SECTION TABLE OF CONTENTS

DIVISION 33 - UTILITIES

SECTION 33 52 43.28

FILTER SEPARATOR, AVIATION FUELING SYSTEM

11/10

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 PREPRODUCTION TESTING
 1.3.1 Inspection and Testing
 1.3.2 Deviations from EI 1581
 1.3.3 Data Required Prior to Tests
 1.3.4 Submittal of Test Documents
 1.3.5 Required Preproduction Tests
1.4 DESIGN CONDITIONS
1.5 WORKMANSHIP
1.6 CLEANING

PART 2 PRODUCTS

2.1 WELDING
2.2 MATERIALS AND EQUIPMENT
 2.2.1 Housing
2.3 FILTER SEPARATOR CONSTRUCTION
 2.3.1 Housing Vessel
 2.3.2 Legs
 2.3.3 Inlet and Outlet Connections
 2.3.4 Manual Drain Valve
 2.3.5 Sight Gauge
 2.3.6 Differential Pressure Gauge
 2.3.7 Automatic Air Eliminator and Pressure Relief Valves
 2.3.8 Sampling Connections
 2.3.9 Spider Assembly
 2.3.10 Coalescer and Separator Cartridges
 2.3.11 Control Valve Accessories
 2.3.11.1 Float Control Pilot and Tester
 2.3.12 Identification of Product
 2.3.13 Assembly
2.4 MICRONIC PRE-FILTER CONSTRUCTION
 2.4.1 Product Submittals
2.4.2 Housing Vessel
2.4.3 Legs
2.4.4 Inlet and Outlet Connections
2.4.5 Manual Drain Valve
2.4.6 Sight Gauge
2.4.7 Differential Pressure Gauge
2.4.8 Automatic Air Eliminator and Pressure Relief Valves
2.4.9 Sampling Connections
2.4.10 Spider Assembly
2.4.11 Filter Cartridges
2.4.12 Identification of Product
2.4.13 Assembly

2.5 ACCESSORIES
2.5.1 Manual Drain Valve
2.5.2 Sight Gauge
2.5.3 Differential Pressure Gauge
2.5.4 Automatic Air Eliminator and Pressure Relief Valves
2.5.5 Sampling Connections

PART 3 EXECUTION

3.1 INSTALLATION
3.1.1 Anchoring
3.1.2 Grouting
3.1.3 Leveling and Aligning
3.1.4 Painting

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for filter separators and fuel quality monitors used in aircraft refueling systems constructed to the requirements of the DoD Type III/IV/V, and Cut'n Cover Hydrant Refueling System Standards.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: DoD Type III systems shall conform to Standard Design 078-24-28 PRESSURIZED HYDRANT FUELING SYSTEM (TYPE III). DoD Type IV/V systems shall conform to Standard Design 078-24-29 AIRCRAFT DIRECT FUELING SYSTEM (TYPE IV) DESIGN.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide
specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ASME INTERNATIONAL (ASME)

ASME B31.3 (2014) Process Piping

ASME BPVC SEC VIII D1 (2010) BPVC Section VIII-Rules for Construction of Pressure Vessels Division 1

ASTM INTERNATIONAL (ASTM)

ASTM C827/C827M (2010) Change in Height at Early Ages of Cylindrical Specimens from Cementitious Mixtures

ENERGY INSTITUTE (EI)

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)

SAE AMS-P-5315 (2013, Rev B) Butadiene - Acrylonitrile (NBR) Rubber For Fuel-Resistant Seals 60 To 70

U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-HDBK-831 (2013; Rev A) Preparation of Test Reports

MIL-PRF-4556 (1998; Rev F; Am 1 1999; CANC Notice 1 2011) Coating Kit, Epoxy, for Interior of Steel Fuel Tanks

MIL-STD-130 (2007; Rev N; Change 1 2012)
Identification Marking of U.S. Military Property

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

CID A-A-1923 (Rev A; Notice 2) Shield, Expansion (Lag, Machine and Externally Threaded Wedge Bolt Anchors)

1.2 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
1.3 PREPRODUCTION TESTING

**
NOTE: Contact the Naval Facilities Engineering Command (NAVFACENGCOM) or the Corps of Engineers (COE) for direction on selection. For COE projects, include in the MOU the specific Air Force representatives to be notified when factory filter separator test dates are submitted to the Contracting Officer.
**

Prior to construction of filter separators (FSI-1 THROUGH FSI-[____], FSR-[____], THROUGH FSR-[____]) for the project, preproduction tests shall have been conducted in the presence of [Det 3, WR-ALC/AFTH Technical Assistance Team Air Force Petroleum Office Wright-Patterson AFB, OH] [NAVAIR/NAFAC] [Army Petroleum Center] representative. Notify the Contracting Officer [_____] days prior to conductance of factory tests in order to schedule witnessing by representative.

