UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2015

SECTION TABLE OF CONTENTS

DIVISION 33 - UTILITIES

SECTION 33 52 10

SERVICE PIPING, FUEL SYSTEMS

04/08

PART 1 GENERAL

1. SUMMARY
 1.1 Related Sections
 1.1.1 Welding
 1.1.2 Earthwork
 1.1.3 Cathodic Protection
 1.1.4 Concrete Manholes
 1.2 REFERENCES
 1.3 SUBMITTALS
 1.4 QUALITY ASSURANCE
 1.4.1 Contractor Qualifications
 1.4.2 Regulatory Requirements
 1.4.2.1 Licensed Personnel
 1.4.2.2 Stage II Vapor Recovery System
 1.5 DELIVERY, STORAGE, AND HANDLING
 1.6 PROJECT/SITE CONDITIONS

PART 2 PRODUCTS

2. MATERIALS AND EQUIPMENT
 2.1 Standard Products
 2.1.1 Nameplates
 2.1.2 Gaskets
 2.1.2.1 Nitrile Butadiene (Buna-N)
 2.1.2.2 Acrylonitrile Butadiene Rubber (NBR)
 2.2 ELECTRICAL COMPONENTS
 2.2.1 General
 2.2.2 Motors
 2.2.3 Motor Controllers
 2.2.4 Underground Wiring
 2.2.5 Grounding and Bonding
 2.3 FLANGED END CONNECTIONS
 2.3.1 Flanges
2.3.1.1 Carbon Steel
2.3.1.2 Stainless Steel
2.3.1.3 Aluminum
2.3.2 Flange Gaskets, Non-Isolating
2.3.3 Flange Gaskets, Electrically Isolating
2.3.4 Flange Protectors
2.3.5 Flange Bolts, Nuts, and Washers
 2.3.5.1 Stainless Steel Materials
 2.3.5.2 Carbon Steel Materials
2.4 PIPE
2.4.1 Carbon Steel Pipe
2.4.2 Stainless Steel Pipe
 2.4.2.1 Fittings 65 mm (2-1/2 in) and Larger
 2.4.2.2 Fittings 50 mm (2 in) and Smaller
 2.4.2.3 Control Piping
 2.4.2.4 Control Piping Fittings
2.4.3 Fiberglass Reinforced Plastic (FRP) Pipe
2.4.4 Exterior Containment Piping System
2.4.5 Copper Piping
 2.4.5.1 Fittings and End Connections
 2.4.5.2 Solder
 2.4.5.3 Brazing Filler Metal
2.5 PIPING COMPONENTS
2.5.1 Welded Nipples
2.5.2 Steel Couplings
2.5.3 Threaded Unions
2.5.4 Joint Compound
2.5.5 Flexible Pipe Connector
2.5.6 Strainer
2.5.7 Thermometers
2.5.8 Pressure Gauge
2.5.9 Pipe Hangers and Supports
 2.5.9.1 Pipe Protection Shields
 2.5.9.2 Low Friction Supports
2.5.10 Escutcheon
2.5.11 Flexible Ball Joint
2.5.12 Bellows Expansion Joint
2.5.13 Sight Flow Indicator
2.5.14 Fuel Oil Meter
2.5.15 Vent Cap
2.6 GENERAL VALVES
2.6.1 Swing Type Check Valve
2.6.2 Wafer Type Check Valve
2.6.3 Ball Valve
2.6.4 Globe Valve
2.6.5 Plug Valve (PTFE Sleeved Tapered Type)
2.6.6 Plug Valve (Double Block and Bleed Type)
 2.6.6.1 Valve Operation
 2.6.6.2 Pressure Relief
 2.6.6.3 Bleed Valve
2.6.7 Pressure Relief Valve
2.6.8 Pressure/Vacuum Relief Valve
2.6.9 Foot Valve
2.6.10 Tank Overfill Prevention Valve
2.7 PUMPS
2.7.1 Submersible Pump
2.7.2 Centrifugal Pump
2.7.3 Rotary Pumps
2.7.4 Pump Control Panel
2.8 FRP CONTAINMENT SUMP
2.9 ACCESSORIES
 2.9.1 Concrete Anchor Bolts
 2.9.2 Bolts and Studs
 2.9.3 Nuts
 2.9.4 Washers
 2.9.5 Polytetrafluoroethylene (PTFE) Tape
 2.9.6 Pipe Sleeves
 2.9.7 Buried Utility Tape
2.10 FINISHES
 2.10.1 Exterior Coating, Direct Buried Piping
 2.10.1.1 Factory Coating
 2.10.1.2 Girth Welds
 2.10.1.3 Damaged Coatings
 2.10.1.4 Rock Shield
 2.10.2 Exterior Coating, Aboveground Piping
 2.10.3 New Equipment and Components
 2.10.3.1 Factory Coating
 2.10.3.2 Field Painting

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Pumps
 3.1.2 Piping
 3.1.2.1 General
 3.1.2.2 FRP Piping
 3.1.2.3 Exterior Containment Piping System
 3.1.2.4 Welded Connections
 3.1.2.5 Threaded End Connections
 3.1.2.6 Brazed Connections
 3.1.2.7 Existing Piping Systems
 3.1.3 Bolted Connections
 3.1.4 Flanges and Unions
 3.1.5 Flange Protectors
 3.1.6 Valves
 3.1.7 Air Vents
 3.1.8 Sight Flow Indicator
 3.1.9 Drains
 3.1.10 Flexible Pipe Connectors
 3.1.11 Bellows Expansion Joints
 3.1.12 Thermometers
 3.1.13 Pipe Sleeves
 3.1.14 Escutcheons
 3.1.15 Pumps
 3.1.16 Access Panels
 3.1.17 Buried Utility Tape
 3.1.18 Framed Instructions
3.2 PIPE HANGERS AND SUPPORTS
 3.2.1 Seismic Requirements
 3.2.2 Structural Attachments
3.3 FIELD QUALITY CONTROLS
 3.3.1 System Commissioning
 3.3.2 Tests
 3.3.2.1 Exterior Coating Holiday Test
 3.3.2.2 Preliminary Pneumatic Test
 3.3.2.3 Final Pneumatic Test
 3.3.2.4 Hydrostatic Test
 3.3.2.5 Exterior Containment Piping Tests
3.4 SYSTEM PERFORMANCE TESTS
3.5 DEMONSTRATIONS

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements of interior and exterior fuel piping and accessories for small, non-aviation fueling applications (i.e., gasoline fueling, diesel fueling, fuel oil systems, etc.).

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).
vapor recovery is optional and will be included if required by state and local clean air regulations.

The specification is written around ASME's standard Class 150 rating. For applications requiring higher pressure ratings (e.g., Class 300, etc.), the designer will have to modify this specification appropriately.

1.1 SUMMARY

This section defines the requirements for pipe, piping components, and valves as related to fuel distribution systems (non-aviation type). Provide the entire fuel distribution system as a complete and fully operational system. Size, select, construct, and install equipment and system components to operate together as a complete system. Substitutions of functions specified herein will not be acceptable. Coordinate the work of the system manufacturer's service personnel during construction, testing, calibration, and acceptance of the system. Design equipment and piping specified herein to handle a working pressure of 1900 kPa 275 psig at 38 deg C 100 deg F. Equipment specified herein must be compatible with the fuel to be handled.

1.1.1 Related Sections

1.1.1.1 Welding

NOTE: Use Section 33 52 90.00 20 to define all welding requirements for pressure piping. Edit Section 33 52 90.00 20 around the requirements of ASME B31.3.

Within Section 33 52 90.00 20, require 100 percent radiographic testing on all underground steel piping as well as all piping downstream of pumps (See UFC 3-460-01). For all other piping, require random radiographic testing per ASME B31.3, Category M fluid service (20 percent).

Welding activities for pipe and piping components must be in accordance with Section 33 52 90.00 20 WELDING FOR POL SERVICE PIPING.

1.1.1.2 Earthwork

NOTE: Require backfill for aluminum, stainless steel, or carbon steel pipe to be pea gravel, crushed stone, or sand.

Require pea gravel to be between 3 and 20 mm (1/8 and 3/4 inch) in diameter. Require crushed stone to be between 3 and 13 mm (1/8 and 1/2 inch) in diameter. Require sand to be a fine aggregate that is washed and thoroughly dried, contains no more than 500 ppm chlorides, contains no more than 500 ppm sulfates, and has a pH greater than 7.
Suggest horizontal sections of belowground piping be installed with a minimum of 915 mm (36 inch) of backfill between the top of the pipe and the ground surface.

Excavate and backfill tanks as specified in [Section 31 00 00 EARTHWORK] [Section 31 23 00.00 20 EXCAVATION AND FILL].

1.1.1.3 Cathodic Protection

Provide buried metallic components including pipe, anchors, conduit, etc., with a cathodic protection system as specified in [Section 26 42 14.00 10 CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE)] [Section 26 42 13.00 20 CATHODIC PROTECTION BY GALVANIC ANODES] [and] [Section 26 42 17.00 10 CATHODIC PROTECTION SYSTEM (IMPRESSED CURRENT)] [Section 26 42 19.00 20 CATHODIC PROTECTION BY IMPRESSED CURRENT]. Cathodic protection for metal components that attach to a tank must be coordinated and compatible with the tank corrosion control system.

