlocks.

Provide automatic control devices that include a voltage-regulating relay, time delay, manual/automatic selector switch, line-drop compensator, paralleling switch, current transformers, reactance reversal control switch, operation counter, current and potential test terminals, lampholder and switch, heater and switch, convenience outlet, and protective devices in accordance with IEEE C57.12.10, Section 26 05 70.00 40 HIGH VOLTAGE OVERCURRENT PROTECTIVE DEVICES and Section 26 05 71.00 40 LOW VOLTAGE OVERCURRENT PROTECTIVE DEVICES.

Make provision for the accurate alignment, positioning, and locking of arcing contacts in each tap position. When the load-tap changing equipment is on a tap position at or above rated secondary voltage, provide a transformer that is capable of supplying its rated kVA.

2.3.7 Insulating Oil

Ensure insulating oil conforms to ASTM D3487 with inhibitor. Provide dielectric strength of transformer oils, when shipped, that is not less than 28 kV when measured in accordance with ASTM D117. Ensure the Neutralization Number is not greater than .03 gm KOH/ml when measured in accordance with ASTM D974. Provide emulsified water that does not exceed 25 ppm at 20 degrees C68 degrees F when measured in accordance with ASTM D1533. Provide power factor that does not exceed 0.5 percent at 20 degrees C68 degrees F when measured in accordance with ASTM D924.

Provide a non-propagating high fire point transformer insulating liquid having a fire point not less than 300 degrees C572 degrees F when tested per ASTM D92. Ensure liquid has a dielectric strength not less than 33 kilovolts when tested in accordance with ASTM D877 and NFPA 70.

2.4 ACCESSORIES

Provide transformer accessories that include a liquid-level indicator, liquid-temperature indicator, pressure/vacuum gage, drain and filter valves, ground pads, and identification plate. Ensure transformer accessories and their locations conform to IEEE C57.12.10.

Locate the nitrogen fill valve above the transformers liquid level.

2.4.1 Space Heaters

**
NOTE: Include paragraphs entitled "Space Heaters," and "External Voltage Source," from this section for outdoor transformers that utilize stress cones for terminating medium voltage power cables. Include space heaters in secondary compartment at the request of maintenance and operations personnel. Space heaters prevent moisture build-up in ventilated compartments.

SECTION 33 73 00.00 40 Page 14
Wattage supplied by heaters is one-fourth of heater nameplate rating when 240-volt heaters are operated at 120-volts.

Equip primary [and secondary] cable termination compartment with externally energized space heaters. Ensure heaters generate approximately 40 watts per square meter 4 watts per square foot at the outer surface area. Provide heaters that have a power density that does not exceed 4 watts per 645 square millimeter square inch of heater element surface. Provide heaters that are rated at 240-volts for connection to 120-volts. Locate heaters at the lowest portion of each space to be heated. Cover terminals. Use thermostats to regulate the temperature.

Provide installed and operable heaters at the time of shipment so that the heaters can be operated immediately upon arrival at the site, during storage, or before installation. Provide connection locations that are marked prominently on drawings and shipping covers and that have temporary leads for storage operation. Ensure leads are easily accessible without having to remove shipping protection.

2.4.2 External Voltage Source

Group together all externally powered wiring to the switch as much as possible and connect to a terminal block which is marked with a laminated plastic nameplate having 5 millimeter 3/16-inch high white letters on a red background as follows:

DANGER - EXTERNAL VOLTAGE SOURCE

Provide externally powered wiring that includes 120-volt unit space heaters [, temperature alarm devices] [, fans] [, _____] [, and] [instrumentation circuits].

2.4.3 Miscellaneous

Include the following transformer accessories, a liquid-level indicator, liquid-temperature indicator, pressure/vacuum gage, drain and filter valves, ground pads, and identification plate. Provide transformer accessories and their locations that conform to IEEE C57.12.10.

Transformer kilovolt-ampere (kVA) ratings are continuous and are based on temperature-rise tests. Do not exceed temperature limits when the transformer is delivering rated kVA output at rated secondary voltage in accordance with IEEE C57.12.00.

2.5 FACTORY TESTING

Provide tests on transformers that include insulation-resistance tests of the windings, turns ratio tests, polarity and phase rotation tests, no-load loss at rated voltage, excitation current at rated voltage, impedance and load losses at rated current, insulation power factor tests, impulse tests, temperature rise test, short circuit test, oil power factor tests, oil acidity tests, water-in-oil (Karl Fischer) tests, dissolved gas analysis, sound tests, dielectric tests, and bushing tests. Conduct Factory Test Reports in accordance with IEEE C57.12.90, IEEE 62, ASTM D3612, and IEEE C57.12.00, Table 16. Maximum acceptable insulation power factor is .5 percent for mineral oil insulated transformers.
Provide manufacturer certification that the insulating oil contains no PCB's and affix a label to that effect on the transformer tank and on each oil drum containing the insulating oil.

PART 3 EXECUTION

3.1 INSTALLATION

Install transformers as indicated and in accordance with the manufacturer's recommendations. Ground transformer tanks.

Provide installation drawings for the secondary unit substation. Include complete details of equipment layout and design on the drawings.

3.2 FIELD QUALITY CONTROL

3.2.1 Tests

Disconnect primary winding of the transformer from the power supply, and ground the secondary windings of the transformer, before conducting insulation and high-voltage tests on primary windings.

Disconnect secondary winding of the transformer from the secondary feeder cables, and disconnect the primary winding of the transformer from the power supply and ground, before conducting insulation and high-voltage tests on secondary windings.

Give windings of the transformer an insulation-resistance test with a 5,000-volt insulation-resistance test set.

Apply tests for not less than 5 minutes and until 3 equal consecutive readings, 1 minute apart, are obtained. Record readings every 30 seconds during the first 2 minutes and every minute thereafter. Minimum acceptable resistance is 100 megohms.

Upon satisfactory completion of the insulation resistance tests, give the transformer windings an insulation power factor test and an excitation test. Maximum acceptable power factor is 0.5 percent. Excitation results vary due to the amount of iron and copper in the windings and are used for baselines only.

Conduct a turns ratio test on the transformer. Provide readings within 1/2 percent of each other.

Upon satisfactory completion of the above electrical tests, give the transformer the following oil tests: Power factor, neutralization number, Karl Fischer, Dissolved gas analysis, and dielectric. Provide results as follows:

- Power Factor less than .5 percent at 20 degrees C
- Karl Fischer less than 25 ppm at 20 degrees C
- Neutralization Number less than .03 gm KOH/ml
- Dielectric greater than 33kV
- Dissolved Gas Combustibles less than 1000 ppm total

Final acceptance depends upon the satisfactory performance of the equipment under test. Do not energize transformer until recorded test data has been approved by the Contracting Officer.
3.3 CLOSEOUT ACTIVITIES

3.3.1 Test Reports

Provide final test reports to the Contracting Officer. Provide reports that have a cover letter/sheet clearly marked with the System name, Date, and the words "Final Test Reports – Forward to the Systems Engineer/Condition Monitoring Office/Predictive Testing Group for inclusion in the Maintenance Database."

3.3.2 Maintenance

Submit operation and maintenance manuals for the following equipment:

a. Power transformers

b. Automatic load-tap changing equipment

c. Space heaters

-- End of Section --