1.3.1 Inspection and Testing

The inspection and testing of the preproduction filter separator shall be conducted on a full-scale test system in accordance with EI 1581 and as specified herein. The test sample shall consist of a complete filter separator with elements installed. Elements shall be representative of a production lot. The filter separator, coalescers, and separator screens shall be identified with the manufacturer's part number.

1.3.2 Deviations from EI 1581

No deviations are allowed.

1.3.3 Data Required Prior to Tests

Submit installation data to enable Government representative to verify that the equipment has been installed and operated correctly. Submit certification from the manufacturer that the test vessel has passed a hydrostatic pressure test, and that the design conforms to EI 1581,
Category [M] [M100], Type S. Submit two sets of assembly drawings of the test vessel and accessories for approval.

1.3.4 Submittal of Test Documents

**
NOTE: Contact NAVFACENGCOM or COE for direction on selection. For NAVFACENGCOM Projects, the designer must consult with the engineer in charge (EIC) to determine the review input of the appropriate service. For COE projects, coordinate with appropriate service to determine which service agency will review test documents and ensure that mou and submittal register contain these requirements.
**

The test report shall be submitted to the Command Fuel Facilities Engineer or [Det 3, WR-ALC/AFTH] [NAVAIR/NAFAC] [Army Petroleum Center] for Government approval. Prepare report in accordance with MIL-HDBK-831. In addition to results, the report shall contain complete records of the tests including data sheets, performance curves, chronological test records, photographs, sample calculations, test procedures, and a description of the test apparatus. Submit color photographs of the sample elements before and after tests. Submit one new coalescer element and one new separator element.

1.3.5 Required Preproduction Tests
a. Examination. A visual examination of the filter separator housing and each element shall be performed to ensure compliance with the drawings and verify workmanship requirements.

b. Hydrostatic Pressure Tests. The filter separator shall be subjected to a hydrostatic pressure test in accordance with EI 1581, Section 3.2.2.11.1.

c. Full Scale Performance Test. EI 1581 The filter/separator with a full set of coalescer and separator elements shall be tested in accordance with EI 1581 section 4.4 at [38] [_____] L/s [600] [_____] gpm (FSI-1 through FSI-[-_____] ; [FSR-1 and FSR-2]) [and[75] [_____] L/s [1200] [_____] gpm (FSR-1 and FSR-2)].

d. Coalescer Structural Test. A coalescer structural test shall be conducted in accordance with EI 1581 Section 4.5.

e. Disassembly Inspection. Upon completion of the tests specified above, the filter separator shall be disassembled and inspected to determine the condition of the coalescer and separator elements. Defects in the element such as swelling of the elements, or damaged gaskets shall be noted. Swelling of or damage to the elements or other parts shall be cause for rejection.

1.4 DESIGN CONDITIONS

Design conditions shall be as specified in Section 33 52 43.11 AVIATION FUEL MECHANICAL EQUIPMENT and as modified herein.
1.5 WORKMANSHIP

Each filter separator, including all parts and accessories, shall be free from blemishes, defects, burrs and sharp edges. The vessel shall exhibit accuracy of dimensions, accurate radii of fillets and complete marking of parts and assemblies.

1.6 CLEANING

Components of the filter separators shall be cleaned to remove dirt; excess soldering; brazing, and welding flux; welding slag; loose, spattered, or excess solder; metal chips; and other foreign materials before, during and after assembly.

PART 2 PRODUCTS

2.1 WELDING

Welding shall be in accordance with ASME B31.3.