1.1.1.4 Concrete Manholes

NOTE: The design of manholes including size, reinforcing, arrangement, penetrations, equipment and piping within the valve manholes is the responsibility of the designer. Design manholes to provide proper venting and drainage and adequate room for maintenance without stepping on or over any piping/equipment. When electric manhole sump pumps are used, the electrical distribution and tie in points must be designed and shown on the drawings.

Require in the referenced section below that concrete be 30 MPa (4000 psi) minimum 28 day compressive strength, air-entrained admixture (133 grams per cubic meter (3.6 ounces per cubic yard)), with water-reducing admixture (814 grams per cubic meter (22 ounces per cubic yard)), reinforced with deformed steel bars. Require manhole sides to be constructed by one monolithic pour. Require cast-iron steps with nonslip surfaces, spaced 300 to 400 mm (12 to 16 in) on centers to be firmly embedded in the concrete walls for access to bottom of manholes.

Note that the interior walls of a typical concrete manhole are not fuel resistant. Fuel that is collected within a manhole will eventually, if not removed, will wick through the concrete to the surrounding soil. Consider protecting the interior manhole walls with some type of fuel resistant coating.

Construct manhole of concrete in accordance with [Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE] [Section 03 30 00 CAST-IN-PLACE CONCRETE].
1.2 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN PETROLEUM INSTITUTE (API)

API RP 1110 (2013) Pressure Testing of Steel Pipelines for the Transportation of Gas, Petroleum Gas, Hazardous Liquids, Highly Volatile Liquids or Carbon Dioxide

API RP 2003 (2008; 7th Ed) Protection Against Ignitions Arising out of Static, Lightning, and Stray Currents

API RP 540 (1999; R 2004) Electrical Installations in Petroleum Processing Plants

API Spec 6D (2014; Errata 2014) Specification for Pipeline Valves

API Spec 6FA (1999; R 2006; Errata 2006; Errata 2008; R 2011) Specification for Fire Test for Valves

API Std 610 (2010; Errata 2011) Centrifugal Pumps for Petroleum, Petrochemical, and Natural Gas Industries
AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C209 (2013) Cold-Applied Tape Coatings for the Exterior of Special Sections, Connections and Fitting for Steel Water Pipelines

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2011; Amendment 2012) Specification for Filler Metals for Brazing and Braze Welding

ASME INTERNATIONAL (ASME)

ASME B1.1 (2003; R 2008) Unified Inch Screw Threads (UN and UNR Thread Form)

ASME B16.11 (2011) Forged Fittings, Socket-Welding and Threaded

ASME B16.18 (2012) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300

ASME B16.34 (2013) Valves - Flanged, Threaded and Welding End

Steel Buttwelding Fittings

ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASME B31.3 (2012) Process Piping

ASME B40.100 (2013) Pressure Gauges and Gauge Attachments

ASME B40.200 (2008; R 2013) Thermometers, Direct Reading and Remote Reading

ASME BPVC SEC VIII D1 (2010) BPVC Section VIII–Rules for Construction of Pressure Vessels Division 1

ASTM INTERNATIONAL (ASTM)

ASTM A182/A182M (2014b) Standard Specification for Forged or Rolled Alloy-Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service

ASTM A194/A194M (2014) Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both

Brass, Copper, and Chromium-Plated Pipe Nipples

ASTM D229 (2013) Rigid Sheet and Plate Materials Used for Electrical Insulation

ASTM D3308 (2012) PTFE Resin Skived Tape

ASTM D5677 (2005; R 2010) Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Pipe Fittings, Adhesive Bonded Joint Type, for Aviation Jet Turbine Fuel Lines

ASTM F436 (2011) Hardened Steel Washers

ASTM F844 (2007a; R 2013) Washers, Steel, Plain (Flat), Unhardened for General Use

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

NACE INTERNATIONAL (NACE)

1.3 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.
The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Grounding and Bonding
 Pipe Hangers and Supports

SD-03 Product Data
 Carbon Steel Pipe
 Stainless Steel Pipe
 Fiberglass Reinforced Plastic (FRP) Pipe
 Exterior Containment Piping System
 Copper Piping
 Pressure Gauge
 Flexible Ball Joint
 Bellows Expansion Joint
 Swing Type Check Valve
 Wafer Type Check Valve
Ball Valve
Plug Valve (PTFE Sleeved Tapered Type)
Plug Valve (Double Block and Bleed Type)
Globe Valve
Pressure Relief Valve
Pressure\Vacuum Relief Valve
Foot Valve
Tank Overfill Prevention Valve
Submersible Pump
Centrifugal Pump
Rotary Pumps
Pump Control Panel
FRP Containment Sump

SD-06 Test Reports

Exterior Coating Holiday Test
Preliminary Pneumatic Test
Final Pneumatic Test
Hydrostatic Test
Exterior Containment Piping Tests

SD-07 Certificates

Contractor Qualifications; G[, [_____]]
Licensed Personnel
Stage II Vapor Recovery System
Demonstrations

SD-08 Manufacturer's Instructions

Flexible Ball Joint
Bellows Expansion Joint

SD-10 Operation and Maintenance Data

Flexible Ball Joint; G[, [_____]]
Bellows Expansion Joint; G[, [_____]]
Swing Type Check Valve; G[, [_____]]
Wafer Type Check Valve; G[, [_____]]
Ball Valve; G[, [_____]]
Plug Valve (PTFE Sleeved Tapered Type); G[, [_____]]
Plug Valve (Double Block and Bleed Type); G[, [_____]]
Globe Valve; G[, [_____]]
Pressure Relief Valve; G[, [_____]]
Pressure\Vacuum Relief Valve; G[, [_____]]
Foot Valve; G[, [_____]]
Tank Overfill Prevention Valve; G[, [_____]]
Submersible Pump; G[, [_____]]
Centrifugal Pump; G[, [_____]]
Rotary Pumps; G[, [_____]]

1.4 QUALITY ASSURANCE

1.4.1 Contractor Qualifications

**
NOTE: Include any state or local regulatory requirements or certification that must be met by

SECTION 33 52 10 Page 15
Each installation Contractor must have successfully completed at least 3 projects of the same scope and the same size, or larger, within the last 6 years; demonstrate specific installation experience in regard to the specific system installation to be performed; have taken, if applicable, manufacturer's training courses on the installation of piping; and meet the licensing requirements in the state. For FRP pipe installation, certification by the FRP manufacturer as a qualified installer of their products is required. Submit a letter listing prior projects, the date of construction, a point of contact for each prior project, the scope of work of each prior project, and a detailed list of work performed providing in the letter evidence of prior manufacturer's training and state licensing.

1.4.2 Regulatory Requirements

1.4.2.1 Licensed Personnel

Pipe installers must be licensed/certified by the state when the state requires licensed installers.

1.4.2.2 Stage II Vapor Recovery System

System must meet the air quality laws of the State of [_____] as well as applicable local regulations. Submit certification of the stage II vapor recovery systems from the California Air Resources Board (CARB). Test and validate the recovery system to be 95 percent efficient in controlling VOC emissions during refueling of motor vehicles.

1.5 DELIVERY, STORAGE, AND HANDLING

Handle, store, and protect equipment and materials to prevent damage before and during installation in accordance with the manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.

1.6 PROJECT/SITE CONDITIONS

Fuel required for the testing, flushing and cleaning efforts, as specified in this section, will be provided and delivered by the Contracting Officer. Do not flush, clean, or test any system with fuel or liquid not intended for final system operation. Fuel used in the system will remain the property of the Government. Fuel shortages not attributable to normal handling losses must be reimbursed to the Government.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Internal parts and components of equipment, piping, piping components, and valves that could be exposed to fuel during system operation must not be constructed of zinc coated (galvanized) metal, brass, bronze, or other copper bearing alloys. Do not install cast iron bodied valves in piping.
systems that could be exposed to fuel during system operation.

2.1.1 Standard Products

Provide materials and equipment that are standard products of a manufacturer regularly engaged in the manufacturing of such products; that are of a similar material, design and workmanship; and that have been in satisfactory commercial or industrial use for a minimum 2 years prior to bid opening. The 2 year period must include applications of the equipment and materials under similar circumstances and of similar size. Materials and equipment must have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.[Products having less than a 2 year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours, exclusive of the manufacturer's factory tests, can be shown.]

2.1.2 Nameplates

**

NOTE: In a salt water environment, substitute acceptable non-corroding metal such as, but not limited to, nickel-copper, 304 stainless steel, or monel. Aluminum is unacceptable. Nomenclature (or system identification) should be established by the designer.

Require melamine plastic nameplates for all NAVFAC projects. Also for NAVFAC projects, require nameplates to be associated or keyed to system charts and schedules.

**

Attach nameplates to all specified equipment, thermometers, gauges, and valves defined herein. List on each nameplate the manufacturer's name, address, [contract number,] [acceptance date,] component type or style, model or serial number, catalog number, capacity or size, and the system that is controlled. Construct plates of [anodized aluminum] [stainless steel] [melamine plastic, 3 mm 0.125 inch thick, UV resistance, black with white center core, matte finish surface and square corners] [______]. Install nameplates in prominent locations with nonferrous screws, nonferrous bolts, or permanent adhesive. Minimum size of nameplates must be 25 by 65 mm 1 by 2.5 inches. Lettering must be the normal block style with a minimum 6 mm 0.25 inch height. Accurately align all lettering on nameplates. [For plastic nameplates, engrave lettering into the white core.] [Key the nameplates to a chart and schedule for each system. Frame charts and schedule under glass, and locate where directed near each system. Furnish two copies of each chart and schedule. Each nameplate description must identify its function.]

