PART 1 GENERAL

1.1 UNIT PRICES
1.1.1 Measurement for Payment
1.1.1.1 Bituminous Base-Course Tonnage
1.1.1.2 Correctional Factor for Aggregates Used
1.1.1.3 Bituminous Material
1.1.2 Basis for Payment
1.1.3 Waybills and Delivery Tickets
1.2 REFERENCES
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
1.4.1 Sampling and Testing
1.4.2 Aggregates
1.4.3 Mineral Filler
1.4.4 Bituminous Materials
1.4.5 Field Sampling of Pavements and Mixtures
1.5 ENVIRONMENTAL REQUIREMENTS

PART 2 PRODUCTS

2.1 BITUMINOUS MATERIAL PLANT
2.1.1 Bituminous Plant
2.1.2 Mixing Plants
2.2 AGGREGATES
2.2.1 Coarse Aggregates
2.2.1.1 Aggregate Wear
2.2.1.2 Aggregate Loss
2.2.1.3 Dry Weight of Crushed Slag
2.2.2 Fine Aggregates
2.2.3 Mineral Filler
2.2.4 Liquid Limit and Plasticity Index
2.2.5 Sources of Aggregates
2.3 BITUMINOUS MATERIALS
2.3.1 Asphalt Cement
2.3.2 Quality Control
2.4 AGGREGATE GRADATION
2.5 COMPOSITION OF MIXTURE
 2.5.1 Job-Mix Formula (JMF)
 2.5.2 Test Properties of Bituminous Mixtures
 2.5.2.1 Stability, Flow, and Voids
 2.5.2.1.1 Nonabsorptive Aggregate
 2.5.2.1.2 Absorptive Aggregate
 2.5.2.2 Reduction in Stability by Immersion

PART 3 EXECUTION

3.1 CONDITIONING OF UNDERLYING COURSE
3.2 MIXING
 3.2.1 Preparation of Mineral Aggregates
 3.2.2 Preparation of Bituminous Mixtures
 3.2.3 Water Content of Aggregates
 3.2.4 Storage of Bituminous Paving Mixture
3.3 TRANSPORTATION OF BITUMINOUS MIXTURE
3.4 PLACING
 3.4.1 Spraying of Contact Surfaces of Structures
 3.4.2 Offsetting Joints in Bituminous Base Course
 3.4.3 Use of Mechanical Spreader
 3.4.4 Placing Strips Succeeding Initial Strips
 3.4.5 Handwork Behind Machine Spreading
 3.4.6 Hand Spreading in Lieu of Machine Spreading
3.5 GRADE AND SURFACE-SMOOTHNESS REQUIREMENTS
 3.5.1 Plan Grade
 3.5.2 Surface Smoothness
 3.5.3 Equipment
3.6 COMPACTION OF MIXTURE
 3.6.1 Testing of Mixture
 3.6.2 Correcting Deficient Areas
3.7 JOINTS
 3.7.1 General
 3.7.2 Transverse Joints
 3.7.3 Longitudinal Joints
3.8 EDGES OF PAVEMENT
3.9 PROTECTION OF PAVEMENT

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for bituminous base course for pavements.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1.1 UNIT PRICES

NOTE: These paragraphs will be deleted when lump-sum payment is desired. These paragraphs may be revised to include the payment for the bituminous material in the payment for bituminous base course mixtures when a separate payment for the bituminous material is not considered warranted based on local experience and job conditions.

1.1.1 Measurement for Payment

1.1.1.1 Bituminous Base-Course Tonnage

The amount paid for will be the number of metric 2000-pound tons of
bituminous mixture used in the accepted work. Weigh bituminous mixture after mixing, no deductions will be made for the weight of bituminous material incorporated in the mix. No payment will be made for defective areas until corrected.