2.2 MATERIALS AND EQUIPMENT

2.2.1 Housing

a. [Carbon steel with internal epoxy coating][3003 or 6061 aluminum alloy][Type 304 or 316 stainless steel].

b. Float Assembly. Stainless steel.

d. Sight Glass. Armored clear Pyrex with nickel-copper alloy ball checks.

f. Separators. 75 um 200 mesh stainless steel wire cloth, polytetrafluorethylene (PTFE) coated on both sides, or synthetic mesh cloth.

2.3 FILTER SEPARATOR CONSTRUCTION

**
NOTE: As required by the Command Fuels Facility Engineer or service headquarters. Coated carbon steel shall not be used for filter separator vessels on Navy/Marine Corps projects. Specify internally coated carbon steel vessel construction for Air Force projects.

Indicate the operating height of the unit on the drawings. Note that the unit's support system (legs) may have to be structurally designed to meet project requirements.
**
2.3.1 Housing Vessel

Each filter separator housing shall be fabricated from [carbon steel and shall be internally coated with an epoxy coating in accord with MIL-PRF-4556][3003 or 6061 aluminum alloy][Type 304 or 316 stainless steel].[Coat the exterior with alkalyd resin primer (universal metal primer).] Each unit shall be constructed and labeled in accordance with ASME BPVC SEC VIII D1. The housing shall be designed for a working pressure of 1725 kPa 275 psig. Each unit shall be [horizontal, end-opening type with coalescers and separators mounted side-by-side (coalescers at the bottom of the vessel and separators at the top)][vertical, top-opening type with coalescers and separators mounted side-by-side (coalescers at the inlet of the vessel and separators at the outlet)]. The head opening shall be equipped with a hinged or pivoting device to facilitate swinging the head to one side for servicing. The hinges or pivots shall support the head during servicing without distortion or misalignment. Swing-type bolts shall be used on all main closures. Unit shall be provided with 75 mm 3-inch inside diameter lifting eyes spaced to support a weight of 2-1/2 times the gross weight of the filter separator. The configuration of the pressure vessel shall be as shown on the drawings. The housing shall be provided with a 19 mm 3/4-inch inlet compartment fuel drain plug. A hand hole access plate shall be provided in the inlet compartment. The head shall be sealed to the body by means of an O-ring, meeting requirements of SAE AMS-P-5315, mounted in a circular groove at the point of closure. Threaded base mounting adapters shall be provided for the coalescers. The separators shall be mounted on adapters with blunted Vee-type knife edges. Height of Vee section to be 1.5 mm 0.06 inches, plus or minus 10 percent. Weld ridges shall not prevent liquid from draining. The filter separator vessel shall be able to withstand a force of 10 kN 2400 pounds and a moment of 3250 J 2400 foot-pounds at the flanges.

2.3.2 Legs

Four 75 x 75 x 6 mm 3 x 3 x 1/4 inch angle-shaped legs shall be welded to the housing. Each leg shall be fitted with a 100 x 100 x 13 mm 4 x 4 x 1/2-inch base plate drilled through with a 19 mm 3/4-inch hole.

2.3.3 Inlet and Outlet Connections

The inlet and outlet connections shall be 150 mm 6 inch nominal pipe size and shall be located parallel to each other as shown on the drawings. Inlet connection shall be provided with raised face flanges, faced and drilled in compliance with ASME B16.5, Class 150. Outlet connection flange face shall match Filter Separator Control Valve (FSCV).

2.3.4 Manual Drain Valve

As specified in paragraph ACCESSORIES.

2.3.5 Sight Gauge

As specified in paragraph ACCESSORIES.

2.3.6 Differential Pressure Gauge

**
NOTE: Coordinate selection of this feature with the Command Fuel Facilities Engineer.
**
As specified in paragraph ACCESSORIES.

2.3.7 Automatic Air Eliminator and Pressure Relief Valves

As specified in paragraph ACCESSORIES.

2.3.8 Sampling Connections

As specified in paragraph ACCESSORIES.

2.3.9 Spider Assembly

Each filter separator shall contain a spider assembly to hold the coalescers and separators in position, to support them firmly against vibration. The method of stabilization shall assure an electrical bond between the spider and the vessel.