2.1.3 Gaskets

Provide gaskets that are factory cut from one piece of material.

2.1.3.1 Nitrile Butadiene (Buna-N)

Provide Buna-N material that conforms to SAE AMS3275.
2.1.3.2 Acrylonitrile Butadiene Rubber (NBR)

Provide NBR material that conforms to SAE AMS3275.

2.2 ELECTRICAL COMPONENTS

**
NOTE: Show electrical characteristics, motor starter type(s), enclosure type, and maximum rpm in the equipment schedules on the drawings.

Where reduced-voltage motor starters are recommended by the manufacturer or required otherwise, specify and coordinate the type(s) required in Section 26 20 00, INTERIOR DISTRIBUTION SYSTEM. Reduced-voltage starting is required when full voltage starting will interfere with other electrical equipment and circuits and when recommended by the manufacturer. Where adjustable speed drives (ASD) are specified, reference Section 26 29 23 VARIABLE FREQUENCY DRIVE SYSTEMS UNDER 600 VOLTS. The methods for calculating the economy of using an adjustable speed drive is described in UFC 3-520-01 DESIGN: INTERIOR ELECTRICAL SYSTEMS.

Coordinate the ignition temperature of the fuel(s) to be handled with the electrical design. Ignition temperatures will be as defined in NFPA 497M. Fuel ignition temperatures will dictate the maximum allowable temperature rating of the electrical equipment.
**

2.2.1 General

Provide motors, motor starters, controllers, integral disconnects, contactors, controls, and control wiring with their respective pieces of equipment, except controllers indicated as part of motor control centers. Provide electrical equipment, including motors and wiring, as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide switches and devices necessary for controlling and protecting electrical equipment. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Controllers and contactors must have a maximum of 120-volt control circuits and must have auxiliary contacts for use with the controls provided. For packaged equipment, the manufacturer must provide controllers including the required monitors and timed restart.

2.2.2 Motors

Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor when operating at proper electrical system voltage. Provide high efficiency type, single-phase, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11. Provide polyphase, squirrel-cage medium induction motors, including motors that are part of a system, that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Motors must be rated for continuous duty with the enclosure specified. Motor duty requirements must allow for maximum frequency
start-stop operation and minimum encountered interval between start and stop. Motor torque must be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Fit motor bearings with grease supply fittings and grease relief to outside of the enclosure.

2.2.3 Motor Controllers

[Where two-speed or variable-speed motors are indicated, solid-state variable-speed controllers may be provided to accomplish the same function. Use solid-state variable-speed controllers for motors rated 7.45 kW 10 hp or less and adjustable frequency drives for larger motors.] [Provide variable frequency drives for motors as specified in Section 26 29 23 VARIABLE FREQUENCY DRIVE SYSTEMS UNDER 600 VOLTS.]

2.2.4 Underground Wiring

Enclose underground electrical wiring in PVC coated conduit. Dielectrically isolate conduit at any steel storage tank connection.

2.2.5 Grounding and Bonding

Grounding and bonding shall be in accordance with NFPA 70, NFPA 77, NFPA 780, API RP 540, API RP 2003, IEEE 142, and IEEE 1100. Provide jumpers to overcome the insulating effects of gaskets, paints, or nonmetallic components.

2.3 FLANGED END CONNECTIONS

2.3.1 Flanges

Provide flanged end connections on equipment, fittings, piping, piping components, adapters, couplers, and valves that conform to ASME B16.5, Class 150.

2.3.1.1 Carbon Steel

Carbon steel flanges shall conform to ASTM A105/A105M.

2.3.1.2 Stainless Steel

Stainless steel flanges shall conform to ASTM A182/A182M, Grade F304 or F304L, forged type.

2.3.1.3 Aluminum

Aluminum flanges shall conform to ASTM B247, Alloy 6061-T6.

2.3.2 Flange Gaskets, Non-Isolating

Provide flange gaskets that are 3.2 mm (1/8 in) 1/8 inch thick and that conform to ASME B16.21, raised-face type unless otherwise indicated. Gaskets shall be constructed of Buna-N.

2.3.3 Flange Gaskets, Electrically Isolating

**

NOTE: Indicate the location of each electrically isolating connection on drawings.
Flange gaskets shall conform to ASTM D229 and shall provide an electrical insulating material of 1000 ohms minimum resistance. Provide gasket material that is chemically compatible with the fuel to be handled. Provide gaskets that are the full face type. Provide flanges that have a full surface 762 micrometers (0.03 in) 0.03 inch thick, spiral-wound mylar insulating sleeves between the bolts and the holes in the flanges. Bolts may have reduced shanks of a diameter not less than the diameter at the root of the threads. Provide high-strength 3.2 mm (1/8 in) 1/8 inch thick phenolic insulating washers next to the flanges with flat circular stainless steel washers over the insulating washers and under bolt heads and nuts. Provide bolts long enough to compensate for the insulating gaskets and stainless steel washers.

2.3.4 Flange Protectors

NOTE: Use flange protectors to minimize the exposure of flanged end connections to corrosive environments and thus extend the maintenance life of the connections. Flange protectors also help prevent foreign matter from shorting out or bridging over an insulating gasket within an electrically isolating flange. Delete this paragraph if not applicable.

Protectors shall protect the bolts, studs, nuts, and gaskets of a flanged end connection from corrosion or damage due to exposure to the environment. Protectors shall be weather and ultraviolet (UV) resistant. Protectors shall allow for quick and easy removal and re-installation by maintenance personnel. [Provide protectors that allow visual inspection of the flange gasket without requiring removal.] [For electrically isolating flange connections, provide protectors with grease fittings that allow the injection of grease into the flange cavity.]

2.3.5 Flange Bolts, Nuts, and Washers

Bolts and nuts for pipe flanges, flanged fittings, valves and accessories shall conform to ASME B18.2.1 and ASME B18.2.2, except as otherwise specified. Bolts shall be regular hexagonal type. Bolts shall be threaded in accordance with ASME B1.1, Class 2A fit, Coarse Thread Series, for sizes 25 mm 1 inch and smaller and Eight-Pitch Thread Series for sizes larger than 25 mm 1 inch. Nuts shall be the hexagonal, heavy series type. Nuts shall be threaded in accordance with ASME B1.1, Class 2B fit, Coarse Thread Series for sizes 25 mm 1 inch and smaller and Eight-Pitch Thread Series for sizes larger than 25 mm 1 inch. Bolts shall be of sufficient length to obtain full bearing on the nuts and shall project no more than two full threads beyond the nuts with the bolts tightened to the required torque.

2.3.5.1 Stainless Steel Materials

Bolts shall conform to ASTM A193/A193M, Class 2, Grade 8. Nuts shall conform ASTM A194/A194M, Grade 8. Washers shall conform to ASTM A436, flat circular of the same material as the bolt.
2.3.5.2 Carbon Steel Materials

Bolts shall conform to ASTM A307, Grade B, hot-dipped galvanized. Nuts shall conform to ASTM A563, Grade A, hex style, hot-dipped galvanized. Washers shall conform to ASTM F436 Type 1 (carbon steel), flat circular for carbon steel bolts.

2.4 PIPE

**

NOTE: Indicate on the drawings all piping configurations, slopes, sizes, and piping materials (i.e. carbon steel, stainless steel, or FRP) permitted for each piping system. Coordinate these requirements with UFC 3-460-01.

As stated in UFC 3-460-01, use threaded end connections only where unavoidable. Never require a threaded end connection to be direct buried. Specifically indicate the location of each threaded end connection on the drawings.

**

Pipe shall meet the material, fabrication and operating requirements of ASME B31.3, except as modified herein.

2.4.1 Carbon Steel Pipe

Provide carbon steel pipe that complies with one of the following:

a. Pipe shall conform to ASTM A53/A53M, Type E or S, Grade B, seamless or electric welded. Pipe smaller than 65 mm 2-1/2 inches shall be Schedule 80. Pipe 65 mm 2-1/2 inches and larger shall be Schedule 40.

b. Pipe shall conform to API Spec 5L, Product Specification Level (PSL) 1, Grade B, [submerged-arc welded or gas metal-arc welded] [seamless or electric welded].

End connections for pipe or fittings smaller than 65 mm 2-1/2 inches shall be forged, socket weld type conforming to ASTM A182/A182M and ASME B16.11, unless indicated otherwise. End connections for pipe or fittings 65 mm 2-1/2 inches and larger shall be butt weld type conforming to ASTM A234/A234M, Grade WPB and ASME B16.9 of the same wall thickness as the adjoining pipe. [Where threaded end connections are indicated, provide connections that conform to ASME B16.3, Class 150 or ASME B16.11.]

2.4.2 Stainless Steel Pipe

Provide stainless steel pipe that complies with one of the following:

a. Pipe shall conform to ASTM A312/A312M, Type TP304L, seamless only. Pipe smaller than 200 mm 8 inches shall be Schedule 40S. Pipe 200 mm 8 inches or larger shall be Schedule 10S.

b. Pipe shall conform to ASTM A358/A358M, Grade 304L, Class 1 or 3, longitudinally welded. Radiographically inspect 100 percent of factory longitudinal welds in accordance with ASME BPVC SEC VIII D1. Minimum pipe wall thickness shall be 6 mm 0.25 inch for pipe 300 mm 12 inches and smaller; 8 mm 0.312 inch for pipe larger than 300 mm 12 inches.
2.4.2.1 Fittings 65 mm (2-1/2 in) and Larger

Provide butt welded type fittings that complies with one of the following:

a. Stainless steel conforming to ASTM A403/A403M, Class WP-S, Grade WP 304L, seamless only and ASME B16.9 of the same thickness as the adjoining pipe.

b. Stainless steel conforming to ASTM A403/A403M, Class WP-XX, Grade WP 304L, of wall thickness as indicated. Do not fabricate starting material by the fusion welding process without addition of filler metal. Forming will not be allowed using fusion welding process without addition of filler metal. Radiographically inspect all factory longitudinal welds in accordance with ASME BPVC SEC VIII D1.

