SECTION TABLE OF CONTENTS

DIVISION 33 - UTILITIES

SECTION 33 32 13.14

PACKAGED SEWAGE LIFT STATIONS, GRINDER PUMP TYPE

01/08

PART 1 GENERAL

1.1 REFERENCES
1.2 DESCRIPTION OF WORK
1.3 SUBMITTALS
1.4 DELIVERY, STORAGE, AND HANDLING OF MATERIALS
 1.4.1 Delivery and Storage
 1.4.2 Handling
1.5 EXCAVATION, TRENCHING, AND BACKFILLING

PART 2 PRODUCTS

2.1 PIPE AND FITTINGS
 2.1.1 Ductile-Iron Pipe
 2.1.1.1 Flanged Pipe
 2.1.1.2 Fittings
 2.1.1.3 Joints
 2.1.2 PVC Plastic Pressure Pipe and Associated Fittings
 2.1.2.1 Pipe and Fittings Less Than 100 mm 4 inch Diameter
 2.1.3 Insulating Joints
 2.1.4 Accessories
 2.1.5 Flexible Flanged Coupling
2.2 VALVES AND OTHER PIPING ACCESSORIES
 2.2.1 Gate Valves in Valve Vault
 2.2.2 Check Valves Less Than 100 mm 4 Inch Diameter
 2.2.3 Check Valves 100 mm 4 in and Larger Diameter
 2.2.4 Identification Tags and Plates
 2.2.5 Pipe Support
 2.2.6 Miscellaneous Metals
 2.2.7 Quick Disconnect System with Hydraulic Sealing Flange
 2.2.8 Wet Well Vent
2.3 SUBMERSIBLE SEWAGE GRINDER PUMPS
 2.3.1 Casing
 2.3.2 Impeller
 2.3.3 Shaft and Shaft Seals
2.3.4 Bearings
2.3.5 Pump and Motor
2.4 PUMP MOTOR
2.5 PUMP CONTROL SYSTEM
 2.5.1 Float Assembly Description
 2.5.2 Alternator
 2.5.3 Sewage Pump Alarm and Control Panel
 2.5.4 Electrical Requirements
 2.5.5 Electric Motor
2.6 UNDERGROUND EQUIPMENT ENCLOSURE
 2.6.1 Access Hatch Cover
 2.6.2 Wet Well[and Valve Vault]
 2.6.2.1 Cast-In-Place Concrete Structures
 2.6.2.2 Precast Concrete Structures
 2.6.3 Wet Well Base Material

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Installation of Ductile-Iron Pressure Lines
 3.1.2 Installation of PVC Plastic Pressure Pipe and Fittings
 3.1.3 Valves
 3.1.4 Steel Piping
 3.1.5 Force Main
 3.1.6 Equipment Installation
3.2 FIELD TESTS AND INSPECTIONS
 3.2.1 Testing Procedure
 3.2.2 Sewage Grinder PumpLift Station

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for Grinder Pump Packaged Lift Stations including alarm requirements, station piping, and O&M data packages.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update...
the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C151/A21.51 (2009) Ductile-Iron Pipe, Centrifugally Cast, for Water

AWWA C500 (2009) Metal-Seated Gate Valves for Water Supply Service

AWWA C509 (2009) Resilient-Seated Gate Valves for Water Supply Service

AWWA C600 (2010) Installation of Ductile-Iron Water Mains and Their Appurtenances

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASME B16.11 (2011) Forged Fittings, Socket-Welding and Threaded

ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300

ASME B31.3 (2012) Process Piping

ASTM INTERNATIONAL (ASTM)

(Hot-Dip Galvanized) Coatings on Iron and Steel Products

ASTM D3139 (1998; R 2011) Joints for Plastic Pressure
1.2 DESCRIPTION OF WORK

The work includes providing submersible sewage grinder pump station and related work. Provide system complete and ready for operations. Grinder pump station system including equipment, materials, installation, and workmanship as specified herein.

1.3 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation;
Submittals not having a "G" designation are [for Contractor Quality Control approval.] [for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Pipe and fittings; G[, [_____]]
Check valves; G[, [_____]]
Gate valves; G[, [_____]]
Submersible sewage grinder pumps; G[, [_____]]
Pump motor; G[, [_____]]
Flexible flanged coupling; G[, [_____]]

SD-10 Operation and Maintenance Data

Submersible Sewage Grinder Pumps Data Package 3; G[, [_____]]

Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

Include pumps, alarms, and motors. Include all information on all equipment, alarm panel and controls, pumps and pump performance curves, and station layout in data for submersible sewage grinder pump station.