2.3.10 Coalescer and Separator Cartridges

**
NOTE: The Designer indicates appropriate identification (FSR or FSI). Filter separators shall be flow-rated in 19 L/s (300 gpm) increments.
**

Each filter separator shall be provided with coalescers and separators that have been qualified to the performance requirements of EI 1581, Category [M] [M100], Type S. Filter separators shall use coalescers 150 mm 6-inch in diameter and 1090 mm 43-inch long for a flow-rate of [19 L/s 300 gpm] [38 L/s 600 gpm] [57 L/s 900 gpm] [______].

2.3.11 Control Valve Accessories

Provide each filter separator with a control valve (FSCV), manual water drain valve, and float control valve (FC) with manual tester as specified in Section 33 52 43.14 AVIATION FUEL CONTROL VALVES and shall be of the same manufacturer.

2.3.11.1 Float Control Pilot and Tester

Each housing sump shall be fitted with a float control pilot and tester specified in Section 33 52 43.14 AVIATION FUEL CONTROL VALVES and shall be of the same manufacturer as the control valves. The drain port "D" shall be tubed to the drain piping to the product recovery tank.

2.3.12 Identification of Product

Equipment, assemblies, and parts shall be marked for identification in accordance with MIL-STD-130. The main equipment nameplate shall be mounted on the housing, and in addition to the usual MIL-STD-130 requirements, shall include the following markings in letters 0.09 mm 3/32 inch high or larger:

| Filter Separator, Liquid Fuel |

SECTION 33 52 43.28 Page 10
Design Flow-Rate

Design Pressure

Elements

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Mfg. Part No. *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Stage</td>
<td>Mfg. Part No. *</td>
</tr>
</tbody>
</table>

Contract No. *

Manufacturer *

Specification*

*Applicable information shall be entered by the Contractor.

*Applicable information shall be stenciled by LFM personnel.

2.3.13 Assembly

Each filter separator shall come assembled with all accessories and shall be ready for use. The functions of all components shall be tested prior to shipment and no assembly or field adjustment of valves or components shall be required.

2.4 MICRONIC PRE-FILTER CONSTRUCTION

**
NOTE: As required by the Command Fuels Facility Engineer or Service Headquarters.
**

2.4.1 Product Submittals

a. If product has been previously tested and approved by the Government, submit certification of qualification under EI 1581, Category [M] [M100], Type S (Filter Separator). Include the description of qualification, which contains element types and quantities, and provide details of the configurations of vessels tested. Also, include the name of the Government Agency and the date of approval.

b. Submit scaled drawings showing dimensions, tolerances, connection sizes of the vessel and accessories. Submit shop drawings for elements. Shop drawings shall include number and arrangement of elements. Submit technical literature on the vessel, elements, and accessories, which is the manufacturer's published literature.

c. Refer to Section 01 78 23.33 OPERATION AND MAINTENANCE MANUALS FOR AVIATION FUEL SYSTEMS for specifics on the required operation and maintenance information.

2.4.2 Housing Vessel

Each pre-filter housing shall be fabricated from carbon steel and shall be internally coated with an epoxy coating in accord with MIL-PRF-4556. Coat
the exterior with alkalyd resin primer (universal metal primer). Each unit shall be constructed and labeled in accordance with ASME BPVC SEC VIII D1. The housing shall be designed for a working pressure of 1725 kPa 275 psig. Each unit shall be horizontal, end-opening type with filters mounted side-by-side. The head opening shall be equipped with a hinged or pivoting device to facilitate swinging the head to one side for servicing. The hinges or pivots shall support the head during servicing without distortion or misalignment. Swing-type bolts shall be used on all main closures. Unit shall be provided with 75 mm 3-inch inside diameter lifting eyes spaced to support a weight of 2-1/2 times the gross weight of the filter separator. The configuration of the pressure vessel shall be as shown on the drawings. The housing shall be provided with a 19 mm 3/4-inch inlet compartment fuel drain plug. A hand hole access plate shall be provided in the inlet compartment. The head shall be sealed to the body by means of an O-ring, meeting requirements of SAE AMS-P-5315, mounted in a circular groove at the point of closure. The filter cartridges shall be mounted on adapters with blunted Vee-type knife edges. Height of Vee section to be 1.5 mm 0.06 inches, plus or minus 10 percent.

2.4.3 Legs

Four 75 x 75 x 6 mm 3 x 3 x 1/4 inch angle-shaped legs shall be welded to the housing. Each leg shall be fitted with a 100 x 100 x 13 mm 4 x 4 x 1/2-inch base plate drilled through with a 19 mm 3/4-inch hole.