2.4.2.2 Fittings 50 mm (2 in) and Smaller

Socket welded type fittings, unless indicated otherwise, shall conform to ASME B16.11. Fitting materials shall be stainless steel that conforms to ASTM A182/A182M, Type F304L.

2.4.2.3 Control Piping

Piping shall be seamless, fully annealed stainless steel tubing conforming to ASTM A269/A269M, Grade TP316, with a hardness number not exceeding 80 HRB. For 15 mm (1/2 in) 1/2 inch tubing, provide a minimum 1.3 mm (0.049 in) 0.049 inch tubing wall thickness.

2.4.2.4 Control Piping Fittings

Fittings shall be the flareless, Type 316 stainless steel type conforming to SAE J514.

2.4.3 Fiberglass Reinforced Plastic (FRP) Pipe

**
NOTE: Use of FRP piping must be approved by Service Headquarters. Do not require FRP piping to be installed aboveground.
**

Pipe shall be listed in UL FLAMMABLE & COMBUSTIBLE and be chemically compatible with the fuel to be handled. Fittings, end connections and adhesives shall be listed in UL FLAMMABLE & COMBUSTIBLE and be chemically compatible with the fuel to be handled. Use only adhesives that have not exceeded the manufacturer's recommendations for shelf life and pot life.

2.4.4 Exterior Containment Piping System

**
NOTE: Exterior containment piping for product piping greater than 150 mm (6 inches) is not readily available. Containment piping this large would have to be specially constructed and in most cases would be cost prohibitive.
**

Refer to UFC 3-460-01 and UFGS 33 58 00 for leak detection requirements.
An alternative to using factory designed secondary containment piping would be to use single-wall piping inside a sealed, watertight, 360 degree secondary containment barrier (liner). The construction of the liner would have to meet the requirements of 40 CFR 280.

Piping system shall be the factory fabricated, double-wall type that conforms to ASME B31.3 and NFPA 30. Product pipe shall be as indicated on the drawings and as specified herein. The exterior containment pipe shall be fiberglass reinforced plastic (FRP) that conforms to ASTM D5677 except as modified herein. Containment pipe shall be chemically compatible with the type of fuel to be handled, be non-corrosive, dielectric, non-biodegradable, and resistant to attack from microbial growth. Containment piping shall be capable of withstanding a minimum 35 kPa 5 psi air pressure. Containment piping and supports shall be designed to allow for drainage of liquids. Containment piping shall allow for complete inspection of the product piping before the containment piping is sealed.

Containment piping shall be evenly separated from the product piping with pipe supports that are designed based on pipe size, pipe and fuel weight, and operating conditions. Pipe supports shall be constructed of [the same material as the product pipe] [FRP]. Design supports so that no point loading occurs on the primary or exterior pipe. Supports shall be permanently attached to the product pipe either by tack welding or by an adhesive. Supports shall be designed and installed to allow for pipe movement of both the product piping and the exterior containment piping without causing damage to either.

2.4.5 Copper Piping

NOTE: Specify copper piping only for small fuel oil applications, lubricating oil applications, etc. Copper alloy piping materials shall not be used within a boiler plant structure.

Pipe and tubing must conform to ASTM B88M ASTM B88, Type K or L.

2.4.5.1 Fittings and End Connections

Wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and ASTM B75/B75M. Cast copper alloy solder-joint pressure fittings shall conform to ASME B16.18. Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B62. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment. Extracted brazed tee joints produced with an acceptable tool and installed as recommended by the manufacturer may be used.

2.4.5.2 Solder

Solder shall conform to ASTM B32, grade Sb5, tin-antimony alloy for service pressures up to 1034 kPa 150 psig. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B813.
2.4.5.3 Brazing Filler Metal

Filler metal shall conform to AWS A5.8/A5.8M, Type BAg-5 with AWS Type 3 flux, except Type BCuP-5 or BCuP-6 may be used for brazing copper-to-copper joints.

2.5 PIPING COMPONENTS

Provide piping components that meet the material, fabrication and operating requirements of ASME B31.3, except as modified herein. Pressure design class for piping components shall be Class 150 as defined in ASME B16.5.

2.5.1 Welded Nipples

Nipples shall conform to ASTM A733 or ASTM B687 and be constructed of the same material as the connecting pipe.

2.5.2 Steel Couplings

Couplings shall conform to API Spec 5L, seamless, extra heavy, wrought steel with recessed ends.

2.5.3 Threaded Unions

**
NOTE: Avoid threaded unions if possible. Threaded unions may be used in certain aboveground applications if specifically indicated on the drawings. As stated previously, never required a threaded end connection to be direct buried. Typically, threaded end connections are only to be used on piping 50 mm (2 in) or less in size.

NOTE: Indicate the locations of each electrically isolating connection on the drawings.
**

Unions shall conform to ASME B16.39, Class 150. Unions materials shall conform to ASTM A312/A312M, Grade 304 or 316. Dielectric unions shall conform to dimensional, strength, and pressure requirements of ASME B16.39, Class 150. Steel parts shall be galvanized or plated. Union shall have a water-impervious insulation barrier capable of limiting galvanic current to one percent of the short-circuit current in a corresponding bimetallic joint. When dry, union shall be able to withstand a 600-volt breakdown test.

2.5.4 Joint Compound

Joint compounds shall be resistant to water and be suitable for use with fuel containing 40 percent aromatics.

2.5.5 Flexible Pipe Connector

**
NOTE: Identify on the drawings the nominal pipe size and required length for each flexible pipe connector. Connectors smaller than 65 mm (2-1/2 in) are typically not available with flanged end connections. If small connectors are required,
specifically indicated the location of the threaded connections on the drawings.

Connector shall be the flexible, close pitch, metal hose type that is constructed with exterior annular corrugations and provided with a single layer of braid wire sheath covering. Connectors shall be constructed entirely of stainless steel and be rated for the system working pressure and temperature. [Connectors shall have flanged end connections.] [Provide threaded end connections for connectors smaller than 65 mm 2-1/2 inches. Provide flanged end connections for connectors 65 mm 2-1/2 inches and larger.]

2.5.6 Strainer

NOTE: Duplex strainers have at least 2 basket or element chambers separated by a valve that permits continuous flow of fluid through one chamber while the other is accessible of cleaning.

Strainer shall be the in-line, cleanable, [simplex] [duplex] basket type configured in either an "S" or "T" pattern. Strainer body shall be fabricated of [cast steel or brass] [Type 304 or 316 stainless steel]. Provide strainer with a drain and with drain piping that is inclusive of a [flanged] ball valve. Strainer shall be equipped with a removable cover, flanged end connections, an air eliminator, ports for connection of differential pressure sensor tube, and arrows clearly cast on the strainer sides that indicate the direction of flow. Strainers shall have a removable, 60 mesh, Type 316 stainless steel wire sediment screen. The ratio of net effective strainer area to the area of the connecting pipe shall be not less than 3 to 1.

2.5.7 Thermometers

NOTE: Indicate the scale range for each thermometer on the drawings.

Thermometer shall be the analog, dial-type bimetallic actuated type that conforms to ASME B40.200. Thermometer shall have a 125 mm 5 inches diameter dial, a hermetically sealed stainless steel case, a stainless steel stem, a safety glass face, a fixed threaded connection, and a scale range as indicated. Thermometer accuracy shall be within one percent of the scale range.

2.5.8 Pressure Gauge

NOTE: Indicate the scale range for each gauge on the drawings.

Gauge shall be the single style type that conform to ASME B40.100. Gauge shall have a 110 mm 4-1/2 inches dial, a stainless steel case and tube, a stainless steel ball valve, pressure snubbers, and a scale range as indicated. Gauge shall be liquid-filled with [glycerin] [or] [silicone].
2.5.9 Pipe Hangers and Supports

Hangers and supports shall be the adjustable type conforming to MSS SP-58, except as modified herein. Provide hot-dipped galvanized finish on rods, nuts, bolts, washers, hangers, and supports. Provide Type 316 stainless steel nuts, bolts, washers, and screws when located under a pier. Provide miscellaneous metal that conforms to ASTM A36/A36M, standard mill finished structural steel shapes, hot-dipped galvanized.

2.5.9.1 Pipe Protection Shields

Shields shall conform to MSS SP-58, Type 40, except material shall be Type 316 stainless steel. Provide shields at each slide type pipe hanger and support.

2.5.9.2 Low Friction Supports

Supports must have self-lubricating anti-friction bearing elements composed of 100 percent virgin tetrafluoroethylene polymer and reinforcing aggregates, prebonded to appropriate backing steel members. The coefficient of static friction between bearing elements shall be 0.06 from initial installation for both vertical and horizontal loads and deformation shall not exceed 51 micrometers 0.002 inch under allowable static loads. Bonds between material and steel shall be heat cured, high temperature epoxy. Design pipe hangers and support elements for the loads applied. Provide anti-friction material with a minimum of 2.3 mm 0.09 inch thick. Provide hot-dipped galvanized steel supports. Provide supports that are factory designed and manufactured.