1.4 DELIVERY, STORAGE, AND HANDLING OF MATERIALS

1.4.1 Delivery and Storage

Inspect materials delivered to site for damage. Unload and store with minimum handling. Store materials in enclosures or under protective covering. Store rubber gaskets not to be installed immediately under cover, out of direct sunlight. Do not store materials directly on the ground. Keep interior of pipes and fittings free of dirt and debris.

1.4.2 Handling

Handle pipe, fittings, valves, and other accessories in such manner as to ensure delivery to the trench in sound, undamaged condition. Avoid injury to coatings and linings on pipe and fittings; make satisfactory repairs if coatings or linings are damaged. Carry pipe to the trench; do not drag it.

1.5 EXCAVATION, TRENCHING, AND BACKFILLING

Provide in accordance with Section 31 00 00 EARTHWORK, except as specified herein.
PART 2 PRODUCTS

2.1 PIPE AND FITTINGS

Provide pressure piping, air release valves, and related accessories for force main piping outside the sewage wet well and valve vault in accordance with Section 33 30 00 SANITARY SEWERS.

2.1.1 Ductile-Iron Pipe

AWWA C151/A21.51, thickness Class 52.

2.1.1.1 Flanged Pipe

AWWA C115/A21.15, ductile iron.

2.1.1.2 Fittings

AWWA C110/A21.10, flanged. Provide flanged joint fittings within wet well and valve vault as indicated. Provide mechanical joint fittings outside valve vault enclosure as indicated. Use fittings with pressure rating at least equivalent to that of the pipe.

2.1.1.3 Joints

AWWA C115/A21.15 for flanged joints. Use bolts, nuts, and gaskets for flanged connections recommended in the Appendix to AWWA C115/A21.15. Flange for setscrewed flanges must be of ductile iron, ASTM A536, Grade 65-45-12, conforming to the applicable requirements of ASME B16.1, Class 250. Setscrews for setscrewed flanges must be 1310 MPa 190,000 psi tensile strength, heat treated, and zinc-coated steel. Conform to the applicable requirements for mechanical-joint gaskets specified in AWWA C111/A21.11 for setscrewed flange gaskets. Use setscrewed gasket designed to provide for confinement and compression of gasket when joint to adjoining flange is made.

2.1.2 PVC Plastic Pressure Pipe and Associated Fittings

2.1.2.1 Pipe and Fittings Less Than 100 mm 4 inch Diameter

Use pipe, couplings and fittings manufactured of materials conforming to ASTM D1784, Class 12454-B.

a. Screw-Joint: Use pipe conforming to dimensional requirements of ASTM D1785 Schedule 80, with joints meeting requirements of 1.03 MPa 150 psi working pressure, 1.38 MPa 200 psi hydrostatic test pressure, unless otherwise shown or specified. Use threaded pipe fittings conforming to requirements of ASTM D2464, threaded to conform to the requirements of ASME B1.20.1 for use with Schedule 80 pipe and fittings. Test pipe couplings when used, as required by ASTM D2464.

c. Solvent Cement Joint: Use pipe conforming to dimensional requirements of ASTM D1785 or ASTM D2241 with joints meeting the requirements of 1.03 MPa 150 psi working pressure and 1.38 MPa 200 psi...
hydrostatic test pressure. Use fittings for solvent cement jointing conforming to ASTM D2466 or ASTM D2467.

2.1.3 Insulating Joints

Provide between pipes of dissimilar metals a rubber gasket or other approved type of insulating joint or dielectric coupling to effectively prevent metal-to-metal contact between adjacent sections of piping.

2.1.4 Accessories

Provide flanges, connecting pieces, transition glands, transition sleeves, and other adapters as required.

2.1.5 Flexible Flanged Coupling

Provide flexible flanged coupling applicable for sewage as indicated. Use flexible flanged coupling designed for a working pressure of 2.41 MPa 350 psi.

