SECTION TABLE OF CONTENTS

DIVISION 33 - UTILITIES

SECTION 33 08 53

AVIATION FUEL DISTRIBUTION SYSTEM START-UP

02/10

PART 1 GENERAL

1.1 ADMINISTRATIVE REQUIREMENTS
 1.1.1 System Start-up Plan
1.2 SUBMITTALS
1.3 CLOSEOUT SUBMITTALS
 1.3.1 Final Reports
1.4 QUALITY ASSURANCE
 1.4.1 Test Reports
 1.4.2 Certification of Entire System

PART 2 PRODUCTS

2.1 GOVERNMENT-FURNISHED MATERIAL AND EQUIPMENT
 2.1.1 Aircraft Turbine Fuel
 2.1.2 Tank Trucks
 2.1.3 Hydrant Hose Trucks
 2.1.4 Utilities
 2.1.5 Defuel Cart
 2.1.6 Pantographs
2.2 MATERIAL AND EQUIPMENT
 2.2.1 Contractor Furnished
 2.2.2 Design Conditions

PART 3 EXECUTION

3.1 PREPARATIONS FOR FLUSHING
 3.1.1 Protection of Equipment
 3.1.2 Strainers
 3.1.3 Water Draw-off
3.2 FLUSHING
 3.2.1 Fueling System Piping
 3.2.1.1 Transfer Line
 3.2.1.2 Pump House Piping
 3.2.1.3 Apron Loop Piping
 3.2.1.4 Hydrant Outlets
 3.2.1.5 Product Recovery Tank Lines
3.2.1.6 Pantographs

3.3 CLEANING
3.3.1 Preparation for Cleaning
3.3.2 Cleaning Requirements
3.3.3 Cleaning Procedure
 3.3.3.1 Transfer Line
 3.3.3.2 Pump House Piping
 3.3.3.3 Apron Loop Piping
 3.3.3.4 Product Recovery Lines
 3.3.3.5 Pantographs

3.4 CONTROL VALVE[AND PANTOGRAPH] ADJUSTMENT
3.4.1 Rate of Flow Control Feature on Fueling Pump Non-Surge Check Valve
3.4.2 Control Valves on Issue Filter Separator Downstream Side
3.4.3 Venturi Needle Valve

3.5 EQUIPMENT TESTS
3.5.1 Check List For Equipment Tests
3.5.2 Operating Tank Low Level Alarm
3.5.3 Fuel Delivery
3.5.4 Fueling Pump Operation
3.5.5 Defueling Performance
3.5.6 Emergency Shutdown
3.5.7 Hydrant Control Valve
 3.5.7.1 Surge Shut-Down Capability
 3.5.7.2 Pressure Control at Setpoint + 15 kPa 2 psi
3.5.8 Filter Separator Float Control Valves with Manual Tester
3.5.9 Overfill Valve

3.6 PERFORMANCE TESTING
3.6.1 Final Performance Test
 3.6.1.1 Satisfactory Performance
3.6.2 Control Valve Tagging
3.6.3 Final Acceptance
 3.6.3.1 Operating Tank High Liquid Level Shut-Off Valve Test and Adjustments
 3.6.3.2 Tank Level Indicator Adjustments
 3.6.3.3 Water Draw-Off System Test

3.7 START-UP COMMISSIONING PROCEDURES FORMS

ATTACHMENTS:

Checklist for Equipment Test

Graph format

System Start-up Plan

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for the flushing, cleaning and performance testing of new aircraft refueling systems constructed to the requirements of the DoD Type III/IV/V, and Cut'n Cover Hydrant Refueling System Standards.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: DoD Type III systems shall conform to Standard Design 078-24-28 PRESSURIZED HYDRANT FUELING SYSTEM (TYPE III). DoD Type IV/V systems shall conform to Standard Design 078-24-29 AIRCRAFT DIRECT FUELING SYSTEM (TYPE IV) DESIGN.

1.1 ADMINISTRATIVE REQUIREMENTS

NOTE: Insert number of days notice. Use the Command Fuel Facilities Engineer on Naval Facilities Engineering Command (NAVFACENGCOM) PROJECTS. On
Corps of Engineers (COE) projects, select Government representatives and include in MOU specific Air Force representatives to be notified when dates are submitted to Contracting Officer.