2.4.4 Inlet and Outlet Connections

The inlet and outlet connections shall be 200 mm 8 inch nominal pipe size and shall be located parallel to each other as shown on the drawings. Connections shall be provided with raised face flanges, faced and drilled in compliance with ASME B16.5, Class 150.

2.4.5 Manual Drain Valve

As specified in paragraph ACCESSORIES.

2.4.6 Sight Gauge

As specified in paragraph ACCESSORIES.

2.4.7 Differential Pressure Gauge

As specified in paragraph ACCESSORIES.

2.4.8 Automatic Air Eliminator and Pressure Relief Valves

As specified in paragraph ACCESSORIES.

2.4.9 Sampling Connections

As specified in paragraph ACCESSORIES.

2.4.10 Spider Assembly

The prefilter shall contain a spider assembly to hold the filter cartridges in position, to support them firmly against vibration. The method of stabilization shall assure an electrical bond between the spider and the vessel.
2.4.11 Filter Cartridges

The prefilter shall be provided with 5 um5 micron pleated media filter cartridges. Filter cartridges shall have a minimum efficiency of 98 percent and a minimum collapse strength 520 kPa 75 psig.

2.4.12 Identification of Product

Equipment, assemblies, and parts shall be marked for identification in accordance with MIL-STD-130. The main equipment nameplate shall be mounted on the housing, and in addition to the usual MIL-STD-130 requirements, shall include the following markings in letters 2 mm 3/32 inch high or larger:

<table>
<thead>
<tr>
<th>Micronic Prefilter, Liquid Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Flow-Rate</td>
</tr>
<tr>
<td>Design Pressure</td>
</tr>
<tr>
<td>Elements</td>
</tr>
<tr>
<td>First Stage Mfg. Part No. *</td>
</tr>
<tr>
<td>Second Stage Mfg. Part No. *</td>
</tr>
<tr>
<td>Contract No. *</td>
</tr>
<tr>
<td>Manufacturer *</td>
</tr>
<tr>
<td>Specification*</td>
</tr>
</tbody>
</table>

*Applicable information shall be entered by the Contractor.

*Applicable information shall be stenciled by LFM personnel.

2.4.13 Assembly

The prefilter shall come assembled with all accessories and shall be ready for use. The functions of all components shall be tested prior to shipment and no assembly or field adjustment of valves or components shall be required.

2.5 ACCESSORIES

2.5.1 Manual Drain Valve

Each filter separator shall be equipped with a 25 mm 1-inch stainless steel manual ball valve water and fuel drain. The valve shall be capable of draining all water, fuel and sediment from the filter separator by gravity. The valve shall be installed below the sump of the housing as shown on the drawings.

2.5.2 Sight Gauge

A[13 mm 1/2-inch armored, clear borosilicate (Pyrex)][or][magnetic level type] liquid level gauge shall be provided for observing the water
accumulation in the sump. The gauge shall be equipped with stainless steel ball checks in both the upper and lower fittings, an upper and lower shutoff valve, and a bottom blowoff cock. [The gauge will contain a colored density sensitive ball.] Liquid level gauges shall be rated for a maximum pressure of 1035 kPa 150 psi.

2.5.3 Differential Pressure Gauge

**

NOTE: Coordinate selection of this feature with the command fuel facilities engineer or service headquarters.
**