1.1.1.2 Correctional Factor for Aggregates Used

Quantities of paving mixtures called for in bid schedule are based on aggregates having a specific gravity of 2.65 as determined according to apparent specific gravity paragraphs in ASTM C127 and ASTM C128. Make correction in the tonnage of bituminous base course mixtures to compensate for the difference in the tonnage of mixtures used in the project, when specific gravities of aggregates used are more than 2.70 and less than 2.60. The tonnage paid for will be the number of tons used, proportionately corrected for specific gravities using 2.65 as the base correctional factor.

1.1.1.3 Bituminous Material

Measure bituminous material to be paid for in the number of [liters gallons of the material used in the accepted work, corrected to liters gallons at 15 degrees C 60 degrees F in accordance with ASTM D1250.] [metric 2,000-pound tons of the material used in the accepted work.]

1.1.2 Basis for Payment

The quantities of bituminous base course and bituminous materials will be paid for at the respective contract unit prices in the bid schedule. Payment will constitute full compensation for preparing and reconditioning the underlying layer; for furnishing all material, equipment, plant, and tools; and for all labor and other incidentals necessary to complete the work required by this section.

1.1.3 Waybills and Delivery Tickets

**
NOTE: This paragraph will be deleted when lump-sum payment is desired.
**

Submit certified waybills and delivery tickets during the progress of the work for all materials actually used. Before the final statement is allowed, submit certified waybills and certified delivery tickets for all aggregates and bituminous materials actually used in construction covered by the contract. Do not remove bituminous material from the tank cars or storage tanks until the initial outage and temperature measurements have been taken, nor shall the car or tank be released until the final outage has been taken by the Contracting Officer.

1.2 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.
**
Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D2172/D2172M</td>
<td>Quantitative Extraction of Bitumen from Bituminous Paving Mixtures</td>
<td>(2011)</td>
</tr>
<tr>
<td>ASTM D2216</td>
<td>Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass</td>
<td>(2010)</td>
</tr>
<tr>
<td>ASTM D4318</td>
<td>Liquid Limit, Plastic Limit, and Plasticity Index of Soils</td>
<td>(2010; E 2014)</td>
</tr>
<tr>
<td>ASTM D5</td>
<td>Penetration of Bituminous Materials</td>
<td>(2006; E 2006)</td>
</tr>
<tr>
<td>ASTM D946/D946M</td>
<td>Penetration-Graded Asphalt Cement for Use in Pavement Construction</td>
<td>(2009a)</td>
</tr>
</tbody>
</table>

1.3 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy,
Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.][information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Job-Mix Formula (JMF)
Waybills and delivery tickets
Sources of Aggregates

SD-04 Samples
Sources of Aggregates

SD-06 Test Reports
Sources of Aggregates
Bituminous Materials
Sampling and testing

1.4 QUALITY ASSURANCE
1.4.1 Sampling and Testing

**

NOTE: Guidance for preparation of criteria to be used in evaluating laboratory facilities is contained in ASTM E329.

**

Sampling and testing are the responsibility of the Contractor, performed by an approved commercial testing laboratory or by facilities furnished by the Contractor. Submit copies of field tests results within [24] [_____] hours after the tests are performed and certified copies of tests results for approval not less than [30] [_____] days before material is required for the work. No work requiring testing will be permitted until the facilities have been inspected and approved. The first inspection will be at the expense of the Government. Cost incurred for any subsequent inspection required because of failure of the facilities to pass the first inspection will be charged to the Contractor. Perform tests in sufficient numbers and at the locations and times directed to ensure that materials, mixtures and
compaction meet specified requirements. Obtain samples of finished pavement, including samples that span the longitudinal joint. Sizes of samples shall be suitable to determine conformance to density, thickness, and other specified requirements. Take samples at start of paving operations and at intervals throughout paving operations as directed. Take and test samples of plant mixtures to determine conformance to specified requirements. Certified copies of the test results shall be furnished to the Contracting Officer.

1.4.2 Aggregates

Sample aggregates in accordance with ASTM D75/D75M and test them at the start of production and at intervals during production of the bituminous base course. Intervals and points of sampling will be as approved. Test results on these samples will be the basis for approval of specific lots of aggregates.