2.2 VALVES AND OTHER PIPING ACCESSORIES

2.2.1 Gate Valves in Valve Vault

Conform to AWWA C500 for valves with outside-screw-and-yoke rising-stem type with double disc gates and flanged ends. Conform to AWWA C509 for valves with outside-screw-and-yoke rising-stem type with flanged ends. Provide valves with handwheels that open by counterclockwise rotation of the valve stem. Bolt and construct stuffing boxes to permit easy removal of parts for repair. Use valves from one manufacturer.

2.2.2 Check Valves Less Than 100 mm 4 Inch Diameter

Neoprene ball check valve with integral hydraulic sealing flange, designed for a hydraulic working pressure of 1.21 MPa 175 psi.

2.2.3 Check Valves 100 mm 4 in and Larger Diameter

Nonclogging swing check valve rated for not less than 175 psig working pressure capable of passing 76-mm 3-inch diameter solids. Cast iron conforming to ASTM A126. Buna-N disc and integral seat. Flanged ends conforming to AWWA C110/A21.10.

2.2.4 Identification Tags and Plates

Provide valves with tags or plates numbered and stamped for their usage. Use plates and tags of brass or nonferrous material and mounted or attached to the valve.

2.2.5 Pipe Support

Use pipe support schedule 40 galvanized steel piping conforming to ASTM A53/A53M. Provide either ASME B16.3 or ASME B16.11 galvanized threaded fittings.

2.2.6 Miscellaneous Metals

Use stainless steel bolts, nuts, washers, anchors, and supports for installation of equipment.
2.2.7 Quick Disconnect System with Hydraulic Sealing Flange

Use quick disconnect system consisting of a steel base plate for supporting the pumps, a hydraulic sealing flange, pump guide rails and the discharge pipe supports. Use two guide rails of galvanized steel in accordance with ASTM A123/A123M. Provide a steel lifting chain for raising and lowering the pump in the basin. Build guides onto pump housing to fit the guide post to assure perfect alignment between pump and guide rails.

2.2.8 Wet Well Vent

Galvanized ASTM A53/A53M pipe with insect screening.

2.3 SUBMERSIBLE SEWAGE GRINDER PUMPS

Provide submersible sewage pumps with grinder units as shown on the drawings. Provide submersible, centrifugal sewage pumps and grinder units capable of grinding all materials found in normal domestic sewage, including plastics, rubber, sanitary napkins, disposable diapers, and wooden articles into a finely ground slurry with particle dimensions no greater than [6][_____] mm [1/4][_____] inch. Pump capacity and motor characteristics as [indicated][specified]. Design pump to operate in a submerged or partially submerged condition. Provide an integral sliding guide bracket and two guide bars capable of supporting the entire weight of the pumping unit.

2.3.1 Casing

Provide hard, close-grained cast iron casing which is free from blow holes, porosity, hard spots, shrinkage defects, cracks, and other injurious defects. Design casings to permit replacement of wearing parts. Design passageways to permit smooth flow of sewage and to be free of sharp turns and projections.

2.3.2 Impeller

Provide non-clogging type cast-iron[, or bronze] impeller. Make impeller with smooth surfaces, free flowing with the necessary clearance to permit objects in the sewage to pass. Fit and key, spline, or thread impeller on shaft, and lock in such manner that lateral movement will be prevented and reverse rotation will not cause loosening.

2.3.3 Shaft and Shaft Seals

Provide shaft of stainless steel. Provide mechanical seal of double carbon and ceramic construction with mating surfaces lapped to a flatness tolerance of one light band. Hold rotating ceramics in mating position with stationary carbons by a stainless steel spring. Oil lubricate bearings.

2.3.4 Bearings

Provide heavy duty ball thrust bearing or roller type bearing of adequate size to withstand imposed loads. Oil lubricate bearings.

2.3.5 Pump and Motor

Use pump and motor assembled on a single stainless steel shaft in a heavy
duty cast-iron shell. Use free standing pump support legs of cast-iron providing enough clearance for the solids to get into the grinder.

2.4 PUMP MOTOR

Provide submersible sewage pumps in wet well NEMA MG 1, [_____] RPM, [_____] volt, [_____] phase, and [_____] Hz cycle and for submersible pumps. Motor horsepower must be not less than pump horsepower at any point on the pump performance curve. Fit motors with lifting "eyes" capable of supporting entire weight of pump and motor.