Develop the example/starting point attachment for the final testing plan in unison with MAJCOM as a function of the system layout.

**
Utilize the Checklist for Equipment Test at the end of this section.
Request electronic format of the Checklist from the Contracting Officer.

1.1.1 System Start-up Plan

Submit a detailed written plan prepared by the system supplier for implementation of system start-up. Submit the plan shall [60][_____] days prior to system start-up. Include a list of personnel by trade, list of key personnel, safety equipment, list of miscellaneous equipment such as two-way radios personnel transportation vehicles etc. and detailed procedures (Start-Up Commissioning example provided by the Contracting Officer) and schedules. The Contractor and system supplier are responsible for implementing system start-up in coordination with ongoing base operations.

1.2 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29.
SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

System Start-up Plan; G[,[_____]]

SD-06 Test Reports

Test Reports

Final Reports

Equipment Tests; G[,[_____]]

SD-11 Closeout Submittals

Certification of Entire System

1.3 CLOSEOUT SUBMITTALS

1.3.1 Final Reports

Submit a final report which includes the final settings of the valves and switches and a copy of the strip chart graphs and excel data and charts on CDR media with an explanation of what the graph indicates and what the system is doing.

1.4 QUALITY ASSURANCE

1.4.1 Test Reports

Submit written test reports to the Contracting Officer prior to the final acceptance procedure. Information reported shall include:

a. Elapsed operating time.
b. Tank liquid level readings.
c. System flow rate and meter readings.
d. System pressure gage readings.
e. Number identification of pumps running.
f. Pump RPM, amperage, and voltage.
g. Condition of fuel samples.
h. Hydrant control valve performance (including flow rate and pressure) during emergency shutoff, downstream valve closure, and relief operation.

SECTION 33 08 53 Page 5
1.4.2 Certification of Entire System

Prior to the acceptance of the newly constructed system by the Government, all installed mechanical and electrical equipment shall be inspected and approved by the Contracting Officer. Provide the Contracting Officer [30][_____] days notice in order to schedule the [Command Fuel Facilities Engineer and the Command Fuels Management Officer (who will act only as a technical consultants to the Contracting Officer and shall not have any contract authority)] [Government representatives] for participation in the inspection and equipment tests and final acceptance procedures and approval. Any deficiencies observed shall be corrected by the Contractor without cost to the Government.

PART 2 PRODUCTS

2.1 GOVERNMENT-FURNISHED MATERIAL AND EQUIPMENT

The Government will furnish the following materials, equipment and services during the performance of the work under this section.

2.1.1 Aircraft Turbine Fuel

The Government will provide the fuel necessary for system testing. Notify the Contracting Officer a minimum of 60 days in advance of the requirements. Additional fuel will be provided by the Government as required for satisfactory flushing of the system. Upon satisfactory completion of the flushing and cleaning operations, the Government will supply the additional quantities of fuel required to complete the other work under this section. Fuel will not be delivered to the system until the Contractor has satisfactorily completed all work and, in particular, the cleaning and coating of the interior surfaces of the operating storage tanks and the removal of preservatives and foreign matter from those portions coming in contact with the fuel valves, pumps, filter separators and other such equipment. Fuel delivered to the system shall remain the property of the Government and the Contractor shall reimburse the Government for shortages not attributable to normal handling losses. The Government shall be reimbursed for fuel lost as a result of defective materials or workmanship. An empty Operating Tank shall never be filled at a velocity greater than 1 m/s3 feet per second in the fill line until fuel is 1 m3 feet above the fill nozzle.

2.1.2 Tank Trucks

Refueler tank trucks and operation of same will be furnished by the Government.

2.1.3 Hydrant Hose Trucks

The Government will furnish and operate the hydrant hose trucks required for ground refueling and defueling of aircraft at hydrant pits.

2.1.4 Utilities

Electric power required for the performance of the work under this section will be furnished at no charge to the Contractor.

2.1.5 Defuel Cart

**
NOTE: Select defuel cart for systems using hydraulic pantographs.

The Government will provide a defuel cart for the defueling operation on systems using pantographs for these fueling and defueling operations.