1.4.3 Mineral Filler

Sampling of mineral filler shall conform to ASTM C183.

1.4.4 Bituminous Materials

Sampling of bituminous materials shall conform to ASTM D140/D140M.

1.4.5 Field Sampling of Pavements and Mixtures

The type, size, and locations of samples will be approved. Furnish all tools, labor, and materials for cutting samples and replacing pavement to meet specified requirements. Samples of finished pavement shall be cut at the rate of one sample per [_____] square meters yards of finished pavement.

1.5 ENVIRONMENTAL REQUIREMENTS

Do not construct bituminous courses when the underlying course contains free surface water, or when temperature of the surface of the underlying course is below 5 degrees C 40 degrees F, unless otherwise directed.

PART 2 PRODUCTS

2.1 BITUMINOUS MATERIAL PLANT

2.1.1 Bituminous Plant

Provide a bituminous plant of such capacity, as specified herein, to produce the quantities of bituminous mixtures required for the project within the completion time of the contract. Provide hauling equipment, paving machines, rollers, miscellaneous equipment, and tools in sufficient numbers and capacity and in proper working condition to place the bituminous paving mixtures at a rate equal to the plant output. A sufficient number of adequately trained personnel shall be available during paving operations to produce a pavement meeting the requirements in this specification.

2.1.2 Mixing Plants

NOTE: The type and capacity of the plant, the number and size of trucks, paving machines, and
other equipment should be determined from the tons of paving mixtures required, haul distances, number of working days permitted by the contract, and other pertinent factors.

Provide mixing plants which are automatic or semiautomatic controlled, commercially manufactured units designed, coordinated, and operated to consistently produce a mixture within the job-mix formula (JMF), with a minimum capacity of [_____] metric tons per hour. Drum mixers will be prequalified at the production rate to be used during actual mix production. The prequalification tests will include extraction in accordance with ASTM D2172/D2172M and recovery of the asphalt cement in accordance with ASTM D1856. The penetration of the recovered asphalt binder shall not be less than 60 percent of the original penetration in accordance with ASTM D5.

2.2 AGGREGATES

Provide aggregates consisting of crushed stone, crushed slag, crushed gravel screenings, sand, and mineral filler, as required. The portion of these materials retained on the 4.75 mm No. 4 sieve will be known as coarse aggregate; the portion passing the 4.75 mm No. 4 sieve and retained on the 0.075 mm No. 200 sieve, as fine aggregate; and the portion passing the 0.075 mm No. 200 sieve, as mineral filler.

2.2.1 Coarse Aggregates

Provide coarse aggregates consisting of clean, sound, durable fragments of crushed stone, crushed slag, or crushed gravel meeting the following requirements:

2.2.1.1 Aggregate Wear

The percentage of wear shall not exceed 40 after 500 revolutions, as determined in accordance with ASTM C131/C131M.

2.2.1.2 Aggregate Loss

NOTE: The magnesium-sulfate soundness test is to be used in excluding aggregates known to be unsatisfactory or for evaluating aggregates from new sources. The percentage of loss will be inserted in the blanks. The values inserted will be based on knowledge of aggregates in the area that have been previously approved or that have a satisfactory service record in bituminous pavement construction for at least 5 years and will assure that aggregates from new sources will be equal to or better than these aggregates.

The percentage of loss shall not exceed [_____] after five cycles performed in accordance with ASTM C88, using magnesium sulfate.

2.2.1.3 Dry Weight of Crushed Slag

The dry weight of crushed slag shall be not less than 1200 kg/cubic meters.
75 pcf as determined in accordance with ASTM C29/C29M.

2.2.2 Fine Aggregates

Provide fine aggregates consisting of clean, durable natural sands; manufactured sands prepared by crushing stone, slag, or gravel, or any combination of natural and manufactured sands. Natural sands shall consist of grains of clean, hard, durable rock.

2.2.3 Mineral Filler

Mineral filler shall conform to ASTM D242/D242M.