The housing shall be equipped with a direct-reading, piston type differential pressure gauge that measures the differential pressure across both coalescers and separators. The gauge shall consist of a spring-supported, corrosion resistant piston moving inside a glass cylinder, with high pressure applied on top of the piston and low pressure applied below it. The gauge shall have a peak-hold reading that locks the piston to indicate the maximum differential pressure that is measured until the piston is released by turning a knob, a push button test valve to relieve pressure under the piston, and a pressure relief feature set at 2070 kPa 300 psi to protect the gauge if isolation valves have been left closed. Under a differential pressure of 205 kPa 30 psi, leakage past the piston shall not exceed 120 drops per minute. The cylinder shall have stainless steel and flanges with fluoroelastomer (FKM), commonly referred to as Viton, O-ring seals. The high pressure inlet of the gauge shall have a 10 um10-micron pleated paper filter and the low pressure connection shall have a fine mesh stainless steel strainer. The gauge shall have an operating pressure of 2070 kPa 300 psi. Differential pressure range of the gauge through approximately 75 mm 3 inches of piston movement shall be 0–205 kPa 0–30 psi with an accuracy of +3 kPa 0.5 psi, calibrated linearly with 5 kPa 1 PSI scale graduations. High and low pressure connections shall be 6 mm 1/4 inch NPT female with a stainless steel bar stock valve at each connection. Construction of the gauge shall be such that a 3-valve manifold is not necessary. If only one bar stock valve is closed, the gauge shall not be damaged by up to 2070 kPa 300 psi differential pressure in either direction. The differential pressure gauge shall be attached to the filter separator by a gauge panel. [Differential pressure gauge shall control the filter separator control valve (FSCV) to automatically shut down flow when 140 kPa 20 psi differential pressure is exceeded.] A pressure gauge shall be attached to the differential pressure gauge to indicate the high pressure and have a range of 2070 kPa 300 psi.

2.5.4 Automatic Air Eliminator and Pressure Relief Valves

A 25 mm 1-inch angle pattern pressure relief valve shall be provided on top of each vessel. An automatic air eliminator shall be installed on the highest point of the vessel and shall have check valve feature. The air eliminator shall release at pressures up to 1035 kPa 150 psi with no fuel leakage allowed.

2.5.5 Sampling Connections

Sampling connections shall be provided at the inlet and outlet connections to the housing. Each sampling connection shall consist of a 6 mm 1/4-inch sampling probe where the probe faces upstream, ball valve, a quick disconnect coupling and aluminum dust cap. The sampling connections shall
be capable of accepting a sampling kit for drawing the samples required to assure fuel quality.

PART 3 EXECUTION

3.1 INSTALLATION

Install equipment and components in position, true to line, level and plumb and measured from established benchmarks or reference points. Follow manufacturer's recommended practices for equipment installation. Provide required clearance between equipment components. Equipment apparatus, and accessories requiring normal servicing or maintenance to be accessible.

3.1.1 Anchoring

Anchor equipment in place. Check alignment of anchor bolts before installing equipment and cleanout associated sleeves. Do not cut bolts because of misalignment. Notify Contracting Officer of errors and obtain the Contracting Officer's acceptance before proceeding with corrections. Cut anchor bolts of excess length to the appropriate length without damage to threads. Where anchor bolts or like devices have not been installed, provide appropriate self-drilling type anchors for construction condition. Expansion bolt anchors provided shall be in accordance with CID A-A-1923, Type 4, Class One, 13 mm 1/2 inch size.

3.1.2 Grouting

Equipment, which is anchored to a pad, shall be grouted in place where applicable. Before setting equipment in place and before placing grout, clean surfaces to be in contact with grout, including fasteners and sleeves. Remove standing water, debris, oil, rust, coatings and other materials which impair bond. Clean contaminated concrete by grinding or other acceptable means. Provide necessary formwork for placing and retaining grout. Grout to be nonmetallic, nonshrink, fluid precision grout of a hydraulic cementitious system with graded and processed silica aggregate, Portland cement, shrinkage compensating agents, plasticizing and water reducing agents; free of aluminum power agents, oxidizing agents and inorganic accelerators, including chlorides; proportioned, premixed and packaged at factory with only the addition of water required at the project site. Grouting to meeting requirements of ASTM C827/C827M. Perform grouting in accord with ACI, equipment manufacturer's, and grout manufacturer's published specifications and recommendations.

3.1.3 Leveling and Aligning

Level and align equipment in accordance with respective manufacturer's published data. Do not use anchor bolts, jack-nuts or wedges to support, level or align equipment. Install only flat shims for leveling equipment. Place shims to fully support equipment. Wedging is not permitted. Shims to be fabricated flat carbon steel units of surface configuration and area not less than equipment bearing surface. Shims to provide for full equipment support. Shims to have smooth surfaces and edges, free from burrs and slivers. Flame or electrode cut edges not acceptable.

3.1.4 Painting

Equipment painting shall be as specified in Section 33 52 43.13 AVIATION FUEL PIPING. Equipment labeling shall be as specified in Section 33 52 43.11 AVIATION FUEL MECHANICAL EQUIPMENT.