SECTION TABLE OF CONTENTS

DIVISION 32 - EXTERIOR IMPROVEMENTS

SECTION 32 13 17

STONE MATRIX ASPHALT (SMA) FOR AIRFIELD PAVEMENTS

08/08

PART 1 GENERAL

1.1 METHOD OF MEASUREMENT
1.2 BASIS OF PAYMENT
1.3 PERCENT PAYMENT
 1.3.1 Mat and Joint Densities
 1.3.2 Pay Factor Based on In-Place Density
 1.3.3 Payment Adjustment for Smoothness
 1.3.3.1 Straightedge Testing
 1.3.3.2 Profilograph Testing
 1.3.4 Laboratory Air Voids and Theoretical Maximum Density
 1.3.5 Mean Absolute Deviation
 1.3.6 Pay Adjustment Based on Grade
1.4 REFERENCES
1.5 SUBMITTALS
1.6 QUALITY ASSURANCE
 1.6.1 Sublot Sampling
 1.6.2 Additional Sampling and Testing
 1.6.3 In-Place Density
 1.6.4 Surface Smoothness
 1.6.5 Smoothness Requirements
 1.6.5.1 Straightedge Testing
 1.6.5.2 Profilograph Testing
 1.6.6 Testing Method
 1.6.6.1 Straightedge Testing
 1.6.6.2 Profilograph Testing
 1.6.6.3 Bumps ("Must Grind" Areas)
1.7 ENVIRONMENTAL REQUIREMENTS

PART 2 PRODUCTS

2.1 SYSTEM EQUIPMENT
 2.1.1 Truck Scales
 2.1.2 Testing Facilities
 2.1.3 Inspection of Plant
2.1.4 Storage Bins
2.1.5 Hauling Equipment
2.1.6 Asphalt Pavers
 2.1.6.1 Receiving Hopper
 2.1.6.2 Automatic [Grade] [Screed] Controls
2.1.7 Rollers
2.2 AGGREGATES
 2.2.1 Coarse Aggregate
 2.2.2 Fine Aggregate
 2.2.3 Mineral Filler
 2.2.4 Aggregate Gradation
 2.2.5 Fiber Stabilizer
2.3 ASPHALT CEMENT BINDER
2.4 MIX DESIGN
 2.4.1 JMF Requirements
 2.4.2 Adjustments to JMF

PART 3 EXECUTION

3.1 CONTRACTOR QUALITY CONTROL
 3.1.1 General Requirements
 3.1.2 Testing Laboratory
 3.1.3 Quality Control Testing
 3.1.3.1 Asphalt Content
 3.1.3.2 Gradation and Specific Gravity
 3.1.3.3 Temperatures
 3.1.3.4 Moisture Contents
 3.1.3.5 Laboratory Air Voids
 3.1.3.6 In-Place Density
 3.1.3.7 Grade and Smoothness
 3.1.3.8 Additional Testing
 3.1.3.9 QC Monitoring
 3.1.4 Sampling
 3.1.5 Control Charts
3.2 PREPARATION OF ASPHALT BINDER MATERIAL
3.3 PREPARATION OF MINERAL AGGREGATE
3.4 PREPARATION OF STONE MATRIX ASPHALT MIXTURE
3.5 PREPARATION OF THE UNDERLYING SURFACE
3.6 TEST SECTION
 3.6.1 Sampling and Testing for Test Section
 3.6.2 Additional Test Sections
3.7 TESTING LABORATORY
3.8 TRANSPORTING AND PLACING
 3.8.1 Transporting
 3.8.2 Placing
3.9 COMPACTION OF MIXTURE
3.10 JOINTS
 3.10.1 Transverse Joints
 3.10.2 Longitudinal Joints

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for stone matrix asphalt (SMA) for both heavy duty roadway and airfield pavements.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This guide specification only pertains to the stone matrix asphalt aspects of the project and not to any surface preparation requirements dealing with aggregate base courses, milling, or tack or prime coats. Surface preparation requirements should be covered by either including them in this guide specification or by adding pertinent sections to the project documents.

SMA can be used as a surface course for any airfield pavement. SMA provides increased durability, resistance to rutting, resistance to reflective cracking over HMA. Local state highway experiences with SMA should be considered when developing the
job specification.

This specification utilizes a Quality Assurance and Quality Control (QA/QC) construction management philosophy. Quality Assurance refers to the actions performed by the Government or designated representative Engineer to assure the final product meets the job requirements. Results of QA testing are the basis for pay. Quality Control refers to the actions of the Contractor to monitor the construction and production processes and to correct these processes when out of control. Results of QC testing are reported daily on the process control charts maintained by the Contractor. Quality Control is covered in paragraph CONTRACTOR QUALITY CONTROL.

1.1 METHOD OF MEASUREMENT

NOTE: For unit-price contracts, include first bracketed statements and delete the second set. For lump-sum contracts, delete the first bracketed statements and include the second set. Lump-sum contracts should not be used when the job exceeds 1000 metric tons (1000 short tons).

[The amount paid for will be the number of [metric] [short] tons of SMA used in the accepted work. Weigh the SMA after mixing, and no adjustment will be made for weight of asphalt cement material incorporated herein. The measured quantity will be divided by the mix adjustment factor (MAF) to determine the pay quantity. The MAF equals the maximum theoretical specific gravity from the JMF divided by 2.500. If the MAF calculation results in a value less than or equal to 1.020 and greater than or equal to 0.98, then the MAF shall be considered to be 1.000. If the calculated MAF is outside the range, then the actual calculated value shall be used.][Measurement of the quantity of SMA, per [metric] [short] ton placed and accepted, shall be made for the purposes of assessing the pay factors stipulated in this section.]

1.2 BASIS OF PAYMENT

NOTE: For unit-price contracts, include first bracketed statements and delete the second set. For lump-sum contracts, delete the first bracketed statements and include the second set. Include prescriptive unit price based on the Government/Engineer estimate for payment adjustment. Lump-sum contracts should not be used when the job exceeds 1000 metric tons (1000 tons).

[Quantities of SMA mixture, determined as specified above, will be paid for at respective contract unit prices or at reduced prices adjusted in accordance with paragraphs PERCENT PAYMENT and QUALITY ASSURANCE. Payment will constitute full compensation for furnishing all materials, equipment,
plant, and tools; and for all labor and other incidentals necessary to complete work required by this section of the specification. [The measured quantity of SMA will be paid for and included in the lump-sum contract price. If less than 100 percent payment is due based on the pay factors stipulated in paragraph QUALITY ASSURANCE, a unit price of [_____] per ton will be used for purposes of calculating the payment reduction.]

1.3 PERCENT PAYMENT

When a lot of material fails to meet the specification requirements for 100 percent pay as outlined in the following paragraphs, that lot shall be removed and replaced, or accepted at a reduced price which will be computed by multiplying the unit price by the lot pay factor. The lot pay factor is determined by taking the lowest computed pay factor based on either laboratory air voids, in place density, grade or smoothness (each discussed below). Pay factors based on different criteria (i.e., laboratory air voids and in place density) of the same lot will not be multiplied together to get a lower lot pay factor. At the end of the project, an average of all lot pay factors will be calculated. If this average lot pay factor exceeds 95.0 percent, then the percent payment for the entire project will be 100 percent of the unit bid price. If the average lot pay factor is less than 95.0 percent, then each lot will be paid for at the unit price multiplied by that lot's pay factor. For any lots which are less than 2000 metric 2000 pound tons, a weighted lot pay factor will be used to calculate the average lot pay factor.