2.1.6 Pantographs

The Government will provide and operate pantographs for systems not providing enough pantographs to accomplish the full flow startup.

2.2 MATERIAL AND EQUIPMENT

2.2.1 Contractor Furnished

Provide material, equipment and labor not specified to be Government-furnished and required for proper start-up of the system.

Equipment shall include but not be limited to the following:

a. Temporary strainers.

b. Pipe spools.

c. Flow meters.

d. Pressure gages.

e. Electronic sensors and recorders for pressure and flow recording are included in the PCP, except a sensor and cable or RF will need to be provided by the Contractor for the data from the Hydrant Control Valve and plugged into the PCP. This equipment shall be used to monitor and record the system during the "Equipment Test" and "Performance Testing" portions of this Specification Section. Recorded data shall be used by the Contractor and equipment factory representatives to achieve final control valve and equipment adjustments. Recorded data shall include:

 (1) Fueling pumps discharge pressures.
 (2) Supply Venturi flow rates.
 (3) Hydrant Control Valve pressures.
 (4) Back Pressure Control Valve upstream pressures.
 (5) Back Pressure Control Valve downstream pressures.
 (6) Return Venturi flow rates.

f. The Contractor must have on hand sufficient filter elements and coalescer cartridges to adequately clean the system. During cleaning operation, provide a flow versus pressure drop graph for each filter separator. Graph format shall be as shown at end of this Section. Change coalescers and cartridges upon reaching a differential pressure of 100 kPa (15 psi) or when pressure drop is less than previous graph or fails to increase properly. Isolate each filter separator, one at a time and use one fueling pump to obtain rated flow rate (38 L/s, 600 GPM). A minimum of one complete set of coalescer elements and separator cartridges for each filter separator shall be turned over to the Government after new coalescer elements and separator cartridges are installed in each filter separator vessel after completion of acceptance testing.

[g. Pigging equipment and services as called out in paragraph PIPELINE]
2.2.2 Design Conditions

Use temporary flushing lines and equipment that are equal in strength, stability, and materials to the associated permanent components. However, spools may be carbon steel. Additional design conditions shall be as specified in Section 33 52 43.11 AVIATION FUEL MECHANICAL EQUIPMENT.

PART 3 EXECUTION

3.1 PREPARATIONS FOR FLUSHING

**
NOTE: For Air Force projects, select Contracting Officer and the Command Fuel Facilities Engineer. For Navy/Marine Corps or Army projects, select Contracting Officer and include in MOU specific Navy/Marine Corps or Army representatives to be notified when dates are submitted to Contracting Officer.
**

Upon completion of the system to the satisfaction of the [Contracting Officer and the Command Fuel Facilities Engineer] [Contracting Officer], make the following preparations for flushing the system.

3.1.1 Protection of Equipment

The following items shall be removed from the system prior to start of flushing operations and, where applicable, replaced with spools of pipe, diameter equal to the item removed.

a. Control valves, including hydrant pit control valves if flushing outlets into tank trucks.
b. Sensors which are exposed to the fluid.
c. Coalescer and separator elements in filter separators.
d. Venturi Tubes and Pressure Indicating Transmitters.
e. Meter.

After flushing, the above items shall be reinstalled in the system and the spool sections turned over to the Contracting Officer.

3.1.2 Strainers

Temporary 150 um100 mesh cone type strainers with minimum 300 percent open area shall be installed in the suction line ahead of each fueling pump and will be left in place. Any damaged strainers shall be replaced by the Contractor at no additional cost to the Government.

3.1.3 Water Draw-off

Remove any accumulated water from Operating Tanks' sumps and bottoms.

3.2 FLUSHING

**
NOTE: Select permanent pantograph, portable pantograph or hydrant hose truck.
**
Flushing procedures shall precede cleaning procedures. The transfer line, pump house piping, apron loop, supply and return lines to the operating tanks, hydrant laterals, product recovery lines and [permanent pantograph][portable pantograph][hydrant hose truck] lines shall be flushed with fuel until the fuel being delivered is free of construction debris to the satisfaction of the Contracting Officer. Samples of fuel shall be taken and tested by the designated government agency and shall be free of gross contamination, maximum of 8.0 mg/gallon solids and free water not to exceed 2 ml per quart.