2.5.10 Escutcheon

Escutcheon must be the chrome plated, stamped steel, hinged, split ring type. Inside diameter shall closely fit pipe outside diameter. Outside diameter shall completely cover the corresponding floor, wall, or ceiling opening. Provided each escutcheon with necessary set screws.

2.5.11 Flexible Ball Joint

Joint must be the carbon steel type with chromium plated steel balls capable of 360 degree rotation plus 15 degree angular flex movement. Provide joints with flanged end connections and pressure molded composition gaskets designed for continuous operation at operating conditions.
2.5.12 Bellows Expansion Joint

**
NOTE: Indicate the location and details of each pipe expansion joint, amount of pipe movement, and pipe anchors on the drawings.

Where joints are to be installed on piers or anywhere in direct contact with salt water is a possibility, then require the bellows to be constructed of inconel.
**

Joint shall be the [guided,] bellows expansion type with internal sleeves, external protective covers, and flanged end connections. Bellows shall be corrugated, [Type 304 stainless steel] [inconel] with reinforced rings. Joints shall be provided with limit stops to limit total movement in both directions. Joints shall be capable of withstanding 10,000 cycles over a period of 20 years.

2.5.13 Sight Flow Indicator

Indicator shall be constructed of [stainless steel] [carbon steel] and be provided with flanged end connections. Indicator shall include an internal rotating propeller to provide visual flow indication. Indicator housing shall include a tempered glass observation port for viewing the rotating propeller. Indicator shall have Buna-N seals.

2.5.14 Fuel Oil Meter

**
NOTE: Fuel oil meters are mandatory for all Air Force fuel oil projects. For each meter indicate the maximum flow rate to be metered as well as the allowable pressure drop at the maximum flow rate.
**

Provide volumetric positive displacement type meter that conforms to ASTM F1172, except as modified herein. Meter shall indicate the fuel oil flow rate in L/s gpm. Meter shall be provided with overspeed protection and a water escape hole. If meter is not mounted in-line with the piping, then an appropriate pedestal for mounting shall be provided. Install meter in accordance with manufacturer's recommendations. Meter shall be capable of providing a 4-20 mA analog output signal for the fuel flow rate. [The output signals shall be compatible with the base's existing Energy Monitoring and Control, System (EMCS).]

2.5.15 Vent Cap

**
NOTE: The aboveground termination point of a storage tank's vent piping will be provided with either a pressure/vacuum relief valve or a vent cap. The decision on which item to use will be based upon the characteristics of the fuel to be handled (refer to NFPA 30, 30A, and UL 142 as applicable).
**
Provide atmospheric, updraft type cap. Cap shall be constructed of aluminum or carbon steel. Cap shall have an internal brass or bronze insect screen, minimum 40-mesh. Cap shall prevent rain, snow, or ice from entering the vent piping.

2.6 GENERAL VALVES

Provide valves that meet the material, fabrication and operating requirements of ASME B31.3, except as modified herein. Valves shall have flanged end connections and conform to ASME B16.34, Class 150 except as modified herein. Provide stainless steel stem and trim for each valve. Valves shall have a weatherproof housing. Seats, body seals, and stem seals shall be Viton or Buna-N.

a. Carbon Steel Piping. Provide valves with bodies, bonnets, and covers constructed of cast steel conforming to ASTM A216/A216M.

b. Stainless Steel Piping. Provide valves with bodies, bonnets, and covers constructed of stainless steel conforming to ASTM A743/A743M, Type 304 or 316; or cast steel conforming to ASTM A216/A216M, Grade WCB internally plated with nickel or internally electrodeless nickel plated.

2.6.1 Swing Type Check Valve

Valve shall be the full-opening, tilting disc, non-slam, swing type that conforms to API Spec 6D. Discs and seating rings shall be renewable without removing from the line. The disc shall be guided and controlled to contact the entire seating surface.

2.6.2 Wafer Type Check Valve

Valve shall be the dual-plate, double flanged, wafer type that conforms to API Std 594. Wafer type check valves may be provided in lieu of swing check valves in piping sizes larger than 100 mm 4 inches. Valve disc shall be constructed of ASTM A351/A351M, Grade CF8M stainless steel. Valve spring, hinge pin, stop pin, and radial-thrust bearing materials shall be constructed of Type 316 stainless steel.

2.6.3 Ball Valve

Valve shall be the non-lubricated, double seated, ball type that conforms to API Spec 6D. [Valve shall meet the fire test requirements of API Spec 6FA.] Valve shall operate from fully open to fully closed with 90 degree rotation of the ball. Valve shall be capable of 2-way shutoff. Valve ball shall be constructed of stainless steel. For valves 50 mm 2 inches and larger, provide full bore type. Valves smaller than 50 mm 2 inches shall have one piece bodies and shall have a minimum bore not less than 55 percent of the internal cross sectional area of a pipe of the same nominal diameter. Balls shall be provided with trunnion type support bearings for valves 350 mm 14 inches and larger. Provide valves with worm gear operators, except valves 150 mm 6 inches and smaller may be lever operated with a minimum 10 adjustable positions between fully opened and fully closed. [Provide valves with body cavity drain and factory-installed drain valve.]

2.6.4 Globe Valve

Conform to ASME B16.34, Class 150.
2.6.5 Plug Valve (PTFE Sleeved Tapered Type)

Valve must be the non-lubricated, PTFE sleeved tapered plug type that conforms to API Spec 6D. Valve shall have 360 degree port defining lips to retain the sleeve against deforming into the flow passages. Valve shall provide abrasion protection and shall prevent fuel entry behind the sleeve. Plug shall operate with a 90 degree turn for closure. For valves installed in loop or distribution piping, provide valve body with a body cavity drain connection.

2.6.6 Plug Valve (Double Block and Bleed Type)

Valve shall be the non-lubricated, resilient, double seated, trunnion mounted type with a tapered lift plug capable of 2-way shutoff that conforms to API Spec 6D. Valve shall have electroplated nickel interiors. Valve plug shall be constructed of steel or ductile iron with electroplated nickel that is supported on upper and lower trunnions. Valve sealing slips shall be constructed of steel or ductile iron with Viton seals. Valve design shall permit sealing slips to be replaced from the bottom with the valve mounted in the piping. Minimum bore size shall be 65 percent of the internal cross sectional area of a pipe of the same nominal diameter, unless the manufacturer can show an equivalent or greater flow rate with a lower percent internal cross sectional area. Valves 150 mm 6 inches and larger shall have removable lower and bonnet (upper) bushing. Valve shall have weatherproof, worm gear operators with mechanical position indicators. Indicator flag and shaft shall be made of steel.

2.6.6.1 Valve Operation

Valve shall operate from fully open to fully closed by rotation of the handwheel to lift and turn the plug. Maximum number of turns from full close to full open shall be eight. Rotation of the plug toward open shall lift the plug without wiping the seals and retract the sealing slips so that clearance is maintained between sealing slips and valve body. Rotation of the handwheel toward closed shall lower the plug after sealing slips are aligned with the valve body and force the sealing slips against the valve body for positive closure. When valve is closed, slips shall form a secondary fire-safe metal to metal seat on both sides of the resilient seal.

2.6.6.2 Pressure Relief

Provide plug valve with an automatic thermal relief valve(s) to relieve pressure buildup in the internal body cavity when the plug valve is closed. Relief valve shall open at a 172 kPa 25 psi differential pressure, and discharge to the throat of and to the upstream side of the plug valve.

2.6.6.3 Bleed Valve

Provide a manually operated bleed valve for each plug valve in order to verify that the plug valve is not leaking when in the closed position. Provide discharge piping so that released liquid from each bleed valve can be contained.

2.6.7 Pressure Relief Valve

**
NOTE: Indicate on the drawings the operating pressure required for each valve. Require a sight

SECTION 33 52 10 Page 29
flow indicator to be installed downstream of each relief valve.

Relief valves will typically be placed downstream of control valves to relieve the pressure buildup created when the control valve is closed. Relief valves are also used to relieve possible thermal expansion in a pipeline if no other provisions exist.

Valve shall be the fully enclosed, spring loaded, angle pattern, ball seated type with lift lever. Valve shall have corrosion-resistant valve seats. Valve stem shall be fully guided between the fully opened and fully closed positions. Valve shall be factory set to open at the indicated pressure (plus or minus ten percent deviation). Valve setpoint shall be field adjustable within a minimum range of plus or minus 20 percent of the indicated setpoint.

2.6.8 Pressure/Vacuum Relief Valve

NOTE: Provide the aboveground termination point of a storage tank's vent piping with either a pressure/vacuum relief valve or a vent cap. The decision on which item to use will be based upon the characteristics of the fuel to be handled (refer to NFPA 30, 30A, and UL 142 as applicable).

Indicate on the drawings the pressure and vacuum settings that each valve will be required to operate. A valve's typically operating pressure is 5.2 kPa (12 oz per in2). A valve's typical operating vacuum is 215 Pa (0.5 oz per in2).

Valve shall be the pressure/vacuum vent relief type that conforms to NFPA 30. Valve pressure and vacuum relief settings shall be set at the factory. Pressure and vacuum relief shall be provided by a single valve. Valve body shall be constructed of either cast steel or aluminum. Valve trim shall be stainless steel. Inner valve pallet assemblies shall have a knife-edged drip ring around the periphery of the pallet to preclude condensation collection at the seats. Pallet seat inserts shall be of a material compatible with the fuel specified to be stored. Valve intake shall be covered with a 40 mesh stainless steel wire screen.