1.3.1 Mat and Joint Densities

The average in place mat and joint densities are expressed as a percentage of the average maximum theoretical density for the lot. The maximum theoretical density for each lot will be determined as the average maximum theoretical density of the two random samples per lot. The average in place mat density and joint density for a lot are determined and compared with Table 1 to calculate a single pay factor per lot based on in place density, as described below. First, a pay factor for both mat density and joint density are determined from Table 1. The area associated with the joint is then determined and will be considered to be 3 meters 10 feet wide times the length of completed longitudinal construction joint in the lot. This area will not exceed the total lot size. The length of joint to be considered will be that length where a new lane has been placed against an adjacent lane of SMA pavement, either an adjacent freshly paved lane or one paved at any time previously. The area associated with the joint is expressed as a percentage of the total lot area. A weighted pay factor for the joint is determined based on this percentage (see example below). The pay factor for mat density and the weighted pay factor for joint density are compared and the lowest selected. This selected pay factor is the pay factor based on density for the lot. When the maximum theoretical density on both sides of a longitudinal joint is different, the average of these two densities will be used as the maximum theoretical density needed to calculate the percent joint density. All density results for a lot will be completed and reported within 24 hours after the construction of that lot.
Table 1 Pay Factor Based on In-Place Density

<table>
<thead>
<tr>
<th>Average Mat Density (4 Cores)</th>
<th>Pay Factor, Percent</th>
<th>Average Joint Density (4 Cores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.0 or 96.0</td>
<td>100</td>
<td>above 92.5</td>
</tr>
<tr>
<td>93.9</td>
<td>100</td>
<td>92.4</td>
</tr>
<tr>
<td>93.8 or 96.1</td>
<td>99.9</td>
<td>92.3</td>
</tr>
<tr>
<td>93.7</td>
<td>99.8</td>
<td>92.2</td>
</tr>
<tr>
<td>93.6 or 96.2</td>
<td>99.6</td>
<td>92.1</td>
</tr>
<tr>
<td>93.5</td>
<td>99.4</td>
<td>92.0</td>
</tr>
<tr>
<td>93.4 or 96.3</td>
<td>99.1</td>
<td>91.9</td>
</tr>
<tr>
<td>93.3</td>
<td>98.7</td>
<td>91.8</td>
</tr>
<tr>
<td>93.2 or 96.4</td>
<td>98.3</td>
<td>91.7</td>
</tr>
<tr>
<td>93.1</td>
<td>97.8</td>
<td>91.6</td>
</tr>
<tr>
<td>93.0 or 96.5</td>
<td>97.3</td>
<td>91.5</td>
</tr>
<tr>
<td>92.9</td>
<td>96.3</td>
<td>91.4</td>
</tr>
<tr>
<td>92.8 or 96.6</td>
<td>94.1</td>
<td>91.3</td>
</tr>
<tr>
<td>92.7</td>
<td>92.2</td>
<td>91.2</td>
</tr>
<tr>
<td>92.6 or 96.7</td>
<td>90.3</td>
<td>91.1</td>
</tr>
<tr>
<td>92.5</td>
<td>87.9</td>
<td>91.0</td>
</tr>
<tr>
<td>92.4 or 96.8</td>
<td>85.7</td>
<td>90.9</td>
</tr>
<tr>
<td>92.3</td>
<td>83.3</td>
<td>90.8</td>
</tr>
<tr>
<td>92.2 or 96.9</td>
<td>80.6</td>
<td>90.7</td>
</tr>
<tr>
<td>92.1</td>
<td>78.0</td>
<td>90.6</td>
</tr>
<tr>
<td>92.0 or 97.0</td>
<td>75.0</td>
<td>90.5</td>
</tr>
</tbody>
</table>

below 92.0, above 101.0 0.0 reject below 90.5

1.3.2 Pay Factor Based on In-Place Density

An example of the computation of a pay factor (in inch-pound units only) based on in place density, is as follows: Assume the following test results for field density made on the lot: (1) Average mat density = 93.2 percent (of maximum theoretical density), (2) Average joint density = 91.0
percent (of maximum theoretical density), (3) Total area of lot = 30,000 square feet, (4) Length of completed longitudinal construction joint = 2000 feet.

a. Step 1: Determine pay factor based on mat density and on joint density, using Table 1:

Mat density of 93.2 percent = 98.3 pay factor
Joint density of 91.5 percent = 97.3 pay factor

b. Step 2: Determine ratio of joint area (length of longitudinal joint x 10 ft) to mat area (total paved area in the lot): Multiply the length of completed longitudinal construction joint by the specified 10 ft width and divide by the mat area (total paved area in the lot).

\[
\frac{(2000 \text{ ft.} \times 10 \text{ ft})}{30000 \text{ sq ft}} = 0.6667 \text{ ratio of joint area to mat area (ratio)}
\]

c. Step 3: Weighted pay factor (wpf) for joint is determined as indicated below:

\[
\text{wpf} = \text{joint pay factor} + (100 - \text{joint pay factor}) (1 - \text{ratio}) \text{ wpf} \\
= 97.3 + (100-97.3) (1-0.6667) = 98.2 \text{ percent}
\]

d. Step 4: Compare weighted pay factor for joint density to pay factor for mat density and select the smaller:

Pay factor for mat density: 98.3 percent. Weighted pay factor for joint density: 98.2 percent.
Select the smaller of the two values as pay factor based on density: 98.2 percent.

1.3.3 Payment Adjustment for Smoothness

1.3.3.1 Straightedge Testing

Record location and deviation from straightedge for all measurements. When between 5.0 and 10.0 percent of all measurements made within a lot exceed the tolerance specified in paragraph Smoothness Requirements below, after any reduction of high spots or removal and replacement, the computed pay factor for that lot based on surface smoothness, will be 95 percent. When more than 10.0 percent of all measurements exceed the tolerance, the computed pay factor will be 90 percent. When between 15.0 and 20.0 percent of all measurements exceed the tolerance, the computed pay factor will be 75 percent. When 20.0 percent or more of the measurements exceed the tolerance, the lot shall be removed and replaced at no additional cost to the Government-Owner. Regardless of the above, any small individual area with surface deviation which exceeds the tolerance given above by more than 50 percent, shall be corrected by diamond grinding to meet the specification requirements above or shall be removed and replaced at no additional cost to the Government.

1.3.3.2 Profilograph Testing

Location and data from all profilograph measurements shall be recorded. When the Profile Index of a lot exceeds the tolerance specified in paragraph Smoothness Requirements above by 16 mm/km1.0 inch/mile, but less than 32 mm/km 2.0 inches/mile, after any reduction of high spots or removal and replacement, the computed pay factor for that lot based on surface
smoothness will be 95 percent. When the Profile Index exceeds the tolerance by 32 mm/km 2.0 inches/mile, but less than 47 mm/km 3.0 inches/mile, the computed pay factor will be 90 percent. When the Profile Index exceeds the tolerance by 47 mm/km 3.0 inches/mile, but less than 63 mm/km 4.0 inches/mile, the computed pay factor will be 75 percent. When the Profile Index exceeds the tolerance by 63 mm/km 4.0 inches/mile or more, the lot shall be removed and replaced at no additional cost to the Government. Regardless of the above, any small individual area with surface deviation which exceeds the tolerance given above by more than 79 mm/km 5.0 inches/mile or more, shall be corrected by grinding to meet the specification requirements above or shall be removed and replaced at no additional cost to the Government.

1.3.4 Laboratory Air Voids and Theoretical Maximum Density

Laboratory air voids will be calculated in accordance with ASTM D3203/D3203M by determining the density of each lab compacted specimen using ASTM D2726/D2726M and determining the theoretical maximum density (TMD) of every other sublot sample using ASTM D2041/D2041M. Laboratory air void calculations for each sublot will use the latest theoretical maximum density values obtained, for either that sublot or the previous sublot. The mean absolute deviation of the four-laboratory air void contents (one from each sublot) from the JMF air void content will be evaluated and a pay factor determined from Table 2. All laboratory air void tests will be completed and reported within 24 hours after completion of construction of each lot. The TMD is also used for computation of compaction, as required in paragraph: Mat and Joint Densities above.

<table>
<thead>
<tr>
<th>Mean Absolute Deviation of Lab Air Voids from JMF</th>
<th>Pay Factor, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60 or less</td>
<td>100</td>
</tr>
<tr>
<td>0.61 - 0.80</td>
<td>98</td>
</tr>
<tr>
<td>0.81 - 1.00</td>
<td>95</td>
</tr>
<tr>
<td>1.01 - 1.20</td>
<td>90</td>
</tr>
<tr>
<td>Above 1.20</td>
<td>0 (reject)</td>
</tr>
</tbody>
</table>

1.3.5 Mean Absolute Deviation

An example of the computation of mean absolute deviation for laboratory air voids is as follows: Assume that the laboratory air voids are determined from 4 random samples of a lot (where 3 specimens were compacted from each sample). The average laboratory air voids for each sublot sample are determined to be 3.5, 3.0, 4.0, and 3.7. Assume that the target air voids from the JMF is 4.0. The mean absolute deviation is then:

Mean Absolute Deviation = (3.5 - 4.0 + 3.0 - 4.0 + 4.0 - 4.0 + 3.7 - 4.0)/4 = (0.5 + 1.0 + 0.0 + 0.3)/4 = (1.8)/4 = 0.45

The mean absolute deviation for laboratory air voids is determined to be 0.45. It can be seen from Table 2 that that lot’s pay factor based on laboratory air voids is 100 percent.
1.3.6 Pay Adjustment Based on Grade

**
NOTE: The grade and surface smoothness requirements specified below are for the final wearing surface only. If there is a requirement to test and control the grade and smoothness for the intermediate courses, i.e., when the intermediate courses will be exposed to traffic, slight modifications to this specification will be required.
**

Within 5 working days after completion of a particular lot incorporating the final wearing course, test the final wearing surface for conformance with specified plan grade requirements. Detailed notes of the results of the testing shall be kept and a copy furnished to the Government immediately after each day's testing. The final wearing surface of pavement shall conform to the elevations and cross sections shown and shall vary not more than 9 mm 0.03 foot for runways or 15 mm 0.05 foot for taxiways and aprons from the plan grade established and approved at site of work. Finished surfaces at juncture with other pavements shall coincide with finished surfaces of abutting pavements. Deviation from the plan elevation will not be permitted in areas of pavements where closer conformance with planned elevation is required for the proper functioning of drainage and other appurtenant structures involved. The grade will be determined by running lines of levels at intervals of 7.6 meters 25 feet, or less, longitudinally and transversely, to determine the elevation of the completed pavement surface. When more than 5 percent of all measurements made within a lot are outside the 9 or 15 mm 0.03 or 0.05 foot tolerance, the pay factor based on grade for that lot will be 95 percent. In areas where the grade exceeds the tolerance by more than 50 percent, remove the surface lift full depth; then replace the lift with SMA to meet specification requirements, at no additional cost to the Government. Diamond grinding may be used to remove high spots to meet grade requirements. Skin patching for correcting low areas or planing or milling for correcting high areas will not be permitted.