3.2.1 Fueling System Piping

The flushing of apron system pipelines shall be accomplished by pumping fuel from one of the operating tanks through the fueling system piping and back to another tank. Air shall be bled from system high points. The procedure shall be continued until the fuel being delivered into the tanks is acceptable to the Contracting Officer. After the system has been flushed to the satisfaction of the Contracting Officer, remove any water remaining in the low point drains and remove any accumulated water from Operating Tank sumps and bottoms by means of the Water Draw-off systems. Cone strainers shall be kept clean in order to insure maximum flow rate. In addition, baskets from all strainers shall be removed and cleaned.

3.2.1.1 Transfer Line

Flushing of the transfer line shall occur during the filling operations. Samples of the incoming fuel shall be taken at the point of connection with bulk storage supply line. These samples shall be taken at one hour intervals and shall be tested by the designated government agency and turned over to the Contracting Officer.

3.2.1.2 Pump House Piping

Remove equipment as specified in paragraph Protection of Equipment. Perform the following flushing operations by withdrawing fuel from one operating tank and returning it to another tank. Circulate a sufficient amount of fuel for each operation. Bleed air from high points.

a. Position manual valves to circulate fuel through one pump, filter separator combination.

b. Provide a temporary connection between the [pantograph,] [hydrant hose truck,] checkout connection and the single point receptacle. Position manual valves to circulate fuel through the checkout connection and back to the transfer line. Flush the checkout lines using one fueling pump.]

**

NOTE: Select this paragraph for type iii design. Select pantograph or hydrant hose truck.

**

c. Position manual valves to circulate fuel through the bypass line. Flush this line using two fueling pumps.
3.2.1.3 Apron Loop Piping

Remove equipment as specified in paragraph Protection of Equipment. Position manual valves to circulate fuel through the apron loop and back to the operating tank. Begin flushing the apron loop at a flow rate of 38 L/s 600 gpm. Increase flushing flow rate one pump at a time to the maximum available number of pumps for a minimum of 8 hours.

3.2.1.4 Hydrant Outlets

**
NOTE: Delete this paragraph Type IV and V systems.
**
Position a tank truck at the hydrant outlet and flush each hydrant lateral. Sample the fuel at the connection to the truck.

3.2.1.5 Product Recovery Tank Lines

During the flushing of apron loop piping, operate all manual drain lines individually to flush their connection to the product recovery tank. Fill the tank a minimum three times, each time utilizing the fuel transfer pump to drain it by returning the fuel to storage.

3.2.1.6 Pantographs

**
NOTE: Delete this paragraph if pantographs are not required (Type III) or the first set of brackets if the specification is for a Type IV/V system.
**
Utilize the [pantograph check-out connection and single point receptacle][pantograph fueling station fueling adapter] to flush each pantograph. Sample the fuel at the pressure fueling nozzle with the kit provided for this purpose.

3.3 CLEANING

After initial flushing is completed, clean the pump house and apron loop piping in accordance with the procedure specified hereafter. Isolate Operating Tanks from the system and clean as specified in Section 33 01 50.01 CLEANING FUEL STORAGE TANKS.

3.3.1 Preparation for Cleaning

Filter elements shall be installed in the filter separators. Adjust filter separator flow control valve. Valves and equipment removed for flushing shall be reinstalled. Operating Tanks shall be drained, vapor freed and cleaned. Transfer the contents from one operating tank to the other for the purposes of cleaning.

3.3.2 Cleaning Requirements

**
NOTE: Select independent or DOD fuels laboratory, include in MOU. Select pantograph checkout station, pantograph fueling station, or hydrant hose truck check-out station.
**
Cleaning shall continue until the Contracting Officer certifies that the fuel passes the color and particle assessment method as defined in T.O. 42B-1-1 or contains 2 milligrams per gallon or less of particulate. Fuel shall also contain 10 parts per million or less of free water. Sampling shall be performed by the [Government][contractor] and testing shall be done by[the Air Force][a DoD regional fuels testing laboratory][an approved independent testing laboratory]. [Also take fuel samples at pantograph [check out station][fueling station].][Also take samples at Hydrant Hose Truck Check-out Station and the truck fill stand.]