2.2.4 Liquid Limit and Plasticity Index

Measure liquid limit and plasticity index in accordance with ASTM D4318. Requirements stated herein shall apply to any aggregate component that is blended to meet the required gradation and also to the aggregate in the completed base course. The portion of the aggregate passing the 0.425 mm No. 40 sieve shall be either nonplastic or have a liquid limit not greater than 25 and a plasticity index not greater than 5.

2.2.5 Sources of Aggregates

**
NOTE: Satisfactory service record for an aggregate will be determined based on the aggregate's ability to resist polishing, raveling, stripping, and degradation under traffic and climate conditions similar to that expected during its use. If performance data indicate that an aggregate is susceptible to one or more of the above-mentioned problems, that source of aggregate will be rejected.
**

Select sources and submit a plan for operation of a new source of aggregates well in advance of starting production; submit samples for approval. If a previously developed source is selected, submit test results with evidence that central plant hot-mix bituminous pavements constructed with the aggregates have had a satisfactory service record of at least 5 years under similar climatic conditions. An inspection of the producer's operation may be made. When new sources are developed, indicate the sources and submit samples for approval and a plan for operation well in advance of starting production. Proposed sources may be inspected. Make such tests and other investigations as necessary to determine whether or not aggregates meeting the requirements specified can be produced from the proposed sources. Inspection of the source of aggregate does not relieve the Contractor of the responsibility for delivery at the jobsite of aggregates that meet requirements specified herein.

2.3 BITUMINOUS MATERIALS

Select sources where bituminous materials are obtained in advance of time when materials will be required in the work; submit test results for approval not less than [_____] days before such material is required for use in the work.
2.3.1 Asphalt Cement

**
NOTE: The appropriate types and grades of bituminous materials for the pavement's use and climatic environment should be used (refer to UFC 3-250-03). When it is known that the asphalt has not been excessively heated or cracked in refining but is produced from a crude that shows a positive spot when subjected to the test in AASHTO Standard T 102, using the standard naphtha specified in paragraph 3 thereof, the specification will be modified to permit the use of a naphtha produced from the patent crude, provided the naphtha conforms to the same physical characteristics as the standard naphtha.
**

Asphalt cement to be mixed with mineral aggregates shall conform to [ASTM D946/D946M] [ASTM D3381/D3381M], Grade [______]. In addition, the asphalt cement shall show a negative spot when subjected to the spot test in accordance with AASHTO T 102, using the standard naphtha specified therein.

2.3.2 Quality Control

In addition to initial qualification testing of bituminous materials, take samples before and during construction when shipments of bituminous materials are received or when necessary to assure that some condition of handling or storage has not been detrimental to the bituminous material.

2.4 AGGREGATE GRADATION

**
NOTE: The gradation corresponding to the desired maximum aggregate size will be retained. The inapplicable gradation will be deleted.
**

Mineral aggregate shall be of such size that percentage composition by weight, as determined by ASTM C136, will conform to the gradation specified in TABLE 1. The table is based on aggregates of uniform specific gravity; percentages passing various sieves may be changed by the Contracting Officer when aggregates of varying specific gravities are used.

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Percent Passing</th>
<th>Percent Passing</th>
<th>Percent Passing</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5 1-1/2 inch</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>25 1 inch</td>
<td>75-93</td>
<td>100</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>19 3/4 inch</td>
<td>67-85</td>
<td>74-92</td>
<td>100</td>
<td>---</td>
</tr>
</tbody>
</table>
TABLE 1. AGGREGATE GRADATION