1.4 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 156

AASHTO M 320

AASHTO M 325

AASHTO R 46

AASHTO T 312
2014 Standard Method of Test for Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor

ASPHALT INSTITUTE (AI)

AI MS-2
(1997 6th Ed) Mix Design Methods

ASTM INTERNATIONAL (ASTM)

ASTM C117

ASTM C1252
(2006) Standard Test Methods for Uncompacted Void Content of Fine Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading)

ASTM C127
(2012) Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate

ASTM C128

ASTM C131/C131M

ASTM C136

ASTM C612 (2014) Mineral Fiber Block and Board Thermal Insulation

ASTM D2041/D2041M (2011) Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures

ASTM D2172/D2172M (2011) Quantitative Extraction of Bitumen from Bituminous Paving Mixtures

ASTM D2726/D2726M (2014) Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures

ASTM D2950/D2950M (2014) Density of Bituminous Concrete in Place by Nuclear Methods

ASTM D3203/D3203M (2011) Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures

ASTM D4125/D4125M (2010) Asphalt Content of Bituminous Mixtures by the Nuclear Method

ASTM D4318 (2010; E 2014) Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D4791 (2010) Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
1.5 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for
Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [Information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
 Mix Design; G[, [_____]]
 Contractor Quality Control; G[, [_____]]

SD-04 Samples
 Asphalt Cement Binder
 Aggregates

SD-06 Test Reports
 Aggregates
 QC Monitoring

SD-07 Certificates
 Asphalt Cement Binder
 Fiber Stabilizer
 Testing Laboratory

1.6 QUALITY ASSURANCE

NOTE: It is highly recommended to keep the Government's QA testing separate and distinct from the Contractor's QC testing. However, it is recognized that in house testing capability to provide the QA testing required by this section will not always be available; in this case, it is recommended that an independent material testing company be hired to provide the QA testing for the project. The cost of this testing to assure good long-term performance is very small relative to the overall cost of the construction, and especially
compared to the cost of a pavement failure.

Although not recommended, this guide specification may be modified to require the Contractor to hire an independent material-testing laboratory to perform the QA testing listed in this section. The results would need to be forwarded daily to the Contracting Officer as the basis for acceptance and pay. This should only be done if there is no way of hiring an independent testing laboratory to perform the QA testing.

The QA testing program includes material tests to determine laboratory air voids and in place density, which are needed to determine percent payment. The project engineer may choose to have additional tests conducted by the QA test agency to monitor aggregate gradation, asphalt content. These tests would serve as a check to the Contractor's QC testing. This additional testing, if conducted, is not included as part of this specification since the parameters are not used as a basis of pay.

The Government's quality assurance (QA) program for this project will be separate and distinct from the Contractor's quality control (QC) program specified in PART 3. Testing for acceptability of work will be performed by the Government or by an independent laboratory hired by the Contracting Officer, except for smoothness and grade testing which shall be performed by the Contractor. Acceptance of the plant produced mix and in place requirements will be on a lot to lot basis. A standard lot for all requirements will be equal to 2000 metric 2000 short tons. Where appropriate, adjustment in payment for individual lots of SMA will be made based on in place density, laboratory air voids, grade and smoothness in accordance with the following paragraphs. Grade and surface smoothness determinations will be made on the lot as a whole. Exceptions or adjustments to this will be made in situations where the mix within one lot is placed as part of both the intermediate and surface courses, thus grade and smoothness measurements for the entire lot cannot be made. In order to evaluate laboratory air voids and in place (field) density, each lot will be divided into four equal sublots.

1.6.1 Sublot Sampling

One random mixture sample for determining laboratory air voids, theoretical maximum density, and for any additional testing the Contracting Officer desires, will be taken from a loaded truck delivering mixture to each sublot, or other appropriate location for each sublot. All samples will be selected randomly, using commonly recognized methods of assuring randomness conforming to ASTM D3665 and employing tables of random numbers or computer programs. Laboratory air voids will be determined from three laboratory compacted specimens of each sublot sample. The specimens will be compacted within 2 hours of the time the mixture was loaded into trucks at the asphalt plant. Samples will not be reheated prior to compaction and insulated containers will be used as necessary to maintain the temperature.

1.6.2 Additional Sampling and Testing

The Contracting Officer reserves the right to direct additional samples and
tests for any area which appears to deviate from the specification requirements. The cost of any additional testing will be paid for by the Government. Testing in these areas will be in addition to the lot testing, and the requirements for these areas will be the same as those for a lot.

1.6.3 In-Place Density

For determining in place density, one random core (100 to 150 mm 4 to 6 inches in diameter) will be taken by the Government from the mat (interior of the lane) of each sublot, and one random core will be taken from the joint (immediately over joint) of each sublot in accordance with ASTM D979/D979M. Each random core will be full thickness of the layer being placed. When the random core is less than 25 mm 1 inch thick, it will not be included in the analysis. In this case, another random core will be taken. After air-drying in accordance with ASTM D2726/D2726M for laboratory prepared, thoroughly dry specimens, cores obtained from the mat and from the joints will be used for in-place density determination.

1.6.4 Surface Smoothness

**
NOTE: Edit these paragraphs as appropriate to the project. It is desired to restrict surface smoothness testing and evaluation to either straightedge method or profilograph method. Retain the one and delete the other; otherwise, retain both as a Contractor's option. Generally, designer should require use of the profilograph method. If the profilograph method is allowed, and there are areas with dimensions less than 60 meters (200 feet) in any direction, part of the straightedge method must be retained for these short runs.
**

Use [one] [both] of the following methods to test and evaluate surface smoothness of the pavement. Perform all testing in the presence of the Contracting Officer. Keep detailed notes of the results of the testing with a copy furnished to the Government immediately after each day's testing. Use the profilograph method for all longitudinal and transverse testing, except where the runs would be less than 60 meters 200 feet in length and the ends where the straightedge shall be used. Where drawings show required deviations from a plane surface (crowns, drainage inlets, etc.), the surface shall be finished to meet the approval of the Contracting Officer.

1.6.5 Smoothness Requirements

1.6.5.1 Straightedge Testing

The finished surfaces of the pavements shall have no abrupt change of 3 mm 1/8 inch or more, and all pavements shall be within the tolerances specified in Table 3 when checked with an approved 4-meter 12-foot straightedge.
Table 3 Straightedge Surface Smoothness—Pavements

<table>
<thead>
<tr>
<th>Pavement Category</th>
<th>Direction of Testing</th>
<th>Tolerance, mm inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runways and taxiways</td>
<td>Longitudinal</td>
<td>31/8</td>
</tr>
<tr>
<td></td>
<td>Transverse</td>
<td>61/4</td>
</tr>
<tr>
<td>Calibration hardstands and compass swinging bases</td>
<td>Longitudinal</td>
<td>31/8</td>
</tr>
<tr>
<td></td>
<td>Transverse</td>
<td>31/8</td>
</tr>
<tr>
<td>All other airfield and helicopter paved areas</td>
<td>Longitudinal</td>
<td>61/4</td>
</tr>
<tr>
<td></td>
<td>Transverse</td>
<td>61/4</td>
</tr>
</tbody>
</table>

1.6.5.2 Profilograph Testing

The finished surfaces of the pavements shall have no abrupt change of 3 mm 1/8 inch or more, and all pavement shall have a Profile Index not greater than specified in Table 4 when testing with an approved California-type profilograph. If the extent of the pavement in either direction is less than 60 meters 200 feet, that direction shall be tested by the straightedge method and shall meet requirements specified above.