3.3.3 Cleaning Procedure

During cleaning procedure periodically bleed air through high point vent and drain water through low point drains.

3.3.3.1 Transfer Line

Continue to receive fuel and circulate it until fuel samples taken at the tanks meet the requirements of paragraph Cleaning Requirements above.

3.3.3.2 Pump House Piping

Pump house piping shall be cleaned as follows:

a. Position manual valves so that fuel is withdrawn from one operating tank, circulated through one fueling pump and filter separator, then returned to the operating tank through the receiving filter separators.

b. Clean the piping system using one pump at a time. Alternate the fueling pumps and filter separators during the operation to clean the individual fueling pump suction and discharge lines.

c. Provide a temporary connection between the [pantograph] [hydrant hose truck] connection and the nozzle adaptor. Position valves to circulate fuel through the checkout connection and back to the return line. Clean the checkout lines using two fueling pumps.]

NOTE: Select this paragraph for Type III design.
Select pantograph or hydrant hose truck checkout.

3.3.3.3 Apron Loop Piping

Apron loop piping shall be cleaned as follows:

a. Position manual valves to circulate fuel through the apron loop and
back to the operating tank through the receiving filter separators.

**
NOTE: Delete if pigging launchers and receivers are
not in the design. In some cases the pig launcher
and receiver is not permanently installed and the
specifications will need to be written to indicate
the contractor will need to provide temporary units.
**

 a. First clean the pipe using pigs as called out in paragraph PIPELINE
 PIGGING VERIFICATION, Section 33 52 43.13 AVIATION FUEL PIPING. During
 this, low point drains and high point vents shall be blown clean. Monitor pressure drop through the filter separators during the cleaning operation.

 b. Inspect the pipe as called out in paragraph PIPELINE PIGGING
 VERIFICATION, Section 33 52 43.13 AVIATION FUEL PIPING.]

 c. Initially pump fuel through the apron loop at a flow rate of 38 L/s600
gpm, then increase flow rate up to the full capacity (all pumps
running) starting manually one pump at a time. When pumping at a rate
greater than 75 L/s1200 gpm, bypass receiving filter separators.

d. Monitor pressure drop through the filter separators during the cleaning
operation and provide flow vs. pressure drop graphs as specified herein
before.

e. Position a tank truck at the hydrant outlet and clean each hydrant
lateral, one at a time.

f. Periodically take samples from all sample connections. Continue
cleaning until the fuel meets specified requirements of paragraph
CLEANING REQUIREMENTS.

3.3.3.4 Product Recovery Lines

Repeat the process described under initial flushing until samples taken at
the connection of the pipe line back to storage meet the requirements.

3.3.3.5 Pantographs

**
NOTE: Delete if pantographs are not used.
**

Repeat the process described under initial flushing until samples taken at
the pressure fueling nozzle meet the requirements.

3.4 CONTROL VALVE[AND PANTOGRAPH] ADJUSTMENT

Check all control valve settings and field adjust from the factory settings
at start-up as necessary to provide a smooth operation. Check the filter
separator control valves and fueling pump non-surge check valve[and needle
valve on Pantograph venturi] and adjust as follows:
3.4.1 Rate of Flow Control Feature on Fueling Pump Non-Surge Check Valve

Run one pump at a time and adjust rate of flow feature (41 L/s 650 gpm).

3.4.2 Control Valves on Issue Filter Separator Downstream Side

a. Position valves so that one fueling pump can pump through only one filter separator. Close the valve at the entrance of the apron loop, and open the bypass valve, allowing discharge into the circulating line.

b. Start the pump and adjust the filter separator control valve for the rated flow capacity of the filter separator (38 L/s 600 gpm).

c. Repeat above for each remaining filter separator.

3.4.3 Venturi Needle Valve

**
NOTE: Delete if pantographs are not used.
**

Venturi needle valve shall be adjusted to ensure a pressure equal to nozzle pressure at maximum flow possible. After initial setting, valve shall be locked in adjusted position.