2.6.9 Foot Valve

NOTE: Foot valves are most commonly used in conjunction with small underground storage tanks and remote pumping systems (e.g., the pump is not located within the tank). The function of the valve is to hold prime in the suction line following a pump shutdown. Foot valves are typically located at the termination of the suction line within a tank.

Valve shall be the self-activating, double-poppet, shutoff type that
prevents fuel flow from reversing. Valve shall conform to NFPA 30. Valve body shall be constructed of either cast steel or aluminum. Valve shall be provided with a minimum 20 mesh stainless steel screen on the intake. Valve seats shall be the replaceable type. Valve shall be capable of passing through a 75 mm 3 inches pipe or tank flange.

2.6.10 Tank Overfill Prevention Valve

**
NOTE: Specify these valves only in combination with a gravity unloading system that feeds an underground storage tank. Do not specify these valves in combination with any type of unloading pump (including truck mounted pumps). Do not specify these valves in conjunction with aboveground storage tanks. For pressure filled tanks, refer to UFC 3-460-01 for guidance on overfill protection.
**

Valve shall be the two-stage, float-activated, shutoff type that is an integral part of the drop tube used for gravity filling. The first stage shall restrict the flow of fuel into the tank to approximately 0.3 L/s 5 gpm when the liquid level rises above 90 percent of tank capacity. The second stage shall completely stop the flow of fuel into the tank when the liquid level rises above 95 percent of tank capacity. Valve shall be constructed of the same material as the fill tube.

2.7 PUMPS

**
NOTE: Indicate the control sequences for pumps on the drawings.
**

Pumps shall be driven by an explosion-proof motor for Class I, Division 1, Group D hazardous locations as defined in NFPA 70. Pump assemblies shall be statically and dynamically balanced for all flow rates from no flow to 120 percent of design flow. Pump motors shall be non-overloading throughout their entire pump curve.

2.7.1 Submersible Pump

**
NOTE: Delete this paragraph if dispenser suction pumps are used in place of submersible pumps. Submersible pumps may be used for both above and belowground tanks. Check manufacturer's data since these type pumps may only be capable of handling gasoline or diesel fuels.
**

Pump shall be the [single-][multi-]stage, vertical type. Pump and motor combination shall operate totally submerged in the product of the storage tank. Pump shall extend within 150 mm 6 inches of the storage tank bottom. Pump fuel inlets shall be horizontal. Pump mounting shall completely support both the weight and vibration of the pump. Pump shall include a steel lifting lug capable of supporting the weight of the entire pump and motor assembly. Pump shall include a vertical solid shaft motor, base mounting flange, horizontal pump discharge, low net positive suction
head (NPSH) first stage impellers, and dynamic and thrust balancing of impellers. Pump shall be accessible for servicing without disturbing connecting piping. Pump baseplate, casing, and bearing housing shall be of cast iron construction. Pump shall be provided with a stainless steel one piece pump shaft. Internal pump components in direct contact with the fuel to be handled shall be of compatible construction. Pump bearings shall be selected to give a minimum L-10 rating life of 25,000 hours in continuous operation. Provide pump with [threaded][flanged] end piping connections.

2.7.2 Centrifugal Pump

**
NOTE: Appendix A of API Std 610 allows lesser tolerances for pumps. These type pumps are well suited for small applications at a substantial cost savings. The type of pumps specified should be evaluated by the designer.
**

Pump shall be the in-line, split-case, double suction, single stage, self-priming, centrifugal type. Pump motor shall be mounted horizontal to the pump housing and be provided with flanged end connections. Pump shall conform to API Std 610, [Appendix A], except as modified herein. Mechanical seals within the pump shall be Buna-N or Viton. Pump casing, bearing housing, and impeller shall be [close grained cast iron] [stainless steel ASTM A743/A743M GR CF8M or GR CA6NM or aluminum ASTM A356/A356M GR T6]. Pump shaft shall be stainless steel ASTM A276 Type 410 or 416. Pump baseplate shall be of cast iron construction. Internal pump components in direct contact with the fuel to be handled shall be of compatible construction. Pump bearings shall be selected to give a minimum L-10 rating life of 25,000 hours in continuous operation. Pump shall be accessible for servicing without disturbing connecting piping.

2.7.3 Rotary Pumps

**
NOTE: Specify rotary pumps for fuel oil applications, lubricating oil applications, etc. Maximum suction lift for rotary pump will not exceed 34 kPa (10 inches Hg).
**

Type I refers to electric motor driver. Type II refers to steam turbine driver. Style A refers to the pump shaft in the vertical position. Style B refers to the pump half in the horizontal position.

Pump shall conform to CID A-A-50561, Type [I] [II], Style [A] [B]. Mount pump and driver on extended base plate. Motor starters on pumps shall be lockable.

2.7.4 Pump Control Panel

Panel shall include on and off indication lights for each pump. Panel shall contain an adjustable control logic for pump operation in accordance with the indicated operation. Panel shall also have a manual override switch for each pump to allow for the activation or deactivation of each pump.
2.8 FRP CONTAINMENT SUMP

**
NOTE: FRP sumps will be used as a leak collection point in belowground secondarily contained piping systems. In this application, sumps will be used in combination with leak sensors to makeup the belowground pipe monitoring system.

Sumps may also be used at low drain points, high vent points, and at aboveground to belowground transitions. In addition, sumps may also be used to house belowground valves or equipment.

Indicate on the drawings the size, location, and depth required for each FRP containment sump.
**

Sump shall be constructed of fiberglass reinforced plastic (FRP) that is chemically compatible with the fuels to be handled. Do not connect sump in any way to the manway cover or concrete above. Cap the top of each containment sump with a [friction fit] [watertight] access cover. Construct cover of the same material as the sump. Cover shall have a minimum diameter of 550 mm 22 inches. Cover shall be easily removable through the manway above.

a. Rainfall drainage shall not drain into a sump. Sump shall be capable of withstanding underground burial loads to be encountered. Container shall have a minimum 19 L 5 gal fuel storage capacity. Container shall not contain any type of drain.

b. The sides of a containment sump shall allow the penetration of carrier pipes, exterior containment pipes, conduits, and vapor pipes as required. Boot or seal penetrations in the containment sump sides to ensure that liquid will not escape from the sump in the event that the liquid level within the sump rises above the pipe penetration. Provide boots and seals that are chemically compatible with the fuel to be handled and that are water resistant to the influx of ground water. Boots and seals shall be designed and installed to accommodate the anticipated amount of thermal expansion and contraction in the piping system.

2.9 ACCESSORIES

2.9.1 Concrete Anchor Bolts

Concrete anchors shall conform to ASTM A307, Grade C, hot-dipped galvanized.

2.9.2 Bolts and Studs

Carbon steel bolts and studs shall conform to ASTM A307, Grade B, hot-dipped galvanized. Stainless steel bolts and studs shall conform to ASTM A193/A193M, Class 2, Grade 8.

2.9.3 Nuts

Carbon steel nuts shall conform to ASTM A563, Grade A, hex style, hot-dipped galvanized. Stainless steel nuts shall conform to ASTM A194/A194M, Grade 8.
2.9.4 Washers

Provide flat circular washers under each bolt head and each nut. Washer materials shall be the same as the connecting bolt and nut. Carbon steel washers shall conform to ASTM F844, hot-dipped galvanized. Stainless steel washers shall conform to ASTM A194/A194M, Grade 8.

2.9.5 Polytetrafluoroethylene (PTFE) Tape

Tape shall conform to ASTM D3308.

2.9.6 Pipe Sleeves

Provided sleeves constructed of [hot-dipped galvanized steel, ductile iron, or cast-iron pipe] [uncoated carbon steel pipe, conforming to ASTM A53/A53M, Schedule 30] [Schedule 20] [Standard weight].

2.9.7 Buried Utility Tape

Provide detectable aluminum foil plastic-backed tape or detectable magnetic plastic tape for warning and identification of buried piping. Tape shall be detectable by an electronic detection instrument. Provide tape in minimum 75 mm 3 inches width rolls, color coded for the utility involved, with warning identification imprinted in bold black letters continuously and repeatedly over entire tape length. Warning identification shall be at least 25 mm 1 inch high and shall state as a minimum "BURIED JET FUEL PIPING BELOW". Provide permanent code and letter coloring that is unaffected by moisture and other substances contained in trench backfill material.

2.10 FINISHES

Ship, store, and handle coating materials as well as apply and cure coatings in accordance with SSPC PA 1.

2.10.1 Exterior Coating, Direct Buried Piping

2.10.1.1 Factory Coating

Provide direct buried pipe and piping components with a factory-applied, adhesive undercoat and continuously extruded plastic resin coating in accordance with NACE SP0185 or AWWA C215; minimum thickness of plastic resin shall be 36 mils for pipe sizes 150 mm 6 inches and larger.

2.10.1.2 Girth Welds

Coat girth welds using one of the following processes.

a. Heat shrink sleeves in accordance with AWWA C216
b. Wax tape coatings in accordance with AWWA C217
c. Cold applied tape coatings in accordance with AWWA C209

2.10.1.3 Damaged Coatings

Repair damaged coating areas using one of the following processes.

a. Wax tape coatings in accordance with AWWA C217
b. Cold applied tape coatings in with AWWA C209
2.10.1.4 Rock Shield

**
NOTE: Specify rock shields where select fill is not available and the possibility of damage from rock fill exists. Delete this paragraph if not applicable.
**

Provide a minimum 10 mm 3/8 inch thick perforated rock shield around buried piping. Rock shield shall consist of a polyethylene outer surface bonded to a closed cell foam substrate with uniform perforations intended for use with cathodic protection systems. Rock shield shall overlap on itself no less than 150 mm 6 inches. Secure rock shield tightly to the pipe using either strapping tape or plastic ties. Air filled cell type rock shields are prohibited.