Table 4 Profilograph Surface Smoothness Pavements

<table>
<thead>
<tr>
<th>Pavement Category</th>
<th>Direction of Testing</th>
<th>Maximum Specified Profile Index (mm/km) (inch/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runways</td>
<td>Longitudinal</td>
<td>1107</td>
</tr>
<tr>
<td></td>
<td>Transverse</td>
<td>1409</td>
</tr>
<tr>
<td>Taxiways</td>
<td>Longitudinal</td>
<td>1409</td>
</tr>
<tr>
<td></td>
<td>Transverse</td>
<td>Use Straightedge</td>
</tr>
<tr>
<td>Calibration hardstands and compass swinging bases</td>
<td>Use Straightedge</td>
<td></td>
</tr>
<tr>
<td>All other airfield and helicopter paved areas</td>
<td>Longitudinal</td>
<td>1409</td>
</tr>
<tr>
<td></td>
<td>Transverse</td>
<td>1409</td>
</tr>
</tbody>
</table>

1.6.6 Testing Method

After the final rolling, but not later than 24 hours after placement, the surface of the pavement in each entire lot shall be tested by the Contractor in such a manner as to reveal all surface irregularities exceeding the tolerances specified above. Separate testing of individual sub lots is not required. If any pavement areas are ground, these areas
shall be retested immediately after grinding. The entire area of the pavement shall be tested in both a longitudinal and a transverse direction on parallel lines. The transverse lines shall be 4.5 meters 15 feet or less apart, as directed. The longitudinal lines shall be at the centerline of each paving lane for lines less than 6.1 meters 20 feet and at the third points for lanes 6.1 meters 20 feet or greater. Other areas having obvious deviations shall also be tested. Longitudinal testing lines shall be continuous across all joints.

1.6.6.1 Straightedge Testing

Hold the straightedge in contact with the surface and move ahead one-half the length of the straightedge for each successive measurement. Determine the amount of surface irregularity by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between these two high points.

1.6.6.2 Profilograph Testing

Perform profilograph testing using approved equipment and procedures described in CTM 526. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate "must-grind" bumps and the Profile Index for the pavement. The "blanking band" shall be 5 mm 0.2 inches wide and the "bump template" shall span 25 mm 1 inch with an offset of 10 mm 0.4 inch. The profilograph shall be operated by an approved, factory-trained operator on the alignments specified above. Furnish a copy of the reduced tapes to the Government at the end of each day's testing.

1.6.6.3 Bumps ("Must Grind" Areas)

Reduce any bumps ("must grind" areas) shown on the profilograph trace which exceed 10 mm 0.4 inch in height by diamond grinding until they do not exceed 7.5 mm 0.3 inch when retested. Taper such grinding in all directions to provide smooth transitions to areas not requiring grinding. The following will not be permitted: (1) skin patching for correcting low areas, (2) planing or milling for correcting high areas. At the Contractor's option, pavement areas, including ground areas, may be rechecked with the profilograph in order to record a lower Profile Index.

1.7 ENVIRONMENTAL REQUIREMENTS

**
NOTE: The temperature requirements are included to avoid problems with the Contractor achieving density because the mix cools too fast. Waivers to these requirements, for isolated incidences during production, are applicable if the density requirements are still met.
**

Do not place the SMA upon a wet surface or when the surface temperature of the underlying course is less than 7 degrees C 45 degrees F. The temperature requirements may be waived by the Contracting Officer, if requested; however, all other requirements, including compaction, shall be met.
PART 2 PRODUCTS

2.1 SYSTEM EQUIPMENT

Perform the work consisting of pavement courses composed of mineral aggregate, polymer-modified asphalt material, and a stabilizer, mixed in a central mixing plant. The hot mixture is placed with an asphalt paver on a prepared course. Stone matrix asphalt (SMA) mixtures designed and constructed in accordance with these specifications shall conform to the lines, grades, thicknesses, and typical cross sections shown on the drawings. Provide plants used for the preparation of SMA conforming to the requirements of AASHTO M 156 with the changes listed below:

2.1.1 Truck Scales

Weigh the asphalt mixture on approved scales furnished by the Contractor, or on certified public scales at the Contractor's expense. Scales shall be inspected and sealed at least annually by an approved calibration laboratory.

2.1.2 Testing Facilities

Provide laboratory facilities at the plant for the use of the Government Engineer's acceptance testing and the Contractor's quality control testing.

2.1.3 Inspection of Plant

The Contracting Officer/Engineer shall have access at all times, to all areas of the plant for checking adequacy of equipment; inspecting operation of the plant; verifying weights, proportions, and material properties; checking the temperatures maintained in the preparation of the mixtures and for taking samples. Provide assistance, as requested, for the Government Engineer to procure any desired samples.

2.1.4 Storage Bins

The SMA mixture may be stored in non-insulated storage bins for a period of time not to exceed 2 hours. The SMA mixture may be stored in insulated storage bins for a period of time not exceeding 4 hours. The mix drawn from bins shall meet the same requirements as mix loaded directly into trucks.

2.1.5 Hauling Equipment

Trucks used for hauling SMA shall have tight, clean, and smooth metal beds. To prevent the mixture from adhering to them, the truck beds shall be lightly coated with a minimum amount of paraffin oil, lime solution, or other approved material. Petroleum based products shall not be used as a release agent. Each truck shall have a suitable cover to protect the mixture from adverse weather. When necessary to ensure that the mixture will be delivered to the site at the specified temperature, truck beds shall be insulated or heated, and covers (tarps) shall be securely fastened.

2.1.6 Asphalt Pavers

Provide asphalt pavers which are self-propelled, with an activated screed, heated as necessary, and capable of spreading and finishing SMA which will meet the specified thickness, smoothness, and grade. The paver shall have sufficient power to propel itself and the hauling equipment without
adversely affecting the finished surface.

2.1.6.1 Receiving Hopper

The paver shall have a receiving hopper of sufficient capacity to permit a uniform spreading operation. The hopper shall be equipped with a distribution system to place the mixture uniformly in front of the screed without segregation. The screed shall effectively produce a finished surface of the required evenness and texture without tearing, shoving, or gouging the mixture.

2.1.6.2 Automatic [Grade] [Screed] Controls

**
NOTE: Select automatic grade control when the design requires elevations for the SMA surface. Most specifications require an overlay thickness and do not specify actual grades; therefore, select or delete the information below within the brackets.
**

[The automatic grade control device shall consist of a control system capable of automatically maintaining the paver screed at the specified elevation. The control system shall be automatically actuated from either a reference line and/or through a system of mechanical sensors or sensor-directed mechanisms or devices which will maintain the paver screed at a predetermined transverse slope and at the proper elevation to obtain the required surface. The transverse slope controller shall be capable of maintaining the screed at the desired slope within plus or minus 0.1 percent. A transverse slope controller shall not be used to control grade. The controls shall be capable of working in conjunction with any of the following attachments:

a. Ski-type device of not less than 9.14 meters 30 feet in length.

b. Taut stringline set to grade.

c. Short ski or shoe for joint matching.

d. Laser control.]

[The automatic screed control device shall consist of a control system capable of automatically controlling the elevation of the paver screed according to the inputs received. The control system shall be automatically actuated from a system of mechanical sensors or sensor-directed mechanisms or devices that will maintain the paver screed at the proper elevation to obtain the required surface thickness and smoothness. The controls shall be capable of working in conjunction with any of the following attachments:

a. Ski-type device of not less than 9.14 meters 30 feet in length.

b. Short ski or shoe for joint matching.]

2.1.7 Rollers

Rollers shall be in good condition and shall be operated at slow speeds to avoid displacement of the SMA mixture. The number, type, and weight of rollers shall be sufficient to compact the mixture to the required
density. Rollers that cause crushing of the aggregate shall not be used. Rubber-tired rollers shall not be used.

2.2 AGGREGATES

NOTE: One objective in the design of SMA is to produce a mixture with stone-on-stone aggregate contact. This requires hard, durable, highly fractured aggregates. Include only sources with a satisfactory performance record under similar conditions of service and exposure.

Submit sufficient materials to produce 90 kg 200 lbs of blended mixture for mix design verification. Aggregates shall consist of crushed stone, [crushed gravel,] [crushed steel slag,] screenings, and mineral filler, as required. The portion of material retained on the 4.75 mm No. 4 sieve is coarse aggregate. The portion of material passing the 4.75 mm No. 4 sieve and retained on the 0.075 mm No. 200 sieve is fine aggregate. The portion passing the 0.075 mm No. 200 sieve is defined as mineral filler. All aggregate test results and samples shall be submitted to the Contracting Officer at least 14 days prior to start of construction. Submit aggregate and QC test results.

2.2.1 Coarse Aggregate

NOTE: The requirement for magnesium sulfate (requirement b., below) may be deleted in climates where freeze-thaw does not occur. However, in these areas where freeze-thaw does not occur, requirement b., should remain if experience has shown that this test separates good performing aggregates from bad performing aggregates.