3.5 EQUIPMENT TESTS

**
NOTE: For Air Force projects select Contracting Officer and the Command Fuel Facilities Engineer. For Navy/Marine Corps or Army projects, select Contracting Officer and other Government representatives. Include in MOU specific representatives who will participate in inspection of equipment test.
**

After completion of flushing, cleaning, and control valve and electrical components adjusting operations, the tests specified hereinafter shall be performed. After cleaning is complete and prior to performance testing, field adjustment of automatic control valves and automatic pump controls while in operation shall be made only by the valve manufacturer's authorized field test engineer. For final adjustment of installed electrical control equipment provide an experienced electrical engineer, factory representative of PCP manufacturer and factory representative of PIT and DPT manufacturers. Both the mechanical and electrical components shall be adjusted concurrently. Tests will be witnessed by the [Contracting Officer, the Command Fuel Facilities Engineer and the Command Fuel Management Officer][Contracting Officer and other Government representatives].

3.5.1 Check List For Equipment Tests

System Supplier shall complete and submit to the Check List For Equipment Test provided at the end of this Section.

3.5.2 Operating Tank Low Level Alarm

Position valves to transfer fuel between operating tanks. Start one
fueling pump and pump sufficient fuel out of the first operating tank to allow the low level alarm (LLA) to stop the fueling pump. This procedure shall be repeated for each fueling pump and each tank until the low level alarm stops the fueling pump due to low liquid level in operating tank.

3.5.3 Fuel Delivery

**
NOTE: Select valve size and verify flow rate with Command Fuel Facilities Engineer.
**

Deliver fuel to each fueling point against a backpressure at the outlet of the hydrant control valve created by the tank trucks and hoses used during the tests. The flow rate shall be not less than [38][_____] L/s [600][_____] gallons per minute for a 100 mm4-inch valve. The flow rate shall be not less than [75][_____] L/s[1200][_____] gallons per minute for a 150 mm6-inch valve. Flow rates might be affected by aircraft capability.

3.5.4 Fueling Pump Operation

Demonstrate operation of all pressure and flow devices to start and stop the fueling pumps at the indicated pressure and flow rates in the presence of the Contracting Officer. Repeat the operating sequence with each of the pumps being selected as lead pump. For this test, measure the flow rates. Witness and record flow rates and test results.

3.5.5 Defueling Performance

To test the defueling operation in the "automatic" mode, the Government will furnish a defueling cart or a hydrant hose truck with a 19 L/s300 gpm pump rated at 1140 kPa165 psi to pump fuel from a government furnished tank truck or bladder back into the system. While this defueling test is in operation, one 600 gpm transfer pump shall be operated providing flow into a tank truck through one hydrant control valve. Demonstrate capability of defueling into the system at the same time a fueling operation is in progress. Also test the defuel capability while in the "Flush" mode.

3.5.6 Emergency Shutdown

**
NOTE: Delete if not provided.
**

With one fueling pump circulating fuel through the system, test each "Emergency Stop" pushbutton station to verify that the pump stops [and the emergency shutoff solenoid activates and the control valve closes]. Repeat above procedure for each fueling pump and "Emergency Stop" pushbutton station. Conduct tests for both the automatic and manual modes. With all the fueling pumps circulating fuel through the system, push an "Emergency Stop" pushbutton station.

3.5.7 Hydrant Control Valve

Each Hydrant Control Valve shall be operated to demonstrate the following:

3.5.7.1 Surge Shut-Down Capability

Surge from shut-off of on-board aircraft fill valve can be simulated by
closing a fill line valve to the tank truck or bladder, use a three (3)
second closure.

3.5.7.2 Pressure Control at Setpoint + 15 kPa 2 psi

Requires use of a pressure gage at the pressure fueling nozzle

3.5.8 Filter Separator Float Control Valves with Manual Tester

Using the manual float control test level on each Filter Separator, lift
the weight from the float ball slowly and observe the Operation and closure
of the water slug shut-off feature on the Filter Separator Control Valve.

3.5.9 Overfill Valve

Place fuel transfer pump in the "off" position. Delivery quantity of fuel
to Product Recovery Tank to demonstrate capability of valve to close.
Place Fuel Transfer Pump in the "Automatic" position to demonstrate
capability of valve to open when fuel level drops below set point.