2.10.2 Exterior Coating, Aboveground Piping

**
NOTE: Piping identification as required by the using agency will be developed and inserted in either Section 09 97 13.27 or 09 90 00 as applicable.

For Air Force Installations, piping will be color-coded in accordance with Attachment 4 of AFM 88-15.

Specify exterior, aboveground coatings per Section 09 97 13.27 if SSPC QP 1 contractor certification is required for any other coatings on the project. Specify Section 09 97 13.27 if more than 500 square feet of piping is to be coated. Section 09 90 00 may be specified for other situations. If Section 09 90 00 is specified, consider choosing the option for the contractor to be certified to SSPC QP 1, as certified contractors are likely to have more experience working around fuel facilities.

**

Coat the exterior of aboveground steel piping, flanges, fittings, nuts, bolts, washers, valves, and piping components, as defined in this specification, in accordance with [Section 09 97 13.27 EXTERIOR COATING OF STEEL STRUCTURES][Section 09 90 00 PAINTING, GENERAL].

2.10.3 New Equipment and Components

2.10.3.1 Factory Coating

**
NOTE: For all Navy projects (regardless of location), the 500 hour salt spray test is required and must be specified.

For Army projects, a salt spray test is optional. The 125 hour test is suggested for mild or noncorrosive environments. The 500 hour test is suggested for extremely corrosive environments.
Unless otherwise specified, provide equipment and components fabricated from ferrous metal with the manufacturer's standard factory finish. [Each factory finish shall withstand [125] [500] hours exposure to the salt spray test specified in ASTM B117. For test acceptance, the test specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 3 mm 1/8 inch on either side of the scratch mark immediately after completion of the test.] For equipment and component surfaces subject to temperatures above 50 degrees C 120 degrees F, the factory coating shall be appropriately designed for the temperature service.

2.10.3.2 Field Painting

NOTE: Specify exterior, aboveground coatings per Section 09 97 13.27 if SSPC QP 1 contractor certification is required for any other coatings on the project. If Section 09 90 00 is specified, consider choosing the option for the contractor to be certified to SSPC QP 1, as certified contractors are likely to have more experience working around fuel facilities.

Painting required for surfaces not otherwise specified shall be field painted as specified in [Section 09 97 13.27 EXTERIOR COATING OF STEEL STRUCTURES][Section 09 90 00 PAINTING, GENERAL]. Do not paint stainless steel and aluminum surfaces. Do not coat equipment or components provided with a complete factory coating. Prior to any field painting, clean surfaces to remove dust, dirt, rust, oil, and grease.

PART 3 EXECUTION

3.1 INSTALLATION

NOTE: Show belowground valves, flanges, air vents and drains to be installed in a containment sump or manhole as required. Never require these items to be direct buried.

During design, layout equipment and components to allow adequate access for routine maintenance. Do not rely solely on the Contractor to make these judgments. Show access doors where applicable for maintenance.

Indicate all metal-to-FRP connection points on the drawings. Show flanged connections between FRP pipe and metal pipe with the metal pipe anchored within 1.5 m (5 ft) of the connection. Metal-to-FRP connections should not be direct buried, but should be housed in a containment sump.

Installation, workmanship, fabrication, assembly, erection, examination, inspection, and testing shall be in accordance with ASME B31.3 and NFPA 30,
except as modified herein. Safety rules as specified in NFPA 30 shall be strictly observed. Never direct bury threaded connections, socket welded connections, unions, flanges, valves, air vents, or drains. Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible.

3.1.1 Pumps

Properly level, align, and secure pumps in place in accordance with manufacturer's instructions. Support, anchor, and guide so that no strains are imposed on a pump by weight or thermal movement of piping. [Provide floor-mounted pumps with mechanical vibration isolators or a vibration isolation foundation.]

3.1.2 Piping

**
NOTE: For belowground piping, indicate on the drawings the minimum required piping slope for each piping run (suggest using 25 mm per 15 m (1 inch per 50 ft).
**

3.1.2.1 General

Thoroughly clean pipe of all scale and foreign matter before the piping is assembled. Cut pipe accurately to measurements established at the jobsite, and worked into place without springing or forcing. Cut pipe square and have burrs removed by reaming. Install pipe to permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers. Cutting or other weakening of the building structure to facilitate piping installation will not be permitted without written approval.

a. Use reducing fittings for changes in pipe sizes. Install equipment and piping into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance. Provide electric isolation fittings between dissimilar metals. Install piping straight and true to bear evenly on supports. Piping shall be free of traps, shall not be embedded in concrete pavement, and shall drain as indicated. Make changes in direction with fittings, except that bending of pipe 100 mm 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. Mitering or notching pipe or other similar construction to form elbows or tees will not be permitted.

b. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted. When work is not in progress, securely close open ends of pipe and fittings with an expandable pipe plug so that water, earth, or other substances cannot enter the pipe or fittings. For belowground piping, the full length of each pipe shall rest solidly on the underlying pipe bed.

3.1.2.2 FRP Piping

Install FRP pipe in accordance with manufacturer's instructions.
3.1.2.3 Exterior Containment Piping System

Install exterior containment piping in accordance with manufacturer's instructions. Do not assemble joints in an exterior containment piping system until the successful completion of the tests defined in paragraph FIELD QUALITY CONTROLS.

3.1.2.4 Welded Connections

Unless otherwise indicated on the drawings, pipe joints shall be welded. Construct branch connections with welding tees or forged welding branch outlets. Do not weld stainless steel pipe to carbon steel pipe.

3.1.2.5 Threaded End Connections

**

NOTE: As stated previously, avoid threaded end connections if possible. Threaded end connections may be used in certain aboveground applications if specifically indicated on the drawings. As stated previously, never required a threaded end connection to be direct buried.

**

Provide threaded end connections only on piping 50 mm 2 inches in nominal size or smaller and only where indicated on the drawings. Provide threaded connections with PTFE tape or equivalent thread-joint compound applied to the male threads only. Not more than three threads shall show after the joint is tighten.

3.1.2.6 Brazed Connections

Provide brazing in accordance with AWS BRH, except as modified herein. During brazing, fill pipe and fittings with a pressure regulated inert gas, such as nitrogen, to prevent the formation of scale. Before brazing copper joints, clean both the outside of the tube and the inside of the fitting with a wire fitting brush until the entire joint surface is bright and clean. Do not use brazing flux. Remove surplus brazing material at all joints. Support piping prior to brazing and do not be spring or force piping.

3.1.2.7 Existing Piping Systems

**

NOTE: Delete this paragraph if connections to existing piping systems are not required. Indicate on the drawings the approximate location of each connection point between new and existing piping systems.

**

No interruptions or isolation of an existing fuel handling service or system shall be performed unless the actions are approved by the Contracting Officer. Perform initial cutting of existing fuel pipe with a multiwheel pipe cutter, using a nonflammable lubricant. After cut is made, seal interior of piping with a gas barrier plug. Purge interior of piping with carbon dioxide or nitrogen prior to performing any welding process.
3.1.3 Bolted Connections

For each bolted connection of stainless steel components (e.g., pipes, piping components, valves, and equipment) use stainless steel bolts or studs, nuts, and washers. For each bolted connection of carbon steel components, use carbon steel bolts or studs, nuts, and washers. Extend bolts, or studs, no less than two full threads beyond their corresponding nut when tightened to the required torque. Prior to installing nuts, apply a compatible anti-seize compound to the male threads.

3.1.4 Flanges and Unions

Except where threaded end connections and/or unions are indicated, provide flanged joints in each line immediately preceding the connection to a piece of equipment or material requiring maintenance such as pumps, general valves, control valves, strainers, and other similar items and as indicated. Assemble flanged joints square and tight with matched flanges, gaskets, and bolts. [Use flanged connections between FRP pipe and metal pipe with the metal pipe anchored within 1.5 m 5 ft of the connection.] For flanges, provide washers under each bolt head and nut. Torque wrenches shall be used to tighten all flange bolts to the torque recommended by the gasket manufacturer. Tightening pattern shall be as recommended by the gasket manufacturer. Use anti-seize compound on threads for stainless steel bolts.

3.1.5 Flange Protectors

Provide flange protectors [on each electrically isolating flange connection][on each flanged end connection, including valves and equipment][where indicated on the drawings]. [Fill the flange cavity of electrically isolating flange connections with a corrosion inhibitor type grease.]

3.1.6 Valves

Install isolation plug or ball valves on each side of each piece of equipment, at the midpoint of looped mains, and at any other points indicated or required for draining, isolating, or sectionizing purpose. Install valves with stems vertically up unless otherwise indicated. Provide individual supports and anchors for each valve.

3.1.7 Air Vents

Provide [_____] [50 mm] [2 inches] air vents at all high points and where indicated to ensure adequate venting of the piping system.

3.1.8 Sight Flow Indicator

Mount indicator rolled one bolt hole to prevent freeze damage from rainwater accumulation on viewing window. Install a sight flow indicator downstream of each relief valve.