Coarse aggregate shall consist of sound, tough, durable particles, free from films of material that would prevent thorough coating and bonding with the asphalt material and free from organic matter and other deleterious substances. [Steel slag may be used.]The coarse aggregate particles shall meet the following requirements:

a. The percentage of loss shall not be greater than 30 percent after 500 revolutions when tested in accordance with ASTM C131/C131M.

b. The percentage of loss shall not be greater than 18 percent after five cycles when tested in accordance with ASTM C88 using magnesium sulfate.

c. At least 100 percent by weight of coarse aggregate shall have at least two or more fractured faces when tested in accordance with COE CRD-C 171. Fractured faces shall be produced by crushing.

d. The particle shape shall be essentially cubical and the aggregate shall not contain more than 20 percent, by weight, of flat and elongated particles (3:1 ratio of maximum to minimum) and no more than 5 percent, by weight, of flat and elongated particles (5:1 ratio of maximum to minimum) when tested in accordance with ASTM D4791.
e. The maximum absorption shall not be greater than 2 percent when tested in accordance with ASTM C128.

2.2.2 Fine Aggregate

**
NOTE: The lower limit for uncompacted void content (requirement c., below) should be set at 45 for fine aggregate angularity unless local experiences indicate that a lower value can be used. There are some aggregates which have a good performance record and have an uncompacted void content less than 45. In no case should the limit be set less than 43.
**

Fine aggregate shall consist of clean, sound, tough, durable particles. The aggregate particles shall be free from coatings of clay, silt, or any objectionable material and shall contain no clay balls. The fine aggregate particles shall meet the following requirements:

a. The fine aggregate portion of the blended aggregate shall be 100 percent crushed manufactured fines.

b. The individual fine aggregate sources shall have a sand equivalent value greater than 45 when tested in accordance with ASTM D2419.

c. The fine aggregate portion of the blended aggregate shall have an uncompacted void content greater than 45.0 percent when tested in accordance with ASTM C1252 Method A.

d. Aggregate shall be non-plastic, with a Liquid Limit of 25 percent maximum when tested in accordance with ASTM D4318.

e. The maximum absorption shall not be greater than 2 percent when tested in accordance with ASTM C128.

2.2.3 Mineral Filler

Mineral filler shall be non-plastic material meeting the requirements of ASTM D242/D242M.

2.2.4 Aggregate Gradation

**
NOTE: Generally, the layer thickness should be at least 50 mm (2 inches).
**

The combined aggregate gradation shall conform to gradations specified in Table 5, when tested in accordance with ASTM C136 and ASTM C117, and shall not vary from the low limit on one sieve to the high limit on the adjacent sieve or vice versa, but grade uniformly from coarse to fine.
Table 5 Aggregate Gradations

<table>
<thead>
<tr>
<th>Sieve Size, mm</th>
<th>Percent Passing by Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0 1 inch</td>
<td>---</td>
</tr>
<tr>
<td>19.03/4 inch</td>
<td>100</td>
</tr>
<tr>
<td>12.51/2 inch</td>
<td>90-100</td>
</tr>
<tr>
<td>9.53/8 inch</td>
<td>50-85</td>
</tr>
<tr>
<td>4.75 No. 4</td>
<td>20-40</td>
</tr>
<tr>
<td>2.36 No. 8</td>
<td>16-28</td>
</tr>
<tr>
<td>1.18 No. 16</td>
<td>---</td>
</tr>
<tr>
<td>0.60 No. 30</td>
<td>---</td>
</tr>
<tr>
<td>0.30 No. 50</td>
<td>---</td>
</tr>
<tr>
<td>0.15 No. 100</td>
<td>---</td>
</tr>
<tr>
<td>0.075 No. 200</td>
<td>8-11</td>
</tr>
</tbody>
</table>

2.2.5 Fiber Stabilizer

NOTE: Fibers, either cellulose or mineral, must be used in the SMA mixture.

The stabilizer can be cellulose or mineral fibers. Submit copies of certified test data. Requirements and test procedures are outlined in Tables 6 and 7.

2.3 Asphalt Cement Binder

NOTE: Performance Graded (PG) asphalt binders should be specified wherever available. Select the same grade PG binder used by the local highway agency for that area (e.g., the grade typically specified in that specific location for dense graded mixes on highways with design ESALs less than 10 million). Bump (increase) the high temperature grade two grades higher and this should be the grade of asphalt cement used for the project. The exception would be that grades with a low temperature higher than PG XX 22 should not be used (e.g. PG XX 16 or PG XX 10), unless the Engineer has had successful experience with them. The Engineer may lower the low temperature grade to comply with the recommendations of the FHWA's software program "LTPPBind," if it is believed to be appropriate.
Submit a 20 L 5 gallons sample for mix design verification. Asphalt cement binder shall conform to AASHTO M 320, Performance Grade [______]. [As An alternate, ASTM D3381/D3381M Table 2, Viscosity Grade [______] or ASTM D946/D946M Penetration Grade [______] may be used]. Test data indicating grade certification shall be provided by the supplier at the time of delivery of each load to the mix plant. Copies of these certifications shall be submitted to the Contracting Officer. The supplier is defined as the last source of any modification to the binder. The Contracting Officer/Engineer may sample and test the binder at the mix plant at any time before or during mix production. Samples for this verification testing shall be obtained by the Contractor in accordance with ASTM D140/D140M and in the presence of the Contracting Officer. These samples shall be furnished to the Contracting Officer for the verification testing, which shall be at no cost to the Contractor.

Table 6 Cellulose Fibers Quality Requirements

<table>
<thead>
<tr>
<th>Properties</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber length</td>
<td>6 mm 0.25 inch (max)</td>
</tr>
<tr>
<td>Passing 0.15 mm No. 100 sieve</td>
<td>70 percent (± 10%)</td>
</tr>
<tr>
<td>Sieve Analysis Method B - Mesh Screen (2) Analysis</td>
<td></td>
</tr>
<tr>
<td>Fiber length</td>
<td>6 mm 0.25 inch (max)</td>
</tr>
<tr>
<td>Passing 0.850 mm No. 20 sieve</td>
<td>85 percent (± 10%)</td>
</tr>
<tr>
<td>Passing 0.425 mm No. 40 sieve</td>
<td>65 percent (± 10%)</td>
</tr>
<tr>
<td>Passing 0.106 mm No. 140 sieve</td>
<td>30 percent (± 10%)</td>
</tr>
<tr>
<td>Ash Content (3)</td>
<td>18 percent (± 5%) non-volatiles</td>
</tr>
<tr>
<td>pH (4)</td>
<td>7.5 (± 1.0)</td>
</tr>
<tr>
<td>Oil Absorption (5)</td>
<td>5.0 (± 1.0)(times fiber weight)</td>
</tr>
<tr>
<td>Moisture Content (6)</td>
<td><5 percent (by weight)</td>
</tr>
</tbody>
</table>

(1) This test is performed using an Alpine Air Jet Sieve (Type 200 LS). A representative 5-gram sample of fiber is sieved for 14 minutes at a controlled vacuum of 75 kPa 11 psi. The portion remaining on the screen is weighed.
Table 6 Cellulose Fibers Quality Requirements

<table>
<thead>
<tr>
<th>Properties</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) This test is performed using standard 850, 425, 250, 180, 150, 106 micron No. 20, 40, 60, 80, 100, 140 sieves, nylon brushes, and a shaker. A representative 10-gram sample of fiber is sieved using a shaker and two nylon brushes on each screen. The amount retained on each sieve is weighed and the percentage passing calculated. The repeatability of this method is suspect and needs to be verified.</td>
<td></td>
</tr>
<tr>
<td>(3) A representative 2-3 gram sample of fiber is placed in a tared crucible and heated between 595 and 650 degrees C (1100 and 1200 degrees F) for not less than 2 hours. The crucible and ash are cooled in a desiccator and reweighed.</td>
<td></td>
</tr>
<tr>
<td>(4) Five grams of fiber is added to 100 mL of distilled water, stirred, and let sit for 30 minutes. The pH is determined with a probe calibrated with pH 7.0 buffer.</td>
<td></td>
</tr>
<tr>
<td>(5) Five grams of fiber is accurately weighed and suspended in an excess of mineral spirits for not less than 5 minutes to ensure total saturation. It is then placed in a screen mesh strainer (approximately 0.5 square millimeter hole size) and shaken on a wrist-action shaker for 10 minutes (approximately 31.75 mm 1 1/4 inch motion at 240 shakes/minute). The shaken mass is then transferred without touching, to a tared container and weighed. Results are reported as the amount (number of times its own weight) the fibers are able to absorb.</td>
<td></td>
</tr>
<tr>
<td>(6) Ten grams of fiber is weighed and placed in a 121 degree C (250 degrees F) forced-air oven for 2 hours. The sample is then reweighed immediately upon removal from the oven.</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Mineral Fibers Quality Requirements