2.5 PUMP CONTROL SYSTEM

Provide a sealed mercury float switch control system as indicated. Automatically alternate operation from one pump to the other and start second pump in the event first pump cannot handle incoming flow. Provide manual "on-off" switch for each pump. Provide independent adjustable high and low water level switches. Provide floats, supports, and alarm. Metal parts, if used, must be of bronze or equivalent corrosion resistant material.

2.5.1 Float Assembly Description

Use a direct acting float switch consisting of a normally-open mercury switch enclosed in a float. Use pipe mounted float assembly. Use float molded of rigid high-density polyurethane foam, color-coded and coated with a durable, water and corrosion-resistant jacket of clear urethane. Provide connecting cable and support pole in accordance with manufacturers recommendations. Provide a cast aluminum NEMA Type 4 junction box to connect float assembly. Use box with a gasketed cover with tapped float fitting and conduit entrance pipe threaded opening. Mount floats at fixed elevations as shown. Use floats designed to tilt and operate their switches causing sequential turn-on turn-off of the pump, when the liquid level being sensed rises or falls past the float.

2.5.2 Alternator

Provide an alternator control switch to operate in connection with each float. Use alternator control switch to alternate the operation of the pumps and operate both pumps if the water level rises above the second high water level. Incorporate time delay function and devices in the alternator controls such that both sewage pumps cannot be started simultaneously for an adjustable period of 10 to 120 seconds after shutdown. Use delay function designed to operate in any condition of start-up in either normal or emergency operational mode.

2.5.3 Sewage Pump Alarm and Control Panel

Enclose alarm panel in NEMA IV enclosure and with a flashing red light with long life bulb in guarded enclosure and 15 mm 6 inch diameter horn. Horn must emit 120 DB at 3 meters 10 feet. Power alarm horn and light from 12V DC power supply with battery backup. Provide a rechargeable battery rated to power both the horn and light for a minimum of two hours upon loss of main power. Provide circuitry to automatically recharge the battery after main power is restored. Full charge of battery must take no more than 20 hours. Use panel with power on light, push to test button for horn and light and push to silence button for horn and light with automatic reset for next alarm. Use alarm designed to activate under the following conditions:
a. High liquid level as sensed by float switch
b. Loss of main power
c. No flow light as sensed by limit switch on the check valve

2.5.4 Electrical Requirements

Furnish motors with their respective pieces of equipment. Furnish internal wiring for components of packaged equipment as an integral part of the equipment. Provide power wiring and conduit for field installed equipment.

2.5.5 Electric Motor

Use hermetically sealed electric motor. Seal the power cable inside the motor end bell. Provide a neoprene covered cable with a flexible metal cover over it for its full length.

2.6 UNDERGROUND EQUIPMENT ENCLOSURE

2.6.1 Access Hatch Cover

Provide [aluminum] access hatch cover as indicated. Include lifting mechanism, automatic hold open arm, slam lock with handle, and flush lift handle with red vinyl grip. Use automatic hold open arm that locks in the 90 degree position. Use cover that is 6 mm 1/4 inch diamond plate with 6 mm 1/4 inch channel frame and continuous anchor flange. Use access hatch cover capable of withstanding a live load of 1500 kg/sq. meter 300 lbs./sq. ft. Provide stainless steel cylinder lock with two keys per lock. Key all the locks the same.

2.6.2 Wet Well[and Valve Vault]

Provide [fiberglass reinforced polyester resin basin][concrete wet well [and Valve Vault]] with inside diameter [as indicated][of [_____] mm [_____] inch]. Precast structures may be provided in lieu of cast-in-place structures.

[2.6.2.1 Cast-In-Place Concrete Structures

Provide wet well[and valve vault] with a compressive strength of 25 MPa 3000 psi at 28 days as specified in Section 03 30 00 CAST-IN-PLACE CONCRETE.

][2.6.2.2 Precast Concrete Structures

ASTM C478M ASTM C478, except as specified herein. Provide precast concrete structures with a compressive strength of 30 MPa 4000 psi at 28 days and an air entrainment of 6 percent, plus, or minus 2 percent and a minimum wall thickness of 125 mm 5 inches. ASTM A615/A615M reinforcing bars. ASTM C443M ASTM C443 or ASTM C443, Type B gaskets for joint connections. Use monolithic base and first riser.