3.1.9 Drains

Provide [_____] [40 mm] [1-1/2 inches] drains at all low points and where indicated to ensure complete drainage of the piping. Drains shall be accessible, and shall consist of nipples and caps or plugged tees unless otherwise indicated.
3.1.10 Flexible Pipe Connectors

**
NOTE: Flexible pipe connectors will be provided where required to absorb expansion and contraction, isolate vibration, absorb noise, compensate offset motion, absorb continuous flexing, and relieve equipment from piping stresses. Where flexible pipe connectors are needed to correct lateral, parallel, and angular misalignment, their use will be limited to maximum offset as recommended, in writing, by the manufacturer.
**

Attach connectors to components in strict accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the flexible pipe connector manufacturer and shall be provided at the intervals recommended.

3.1.11 Bellows Expansion Joints

Cold set joints to compensate for the temperature at the time of installation. Provide initial alignment guides on the connecting piping no more than 4 pipe diameters from the expansion joint. Provide additional alignment guides on the connecting piping no more than 14 pipe diameters from the first guide.

3.1.12 Thermometers

Provide thermometers with separable sockets. Install separable sockets in pipe lines in such a manner to sense the temperature of flowing fluid and minimize obstruction to flow.

3.1.13 Pipe Sleeves

Provide a pipe sleeve around any pipe that penetrates a wall, floor, or crosses under a roadway. Do not install sleeves in structural members except where indicated or approved. Install pipe sleeves in masonry structures at the time of the masonry construction. Sleeves shall be of such size as to provide a minimum of 12 mm 1/2 inch all-around clearance between bare pipe and the sleeve. Align sleeve and piping such that the pipe is accurately centered within the sleeve by a nonconductive centering element. Securely anchor the sleeve to prevent dislocation. Closure of the space between the pipe and the pipe sleeve shall be by means of a mechanically adjustable segmented elastomeric seal. The seal shall be installed so as to be flush. For wall or floor penetrations, extend each sleeve through its respective wall or floor and cut flush with each surface. For roadway crossings, pipe sleeves shall be continuous for the entire crossing as well as extend a minimum of 150 mm 6 inches beyond both sides of the crossing. Seal around sleeves that penetrate through valve or fuel related pits with a Buna-N casing seal. Seal around sleeves that penetrate through non-fire-rated walls and floors in accordance with Section 07 92 00 JOINT SEALANTS. Seal around sleeves that penetrate through fire-rated walls and floors as specified in Section 07 84 00 FIRESTOPPING.
3.1.14 Escutcheons

Except for utility or equipment rooms, provide finished surfaces where exposed piping pass through floors, walls, or ceilings with escutcheons. Secure escutcheon to pipe or pipe covering.

3.1.15 Pumps

Properly level, align, and secure pumps in place in accordance with manufacturer's instructions. Support, anchor, and guide so that no strains are imposed on a pump by weight or thermal movement of piping. [Provide floor-mounted pumps with mechanical vibration isolators or a vibration isolation foundation.]

3.1.16 Access Panels

Provide access panels for all concealed valves, vents, controls, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Provide access panels as specified in Section 05 50 13 MISCELLANEOUS METAL FABRICATIONS.

3.1.17 Buried Utility Tape

Bury tape with the printed side up at a depth of 300 mm 12 inches below the top surface of earth or the top surface of the subgrade under pavements.

3.1.18 Framed Instructions

Framed instructions shall include equipment layout, wiring and control diagrams, piping, valves, control sequences, and typed condensed operation instructions. The condensed operation instructions shall include preventative maintenance procedures, methods of checking the system for normal and safe operation, and procedures for safely starting and stopping the system. Frame under glass or laminated plastic the framed instructions and post where directed by the Contracting Officer. Post the framed instructions before the system performance tests.

3.2 PIPE HANGERS AND SUPPORTS

Install hangers with a maximum spacing as defined in Table 1 below, except where indicated otherwise. In addition to meeting the requirements of Table 1, provide additional hangers and supports where concentrated piping loads exist (e.g., valves).

<table>
<thead>
<tr>
<th>Nominal Pipe Size (mm) (Inches)</th>
<th>25 One and Under</th>
<th>40 1.5</th>
<th>50 2</th>
<th>80 3</th>
<th>100 4</th>
<th>150 6</th>
<th>200 8</th>
<th>250 10</th>
<th>300 12</th>
</tr>
</thead>
</table>

Table 1. Maximum Hanger Spacing
3.2.1 Seismic Requirements

**
NOTE: Include applicable seismic design requirements on the drawings. Delete this paragraph if there are no specific seismic design requirements.
**

Support and brace piping and attach valves to resist seismic loads as specified under Sections 13 48 00 SEISMIC PROTECTION FOR MISCELLANEOUS EQUIPMENT and [13 48 00.00 10 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT][22 05 48.00 20 MECHANICAL SOUND, VIBRATION, AND SEISMIC CONTROL] and as shown on the drawings. Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for support shall be as specified under Section 05 12 00 STRUCTURAL STEEL.

3.2.2 Structural Attachments

Provide attachments to building structure concrete and masonry by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Apply inserts and anchors with a safety factor not less than 5. Do not attach supports to metal decking. Construct masonry anchors for overhead applications of ferrous materials only. Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section. Material used for support shall be as specified under Section 05 12 00 STRUCTURAL STEEL.

3.3 FIELD QUALITY CONTROLS

3.3.1 System Commissioning

System commissioning shall conform to Section 33 08 55 COMMISSIONING OF FUEL FACILITY SYSTEMS.

3.3.2 Tests

Furnish labor, materials, equipment, electricity, repairs, and retesting necessary for any of the tests required herein. Perform piping test in accordance with the applicable requirements of ASME B31.3 except as modified herein. To facilitate the tests, various sections of the piping system may be isolated and tested separately. Where piping sections terminate at flanged valve points, close the line by means of blind flanges in lieu of relying on the valve. Provide tapped flanges to allow a direct connection between the piping and the air compressor and/or pressurizing pump. Use tapped flanges for gauge connections. Taps in the permanent line will not be permitted. Gauges will be subject to testing and approval. Provide provisions to prevent displacement of the piping during testing. Keep personnel clear of the piping during pneumatic testing.
Only authorized personnel shall be permitted in the area during pneumatic and hydrostatic testing. Isolate equipment such as pumps, tanks and meters from the piping system during the testing. Do not exceed the pressure rating of any component in the piping system during the testing. Following satisfactory completion of each test, relieve the test pressure and seal the pipe immediately. Piping to be installed underground shall not receive field applied exterior coatings at the joints or be covered by backfill until the piping has passed the final pneumatic tests described herein.

3.3.2.1 Exterior Coating Holiday Test

Following installation, test the exterior coating of direct buried piping for holidays using high-voltage spark testing in accordance with NACE SP0188. Repair holidays and retest to confirm holiday-free coating. Text shall include all existing underground piping exposed for this project.

3.3.2.2 Preliminary Pneumatic Test

Apply a 170 kPa 25 psig pneumatic test to product piping. Maintain the pressure while soapsuds or equivalent materials are applied to the exterior of the piping. While applying the soapsuds, visually inspect the entire run of piping, including the bottom surfaces, for leaks (bubble formations). If leaks are discovered, repair the leaks accordingly and retest.

3.3.2.3 Final Pneumatic Test

Following the preliminary pneumatic test, apply a 345 kPa 50 psig pneumatic test to all product piping and hold for a period not less than 2 hours. During the test period, there shall be no drop in pressure in the pipe greater than that allowed for thermal expansion and contraction. Disconnect the pressure source during the final test period. If leaks are discovered, repair the leaks accordingly and retest.

3.3.2.4 Hydrostatic Test

Hydrostatically test product piping with the fuel to be handled to the lesser of 1-1/2 times operating pressure or 1896 kPa 275 psig in accordance with API RP 1110. Maintain the pressure within the piping for 4 hours with no leakage or reduction in gauge pressure. If leaks are discovered, repair the leaks accordingly and retest.

3.3.2.5 Exterior Containment Piping Tests

**
NOTE: Delete this paragraph if exterior containment piping is not specified.
**

Apply a minimum pneumatic pressure of 35 kPa 5 psig to the exterior containment piping. Maintain the pressure for at least 1 hour while soapsuds or equivalent materials are applied to the exterior of the piping. While applying the soapsuds, visually inspect the entire run of piping, including the bottom surfaces, for leaks (bubble formations). Repair leaks discovered in accordance with manufacturer's instructions and retest. Perform testing in compliance with the manufacturer's published installation instructions.
3.4 SYSTEM PERFORMANCE TESTS

**
NOTE: If applicable, edit Section 33 08 55 to include the following.

a. Verify vent piping is clear of debris and each pressure/vacuum relief vent is operating properly.

b. Vapor recovery systems performs as designed.

c. Dispensing units are operational and performs as designed.
**

Conform tests to Section 33 08 55 COMMISSIONING OF FUEL FACILITY SYSTEMS.

3.5 DEMONSTRATIONS

Conduct a training session for designated Government personnel in the operation and maintenance procedures related to the equipment/systems specified herein. Include pertinent safety operational procedures in the session as well as physical demonstrations of the routine maintenance operations. Furnish instructors who are familiar with the installation/equipment/systems, both operational and practical theories, and associated routine maintenance procedures. The training session shall consist of a total of [_____] hours of normal working time and shall start after the system is functionally completed, but prior to final system acceptance. Submit a letter, at least 14 working days prior to the proposed training date, scheduling a proposed date for conducting the onsite training.

-- End of Section --