<table>
<thead>
<tr>
<th>Properties</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Analysis</td>
<td></td>
</tr>
<tr>
<td>Fiber length(1)</td>
<td>6 mm 0.25 inch max mean test value</td>
</tr>
<tr>
<td>Thickness(2)</td>
<td>0.005 mm 0.0002 inch max mean test value</td>
</tr>
<tr>
<td>Shot content(3)</td>
<td></td>
</tr>
<tr>
<td>0.250 mm No. 60 sieve</td>
<td>95 percent passing (min)</td>
</tr>
<tr>
<td>0.063 mm No. 230 sieve</td>
<td>65 percent passing (min)</td>
</tr>
<tr>
<td>(1) The fiber length is determined according to the Baur McNett fractionation.</td>
<td></td>
</tr>
<tr>
<td>(2) The fiber diameter is determined by measuring at least 200 fibers in a phase contract microscope.</td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Mineral Fibers Quality Requirements

<table>
<thead>
<tr>
<th>Properties</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) Shot content is a measure of non-fibrous material. The shot content is determined on vibrating sieves. Two sieves, 0.25 mm No. 60 and 0.063 mm No. 230, are typically utilized; for additional information see ASTM C612.</td>
<td></td>
</tr>
</tbody>
</table>

2.4 MIX DESIGN

**
**

Develop and submit the proposed mix design. The asphalt mix shall be composed of a mixture of coarse and fine aggregate, mineral filler, a stabilizer, and asphalt material. The aggregate fractions shall be sized, handled in separate size groups, and combined in such proportions that the resulting mixture meets the grading requirements of the job mix formula (JMF). No SMA for payment shall be produced until a JMF has been approved. The SMA shall be designed using [AASHTO M 325, AASHTO R 46, and AASHTO T 312] [hand-held Marshall Hammer procedures contained in AI MS-2] and meeting the criteria shown in Table 8. The aggregate quality requirements given in this specification shall be used instead of those given in AASHTO M 325. If the Tensile Strength Ratio (TSR) of the composite mixture, as determined by ASTM D4867/D4867M, is less than 75, the aggregate stripping tendencies shall be countered by the use of hydrated lime or by treating the bitumen with an approved antistripping agent as furnished by the Contractor. The hydrated lime will be considered as mineral filler and will be considered in the gradation requirements. The amount of hydrated lime or antistripping agent added to the bitumen will be determined during development of the JMF and will be sufficient to produce a TSR greater than 75 percent. Use of additional antistripping agent may be directed during the progress of work, if necessary. Provide an anti-strip agent, if required, at no additional cost. Sufficient materials to produce 90 kg 200 pounds of blended mixture shall be provided to the Contracting Officer for verification of mix design at least 14 days prior to construction of test section.

2.4.1 JMF Requirements

**
NOTE: In Table 9, use a 50 blow (compactive effort) Marshall Mix for all SMA pavements. If the JMF is designed using the hand-held Marshall Hammer according to AI MS-2, delete element t, as given below.
**

Submit the job mix formula in writing, for approval, at least 14 days prior to the start of the test section including as a minimum:

a. Percent passing each sieve size.
b. Percent of asphalt cement.
c. Percent of each aggregate and mineral filler to be used.
d. Asphalt viscosity grade, penetration grade, or performance grade.
e. Type and amount of stabilizer.
f. Laboratory mixing temperature.
g. Lab compaction temperature.
h. Temperature-viscosity relationship of the asphalt cement.
i. Plot of the combined gradation on the 0.45 power gradation chart, stating the nominal maximum size.
j. Specific gravity and absorption of each aggregate.
k. Percent particles with one and two or more fractured faces (in coarse aggregate).
l. Fine aggregate angularity.
m. Percent flat or elongated particles (in coarse aggregate).
n. Tensile Strength Ratio (TSR).
o. Antistrip agent (if required) and amount.
p. List of all modifiers and amount.
q. Percent draindown of mixture.
r. Dry-rodded-in-the coarse aggregate (VCADRC).
s. Voids-in-the coarse aggregate mixture (VCAMix).
t. Number of revolutions of SGC compactor.

<table>
<thead>
<tr>
<th>Table 8 SMA Mix Design Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Property</td>
</tr>
<tr>
<td>Air voids, percent</td>
</tr>
<tr>
<td>Percent Voids in mineral aggregate (minimum)</td>
</tr>
<tr>
<td>Tensile Strength Ratio (TSR), minimum percent</td>
</tr>
<tr>
<td>Draindown, percent (maximum)</td>
</tr>
</tbody>
</table>

(1) Calculate VMA in accordance with AI MS-2, based on ASTM D2726/D2726M bulk specific gravity for the aggregate.

(2) Calculate Draindown in accordance with ASTM D6390 determination of draindown characteristics in uncompacted asphalt mixtures.

2.4.2 Adjustments to JMF

The JMF for each mixture shall be in effect until a new formula is approved in writing by the Contracting Officer. Should a change in sources of any materials be made, a new mix design shall be performed and a new JMF approved before the new material is used. The Contractor will be allowed to adjust the JMF within the limits specified below in Table 5 to optimize mix volumetric properties. If adjustments are needed that exceed these limits, a new mix design shall be developed. Tolerances given above may permit the aggregate grading to be outside the limits shown in Table 1; this is acceptable.
Table 9 Job Mix Tolerances

<table>
<thead>
<tr>
<th>Material</th>
<th>Tolerance, Plus or Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate passing 4.75 mm No. 4 or larger sieves</td>
<td>3 percent</td>
</tr>
<tr>
<td>Aggregate passing 2.36 mm No. 8 or smaller sieves</td>
<td>2 percent</td>
</tr>
<tr>
<td>Asphalt cement</td>
<td>0.25 percent</td>
</tr>
<tr>
<td>Temperature of mixing</td>
<td>14 degrees C 25 degrees F</td>
</tr>
</tbody>
</table>

PART 3 EXECUTION

3.1 CONTRACTOR QUALITY CONTROL

**
NOTE: The Contractor may be able to meet the specified quality control requirements with in house capability or may have to hire a material testing firm to provide the required quality control testing.
**

3.1.1 General Requirements

Develop and submit an approved Quality Control Plan. SMA for payment shall not be produced until the quality control plan has been approved. Address in the plan all elements which affect the quality of the pavement including, but not limited to:

a. Mix Design and unique JMF identification code.
b. Aggregate Grading.
c. Quality of Materials.
d. Stockpile Management and procedures to prevent contamination.
e. Proportioning.
f. Mixing and Transportation.
g. Mixture Volumetric.
h. Moisture Content of Mixtures.
i. Placing and Finishing.
j. Joints.
k. Compaction.
l. Surface Smoothness.
m. Truck Bed Release Agent

3.1.2 Testing Laboratory

Provide a fully equipped asphalt laboratory, located at the plant or job site, equipped with heating and air conditioning units to maintain a temperature of 24 degrees C ± 2.3 degrees C 75 degrees F ± 5 degrees F. Laboratory facilities shall be kept clean and all equipment shall be maintained in proper working condition. The Contracting Officer shall be permitted unrestricted access to inspect the Contractor's laboratory facility, to witness quality control activities, and to perform any check testing desired. The Contracting Officer will advise the Contractor in writing of any noted deficiencies concerning the laboratory facility, equipment, supplies, or testing personnel and procedures. When the deficiencies are serious enough to adversely affect test results, the
incorporation of the materials into the work shall be suspended immediately and will not be permitted to resume until the deficiencies are corrected.

3.1.3 Quality Control Testing

Perform all quality control tests applicable to these specifications as set forth in the Quality Control Program. The testing program shall include, but shall not be limited to, tests for the control of asphalt content, aggregate gradation, temperatures, aggregate moisture, moisture in the asphalt mixture, laboratory air voids, in-place density, grade and smoothness. Develop a Quality Control Testing Plan as part of the Quality Control Program.

3.1.3.1 Asphalt Content

A minimum of two tests to determine asphalt content will be performed per lot (a lot is defined in paragraph QUALITY ASSURANCE) by one of the following methods: extraction method in accordance with ASTM D2172/D2172M, Method A or B, the ignition method in accordance with the ASTM D6307, or the nuclear method in accordance with ASTM D4125/D4125M, provided that each method is calibrated for the specific mix being used. For the extraction method, the weight of ash, as described in ASTM D2172/D2172M, shall be determined as part of the first extraction test performed at the beginning of plant production; and as part of every tenth extraction test performed thereafter, for the duration of plant production. The last weight of ash value obtained shall be used in the calculation of the asphalt content for the mixture.