[2.6.3 Wet Well Base Material

Provide crushed stone as indicated and specified in Section 31 00 00 EARTHWORK. Provide polyethylene vapor barrier as indicated and specified in Section 03 30 00 CAST-IN-PLACE CONCRETE.
PART 3 EXECUTION

3.1 INSTALLATION

Provide pump station in accordance with drawings and requirements of the respective equipment manufacturers. Dampen and isolate equipment vibration.

3.1.1 Installation of Ductile-Iron Pressure Lines

Unless otherwise specified, install pipe and fittings in accordance with paragraph entitled, "General Requirements for Installation of Pipelines" of Section 33 30 00 SANITARY SEWERS, and with the requirements of AWWA C600 for pipe installation, joint assembly, and valve-and-fitting installation.

Make flanged joint with gaskets, bolts, and nuts specified for this type joint. Make flanged joints up tight, taking care to avoid undue strain on flanges, fittings, and other accessories. Align bolt holes for each flanged joint. Use size bolts for the bolt holes; use of undersized bolts to make up for misalignment of bolt holes or for any other purpose will not be permitted. Do not allow adjoining flange faces to be out of parallel to such degree that the flanged joint cannot be made watertight without overstraining the flange.

3.1.2 Installation of PVC Plastic Pressure Pipe and Fittings

Unless otherwise specified, install pipe and fittings in accordance with paragraph entitled "General Requirements for Installation of Pipelines" of this section and with the recommendations for pipe joint assembly and appurtenance installation in AWWA M23, Chapter 7, "Installation."

a. Pipe Less than 100 mm 4 Inch Diameter:

 (1) Make threaded joints by wrapping the male threads with joint tape or by applying an approved thread lubricant, than threading the joining members together. Tighten joints with strap wrenches that will not damage the pipe and fittings. Do not tighten joint more than 2 threads past hand-tight.

 (2) Push-On Joints: Bevel ends of pipe for push-on joints to facilitate assembly. Mark pipe to indicate when the pipe is fully seated. Lubricate gasket to prevent displacement. Exercise care to ensure that the gasket remains in proper position in the bell or coupling while making the joint.

 (3) Solvent-weld joints: comply with the manufacturer's instructions.

3.1.3 Valves

Installation of Valves: Install gate valves conforming to AWWA C500 in accordance with AWWA C600 for valve-and-fitting installation and with the recommendations of the Appendix ("Installation, Operation, and Maintenance of Gate Valves") to AWWA C500. Install gate valves conforming to AWWA C509 in accordance with AWWA C600 for valve-and-fitting installation and with the recommendations of the Appendix ("Installation, Operation, and Maintenance of Gate Valves") to AWWA C509. [Install check valves in accordance with the applicable requirements of AWWA C600 for valve-and-fitting installation [, except as otherwise indicated].][Make and assemble joints to gate valves [and check valves] as specified for making and assembling the same type joints between pipe and fittings.]
3.1.4 Steel Piping

Install steel piping in accordance with ASME B31.3. Use PTFE pipe thread paste or PTFE powder and oil for jointing compound for pipe threads.

3.1.5 Force Main

Provide in accordance with Section 33 30 00 SANITARY SEWERS.

3.1.6 Equipment Installation

Install equipment in accordance with these specifications and the manufacturer's installation instructions. Grout equipment mounted on concrete foundations before installing piping. Install piping to avoid imposing stress on any equipment. Match flanges accurately before securing bolts.

3.2 FIELD TESTS AND INSPECTIONS

Perform all field tests, and provide all labor, equipment, and incidentals required for testing, except that water and electric power needed for field tests will be furnished as set forth in Division 01. Produce evidence, when required, that any item of work has been constructed in accordance with contract requirements. Allow concrete to cure a minimum of 5 days before testing any section of piping where concrete thrust blocks have been provided.

3.2.1 Testing Procedure

Test piping in accordance with the Section 33 30 00 SANITARY SEWERS. Test in operation all equipment to demonstrate compliance with the contract requirements.

3.2.2 Sewage Grinder Pump/Lift Station

Test pumps and controls, in operation, under design conditions to insure proper operation of all equipment. Provide all appliances, materials, water, and equipment for testing, and bear all expenses in connection with the testing. Conduct testing after all equipment is properly installed, electrical services and piping are installed, liquid is flowing, and the pump station is ready for operation. Correct all defects discovered to the satisfaction of the Contracting Officer, and all tests repeated, at the expense of the Contractor, until the equipment is in proper working order.

-- End of Section --