3.6 PERFORMANCE TESTING

**
NOTE: For Air Force projects, select Contracting
Officer and the Command Fuel Facilities Engineer.
For Navy/Marine Corps projects, select Contracting
Officer, Command Fuels Officer and NAVAIR 4.4.5.1
Representative. For Army projects choose
Contracting Officer. Include in MOU if Command Fuel
Facilities Engineer or his/her designated will
assist Contracting Officer regarding approval of
final performance testing.
**

Testing, as performed under the above paragraphs, shall be considered to be
part of the performance testing after the Contractor has made the required
adjustments to the various equipment and controls and demonstrates to the
satisfaction of the [Contracting Officer and the Command Fuel Facilities
Engineer] [Contracting Officer, and NAVAIR 4.4.5.1 Representative]
[Contracting Officer[and]], that these portions of the systems are
working as specified. Notify the Contracting Officer 15 calendar days in
advance of the test to permit arrangement for the use of
Government-furnished items. During the time period of final performance
testing, no construction activities will be allowed on the project site.
The project site shall be considered an operational (fuel) zone (versus a
construction zone) during this final performance testing period.
Personnel, dressed for fuel’s operation, will be present to witness testing
and participate in Contractor provided training.

3.6.1 Final Performance Test

The final performance test shall consist of performance of the fueling
system during actual fueling and defueling of an aircraft. The maximum
rated capacity of the system shall be tested by using several aircraft
simultaneously. If it is not possible to use the number of aircraft
required to receive the full flow, the test shall be supplemented through
the use of refueling trucks or bladders. Record required data necessary to
prepare Test Reports specified in paragraph TEST REPORTS.
3.6.1.1 Satisfactory Performance

**
NOTE: For Air Force Projects, select Contracting Officer and the Command Fuel Facilities Engineer. For Navy/Marine Corps or Army Projects, select Contracting Officer and include in MOU if command specific representative or his designated representative will participate in performance testing.
**

In the event a portion of the system or any piece of equipment fails to meet the test, make the necessary repairs or adjustments and repeat the Performance Test until satisfactory performance is obtained. The determination of satisfactory performance shall be made by the [Contracting Officer and the Command Fuel Facilities Engineer] [Contracting Officer].

3.6.2 Control Valve Tagging

After the performance testing and system acceptance, tag the control valves with their final adjustments.

3.6.3 Final Acceptance

Fill the system with fuel and operate leak-free prior for acceptance. Anything wet with fuel is considered to be leaking.

3.6.3.1 Operating Tank High Liquid Level Shut-Off Valve Test and Adjustments

During the final filling of operating tanks, check the tank automatic high liquid level shut-off valve for proper functioning at least three times by lowering the fuel level and refilling again. Adjust valve to achieve a safe fill level.

3.6.3.2 Tank Level Indicator Adjustments

Also during the final filling of operating tanks, adjust and calibrate the tank level indicators including the final setting of the high high level (HHLA) and high level (HLA) alarms. Since the HHLA is at a point higher than the High Liquid Level Shut-Off Valve float set point, an artificial method of simulating HHL must be used.

3.6.3.3 Water Draw-Off System Test

During the performance testing, fill Water Draw-off Systems from Operating Tank sump to ensure proper operation. After filling system, allow time for fuel/water mixture to separate. Verify liquid separation through system's sight glasses. Proper operation includes capability to drain separated water and capability to pump separated fuel back to a full Operating Tank.

3.7 START-UP COMMISSIONING PROCEDURES FORMS

**
NOTE: Develop the example/starting point attachment for the final testing plan in unison with MAJCOM as a function of the system layout. Table templates are available at http://www.wbdg.org/ccb/NAVGRAPH/ graphtoc.pdf. Edit
**

SECTION 33 08 53 Page 16
tables as required for the project and provide to the contractor.

**

Use the forms provided by the Contracting Officer in the System Start-up Plan submittal. [Generic templates of the forms (not specifically prepared for this project) are available at http://www.wbdg.org/ccb/NAVGRAPH/grahtoc.pdf.] The Contractor and system supplier are responsible for implementing system start-up in coordination with ongoing base operations.

-- End of Section --