3.1.3.2 Gradation and Specific Gravity

Aggregate gradations shall be determined a minimum of twice per lot from mechanical analysis of recovered aggregate in accordance with ASTM D5444. When asphalt content is determined by the nuclear method, aggregate gradation shall be determined from hot bin samples on batch plants, or from the cold feed on drum mix plants. For batch plants, aggregates shall be tested in accordance with ASTM C136 using actual batch weights to determine the combined aggregate gradation of the mixture. The specific gravity of each aggregate size grouping shall be determined for each 18,000 metric tons 20,000 tons in accordance with ASTM C127 and ASTM C128. All samples will be taken in accordance with ASTM D75/D75M.

3.1.3.3 Temperatures

Check temperatures at least four times per lot, at necessary locations, to determine the temperature at the dryer, the asphalt cement in the storage tank, the asphalt mixture at the plant, and the asphalt mixture at the job site.

3.1.3.4 Moisture Contents

Determine the moisture content of aggregate used for production a minimum of once per lot in accordance with ASTM C566.

3.1.3.5 Laboratory Air Voids

Take mixture samples at least four times per lot and compact them into specimens, using [50 blows per side with the hand-held Marshall hammer as described in AI MS-2] [the Superpave Gyratory Compactor as described in AASHTO T 312]. After compaction, determine the laboratory air voids of
each specimen.

3.1.3.6 In-Place Density

Conduct any necessary testing to ensure the specified density is achieved. A nuclear gauge may be used to monitor pavement density in accordance with ASTM D2950/D2950M.

3.1.3.7 Grade and Smoothness

Conduct the necessary checks to ensure the grade and smoothness requirements are met in accordance with paragraphs PERCENT PAYMENT and QUALITY ASSURANCE.

3.1.3.8 Additional Testing

Any additional testing, which the Contractor deems necessary to control the process, may be performed at the Contractor's option.

3.1.3.9 QC Monitoring

Submit all QC test results to the Contracting Officer on a daily basis as the tests are performed. The Contracting Officer reserves the right to monitor any of the Contractor's quality control testing and to perform duplicate testing as a check to the Contractor's quality control testing.

3.1.4 Sampling

When directed by the Contracting Officer, sample and test any material which appears inconsistent with similar material being produced, unless such material is voluntarily removed and replaced or deficiencies corrected by the Contractor. Perform all sampling in accordance with standard procedures specified.

3.1.5 Control Charts

**

NOTE: If the JMF was designed according to AASHTO M 325, delete the requirements for plotting stability and flow.

**

For process control, establish and maintain linear control charts on both individual samples and the running average of last four samples for the parameters listed in Table 10, as a minimum. These control charts shall be posted as directed by the Contracting Officer and shall be kept current at all times. The control charts shall identify the project number, the test parameter being plotted, the individual sample numbers, the Action and Suspension Limits listed in Table 10 applicable to the test parameter being plotted, and the Contractor's test results. Target values from the JMF shall also be shown on the control charts as indicators of central tendency for the cumulative percent passing, asphalt content, and laboratory air voids parameters. When the test results exceed either applicable Action Limit, take immediate steps to bring the process back in control. When the test results exceed either applicable Suspension Limit, halt production until the problem is solved. Use the control charts as part of the process control system for identifying trends so that potential problems can be corrected before they occur. Decisions concerning mix modifications shall be made based on analysis of the results provided in the control charts.
The Quality Control Plan shall indicate the appropriate action, which shall be taken to bring the process into control when certain parameters exceed their Action Limits.

<table>
<thead>
<tr>
<th>Parameter to be Plotted</th>
<th>Individual Samples</th>
<th>Running Average of Last 4 Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Action Limit</td>
<td>Suspension Limit</td>
</tr>
<tr>
<td>4.75 mm No. 4 sieve, Cumulative Percent Passing, deviation from JMF target; plus or minus values</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Action Limit</td>
<td>Suspension Limit</td>
</tr>
<tr>
<td>0.60 mm No. 30 sieve, Cumulative Percent Passing, deviation from JMF target; plus or minus values</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Asphalt content, percent deviation from JMF target; plus or minus values</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Laboratory Air Voids, percent deviation from JMF target value</td>
<td>No specific action and suspension limits set since this is used to determine percent payment parameter</td>
<td></td>
</tr>
<tr>
<td>In-place Mat Density, percent of maximum theoretical density</td>
<td>No specific action and suspension limits set since this is used to determine percent payment parameter</td>
<td></td>
</tr>
<tr>
<td>In-place Joint Density, percent of maximum theoretical density</td>
<td>No specific action and suspension limits set since this is used to determine percent payment parameter</td>
<td></td>
</tr>
</tbody>
</table>

3.2 PREPARATION OF ASPHALT BINDER MATERIAL

NOTE: For Performance Graded (PG) asphalt cements, insert the plant temperature range from the Table below into the last sentence of the following paragraph.

<table>
<thead>
<tr>
<th>Binder Grade</th>
<th>Mixing Temp Range (deg C)</th>
<th>Mixing Temp Range (deg F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 46-28</td>
<td>115 – 146</td>
<td>240 – 295</td>
</tr>
<tr>
<td>PG 46-34</td>
<td>115 – 146</td>
<td>240 – 295</td>
</tr>
<tr>
<td>PG 46-40</td>
<td>115 – 146</td>
<td>240 – 295</td>
</tr>
<tr>
<td>PG 52-28</td>
<td>115 – 149</td>
<td>240 – 300</td>
</tr>
<tr>
<td>PG 52-34</td>
<td>115 – 149</td>
<td>240 – 300</td>
</tr>
<tr>
<td>PG 52-40</td>
<td>115 – 149</td>
<td>240 – 300</td>
</tr>
<tr>
<td>Binder Grade</td>
<td>Mixing Temp Range (deg C)</td>
<td>Mixing Temp Range (deg F)</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PG 52-46</td>
<td>115 - 149</td>
<td>240 - 300</td>
</tr>
<tr>
<td>PG 58-22</td>
<td>127 - 154</td>
<td>260 - 310</td>
</tr>
<tr>
<td>PG 58-28</td>
<td>127 - 154</td>
<td>260 - 310</td>
</tr>
<tr>
<td>PG 58-34</td>
<td>127 - 154</td>
<td>260 - 310</td>
</tr>
<tr>
<td>PG 64-22</td>
<td>129 - 160</td>
<td>265 - 320</td>
</tr>
<tr>
<td>PG 64-28</td>
<td>129 - 160</td>
<td>265 - 320</td>
</tr>
<tr>
<td>PG 64-34</td>
<td>129 - 160</td>
<td>265 - 320</td>
</tr>
<tr>
<td>PG 67-22</td>
<td>135 - 163</td>
<td>275 - 325</td>
</tr>
<tr>
<td>PG 70-22</td>
<td>138 - 166</td>
<td>280 - 330</td>
</tr>
<tr>
<td>PG 70-28</td>
<td>135 - 163</td>
<td>275 - 330</td>
</tr>
<tr>
<td>PG 76-22</td>
<td>141 - 168</td>
<td>285 - 335</td>
</tr>
<tr>
<td>PG 76-28</td>
<td>138 - 166</td>
<td>280 - 330</td>
</tr>
<tr>
<td>PG 82-22</td>
<td>143 - 171</td>
<td>290 - 340</td>
</tr>
</tbody>
</table>

A continuous supply of the asphalt cement material shall be supplied to the mixer at a uniform temperature. The method of heating shall avoid local overheating of the asphalt cement material. The temperature of unmodified asphalts shall be no more than 160 degrees C 325 degrees F when added to the aggregates. Performance-Graded (PG) asphalts shall be within the temperature range of [_____] to [_____] degrees C F when added to the aggregates.

3.3 PREPARATION OF MINERAL AGGREGATE

The aggregate for the mixture shall be heated and dried prior to mixing. No damage shall occur to the aggregates due to the maximum temperature and rate of heating used. The temperature of the aggregate and mineral filler shall not exceed 175 degrees C 350 degrees F when the asphalt cement is added. The temperature shall not be lower than is required to obtain complete coating and uniform distribution on the aggregate particles and to provide a mixture of satisfactory workability.

3.4 PREPARATION OF STONE MATRIX ASPHALT MIXTURE

The aggregates, stabilizer, and the asphalt cement shall be weighed or metered and introduced into the mixer in the amount specified by the JMF. The combined materials shall be mixed until the aggregate and stabilizer obtain a uniform coating of asphalt binder and are thoroughly distributed throughout the mixture. Wet mixing time shall be the shortest time that
will produce a satisfactory mixture, but not less than 35 seconds for batch plants. The wet mixing time for all plants shall be established by the Contractor, based on the procedure for determining the percentage of coated particles described in ASTM D2489/D2489M, for each individual plant and for each type of aggregate used. The wet mixing time will be set to achieve a minimum of 95 percent coated particles. The moisture content of all SMA upon discharge from the plant shall not exceed 0.5 percent by total weight of mixture as measured by ASTM C566.

3.5 PREPARATION OF THE UNDERLYING SURFACE

**
NOTE: A SMA is used as a wearing or surface course overlying a conventional hot-mixed asphalt (HMA). The existing HMA should be cleaned and tack-coated before placing the SMA. Tack coat materials and procedures will need to be addressed in the contract documents. See Section 32 12 10 BITUMINOUS TACK AND PRIME COATS.
**

Immediately before placing the SMA, the underlying course shall be cleaned of dust and debris. A tack coat shall be applied in accordance with the contract specifications.

3.6 TEST SECTION

Before full production, place a test section for each JMF used. Construct a minimum test section of [75] [150] meters [250] [500] feet long and two paver passes wide placed in two lanes, with a longitudinal cold joint. The test section shall be of the same depth as the course which it represents. The underlying grade or pavement structure, upon which the test section is to be constructed, shall be the same as the remainder of the course represented by the test section. The equipment used in construction of the test section shall be the same equipment to be used on the remainder of the course represented by the test section. Place the test section as part of the project pavement if approved by the Contracting Officer.

3.6.1 Sampling and Testing for Test Section

**
NOTE: Table 11 applies only to the test section. The limits in Tables 8, 9, and 10, apply to a number of tests run from a lot. This is why the limits listed in Table 11 are different from those listed in Tables 8, 9, and 10.
**

One random sample shall be taken at the plant, triplicate specimens compacted, and tested for density and laboratory air voids. A portion of the same sample shall be tested for aggregate gradation and asphalt content. Four randomly selected cores shall be taken from the finished pavement mat, and four from the longitudinal joint, and tested for density. Random sampling shall be in accordance with procedures contained in ASTM D3665. The test results shall be within the tolerances shown in Table 11 for work to continue. If all test results meet the specified requirements, the test section shall remain as part of the project pavement. If test results exceed the tolerances shown, the test section shall be removed and replaced at no cost to the Government and another test
section shall be constructed.

3.6.2 Additional Test Sections

If the initial test section should prove to be unacceptable, make the necessary adjustments to the JMF, plant operation, placing procedures, and/or rolling procedures. A second test section shall then be placed. Additional test sections, as required, shall be constructed and evaluated for conformance to the specifications. Full production shall not begin until an acceptable section has been constructed and accepted.

3.7 TESTING LABORATORY

**
NOTE: Include bracketed sentence for Corps-managed projects.
**

Submit certification of compliance. The laboratories used to develop the JMF, Perform CQC testing, and for Government acceptance testing shall meet the requirements of ASTM D3666. [The Government will inspect the laboratory equipment and test procedures prior to the start of hot-mix operations for conformance with ASTM D3666. The laboratory shall maintain this validation for the duration of the project.] A certification stating that it meets these requirements or clearly listing all deficiencies shall be signed by the manager of the laboratory and submitted to the Contracting Officer prior to the start of construction. The certification shall contain as a minimum:

a. Qualifications of personnel: laboratory manager, supervising technician, and testing technicians.

b. A listing of equipment to be used in developing the job mix.

c. A copy of the laboratory's quality control system.

d. Evidence of participation in the AASHTO Materials Reference Laboratory (AMRL) program.

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Gradation-Percent Passing (Individual Test Result)</td>
<td></td>
</tr>
<tr>
<td>4.75 mm No. 4 and larger</td>
<td>JMF ± 5.0</td>
</tr>
<tr>
<td>2.36 mm No. 8 and smaller</td>
<td>JMF ± 3.0</td>
</tr>
<tr>
<td>Asphalt Content, Percent (Individual Test Result)</td>
<td>JMF ± 0.5</td>
</tr>
<tr>
<td>Laboratory Air Voids, Percent (Average of 3 specimens)</td>
<td>JMF ± 1.0</td>
</tr>
<tr>
<td>VMA, Percent (Average of 3 specimens)</td>
<td>17.0 minimum</td>
</tr>
</tbody>
</table>
Table 11 Material and Mixture Proportions for Test Section

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat Density, Percent of Maximum Theoretical Density (Average of 4 Random Cores)</td>
<td>92.0 - 96.0</td>
</tr>
<tr>
<td>Joint Density, Percent of Maximum Theoretical Density (Average of 4 Random Cores)</td>
<td>90.5 - 92.5</td>
</tr>
</tbody>
</table>

3.8 TRANSPORTING AND PLACING

3.8.1 Transporting

NOTE: A material transfer vehicle has been shown to provide a pavement with improved smoothness and less segregation. A material transfer vehicle is required when doing runway construction. Remove last sentence if material transfer vehicle is not used.

Transport the SMA from the mixing plant to the site in clean, tight vehicles. Schedule deliveries so that placing and compacting of mixture is uniform with minimum stopping and starting of the paver. Provide adequate artificial lighting for night placements. Hauling over freshly placed material will not be permitted until the material has been compacted as specified, and allowed to cool to 60 degrees C 140 degrees F. To deliver mix to the paver, use a material transfer vehicle which is operated to produce continuous forward motion of the paver.

3.8.2 Placing

Place and compact the mix at a temperature suitable for obtaining density, surface smoothness, and other specified requirements. Upon arrival, the mixture shall be placed to the full width by an asphalt paver; it shall be struck off in a uniform layer of such depth that, when the work is completed, it shall have the required thickness and conform to the grade and contour indicated. The speed of the paver shall be regulated to eliminate pulling and tearing of the asphalt mat. Unless otherwise permitted, placement of the mixture shall begin along the centerline of a crowned section or on the high side of areas with a one-way slope. The mixture shall be placed in consecutive adjacent strips having a minimum width of 3 meters [10 feet]. The longitudinal joint of the SMA course shall be offset from the longitudinal joint in the course immediately below by at least 300 mm 1 foot; however, the joint in the surface course shall be at the centerline of the pavement. Transverse joints in the SMA course shall be offset by at least 3 meters 10 feet from transverse joints in the previous course. Transverse joints in adjacent lanes shall be offset a minimum of 3 meters 10 feet. On isolated areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the mixture may be spread and luted by hand tools.
3.9 COMPACTION OF MIXTURE

After placing, the mixture shall be thoroughly and uniformly compacted by rolling with steel-wheel rollers. The surface shall be compacted as soon as possible without causing displacement, cracking or shoving. The sequence of rolling operations and the type of rollers used (with the exception noted) are at the discretion of the Contractor, with the exception that the application of more than three passes with a vibratory roller in the vibrating mode is prohibited. The speed of the roller shall, at all times, be sufficiently slow to avoid displacement of the hot mixture and be effective in compaction. Any displacement occurring as a result of reversing the direction of the roller, or from any other cause, shall be corrected at once. Sufficient rollers shall be furnished to handle the output of the plant. Rolling shall continue until the surface is of uniform texture, true to grade and cross section, and the required field density is obtained. To prevent adhesion of the mixture to the roller, the wheels shall be kept properly moistened, but excessive water will not be permitted. In areas not accessible to the roller, the mixture shall be thoroughly compacted with hand tampers. Any mixture that becomes loose and broken, mixed with dirt, contains check-cracking, or is in any way defective shall be removed full depth, replaced with fresh hot mixture and immediately compacted to conform to the surrounding area. This work shall be done at the Contractor's expense. Skin patching will not be allowed.

3.10 JOINTS

The formation of joints shall be made ensuring a continuous bond between the courses and to obtain the required density. All joints shall have the same texture as other sections of the course and meet the requirements for smoothness and grade.

3.10.1 Transverse Joints

The roller shall not pass over the unprotected end of the freshly laid mixture, except when necessary to form a transverse joint. When necessary to form a transverse joint, it shall be made by means of placing a bulkhead or by tapering the course. The tapered edge shall be cut back to its full depth and width on a straight line to expose a vertical face prior to placing the adjacent lane. The cutback material shall be removed from the project. In both methods, all contact surfaces shall be given a light tack coat of asphalt material before placing any fresh mixture against the joint.

3.10.2 Longitudinal Joints

Longitudinal joints that are irregular, damaged, uncompacted, cold (less than 80 degrees C 175 degrees F at the time of placing the adjacent lane), or otherwise defective, shall be cut back a maximum of 75 mm 3 inches from the edge with a cutting wheel to expose a clean, sound vertical surface for the full depth of the course. All cutback material shall be removed from the project. All contact surfaces shall be given a light tack coat of asphalt material prior to placing any fresh mixture against the joint. The Contractor will be allowed to use an alternate method if it can be demonstrated that density, smoothness, and texture can be met.

-- End of Section --