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Percent Passing</th>
<th>Percent Passing</th>
<th>Percent Passing</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 1/2 inch</td>
<td>57-75</td>
<td>64-82</td>
<td>73-91</td>
<td>100</td>
</tr>
<tr>
<td>9.5 3/8 inch</td>
<td>50-68</td>
<td>55-73</td>
<td>63-81</td>
<td>74-92</td>
</tr>
<tr>
<td>4.75 No. 4</td>
<td>36-54</td>
<td>39-57</td>
<td>45-63</td>
<td>53-71</td>
</tr>
<tr>
<td>2.36 No. 8</td>
<td>26-44</td>
<td>28-46</td>
<td>32-50</td>
<td>38-56</td>
</tr>
<tr>
<td>1.18 No. 16</td>
<td>18-36</td>
<td>19-37</td>
<td>23-41</td>
<td>27-45</td>
</tr>
<tr>
<td>0.60 No. 30</td>
<td>11-29</td>
<td>12-30</td>
<td>15-33</td>
<td>19-37</td>
</tr>
<tr>
<td>0.30 No. 50</td>
<td>7-21</td>
<td>9-23</td>
<td>10-24</td>
<td>13-27</td>
</tr>
<tr>
<td>0.15 No. 100</td>
<td>4-14</td>
<td>6-16</td>
<td>1-17</td>
<td>9-19</td>
</tr>
<tr>
<td>0.075 No. 200</td>
<td>3-7</td>
<td>3-7</td>
<td>3-7</td>
<td>3-7</td>
</tr>
</tbody>
</table>

2.5 COMPOSITION OF MIXTURE

NOTE: Consult CEMP-ET on test method to be used and include in subparagraphs below.

2.5.1 Job-Mix Formula (JMF)

NOTE: The procedures for determining the JMF to be used in the mixtures are described in UFC 3-250-03. Proportioning of the aggregates for the JMF should be carefully determined because the gradations will be those on which the Contractor’s tolerances will be applied. Application of these tolerances may cause the gradation to be outside the limits of the gradation in the specification, but this is acceptable.

Submit mix design at least [_____] days before it is to be used. Do not produce bituminous mixture until a JMF has been approved by the Contracting Officer. The formula will indicate the percentage of each sieve fraction of aggregate, the percentage of bitumen, and the temperature of the completed mixture when discharged from the mixer. The JMF will be allowed tolerances given in TABLE 2 herein. Bitumen content and aggregate gradation may be adjusted within the limits of tables specified herein to improve the paving mixtures, as directed, without adjustments in contract prices.
TABLE 2. JOB-MIX FORMULA TOLERANCES

<table>
<thead>
<tr>
<th>Material</th>
<th>Tolerance, Plus or Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate passing 4.75 mm No. 4 sieve or larger</td>
<td>5 percent</td>
</tr>
<tr>
<td>Aggregate passing 2.36 mm, 1.18 mm, 0.60 mm and 0.30 mm Nos. 8, 16, 30, and 50 sieves</td>
<td>4 percent</td>
</tr>
<tr>
<td>Aggregate passing 0.15 mm and 0.075 mm Nos. 100 and 200 sieves</td>
<td>2 percent</td>
</tr>
<tr>
<td>Bitumen</td>
<td>0.25 percent</td>
</tr>
<tr>
<td>Temperature of mixing</td>
<td>13 degrees C 25 degrees F</td>
</tr>
</tbody>
</table>

2.5.2 Test Properties of Bituminous Mixtures

The finished mixture shall meet requirements described below when tested in accordance with [______]. All samples will be compacted with 75 blows of specified hammer on each side of sample.

2.5.2.1 Stability, Flow, and Voids

2.5.2.1.1 Nonabsorptive Aggregate

When the water-absorption value of the entire blend of aggregate does not exceed 2.5 percent as determined by ASTM C127 and ASTM C128, aggregate is designated as nonabsorptive. Use the apparent specific gravity in computing the voids total mix and voids filled with bitumen; the mixture shall meet the requirement in TABLE 3.

TABLE 3. NONABSORPTIVE AGGREGATE MIXTURE

<table>
<thead>
<tr>
<th>Test Property</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability, minimum, kilonewtons pounds</td>
<td>8.01800</td>
</tr>
<tr>
<td>Flow, maximum, 25/100-millimeter 1/100-inch units</td>
<td>16</td>
</tr>
<tr>
<td>Voids total mix, percent</td>
<td>4-6</td>
</tr>
<tr>
<td>Voids filled with bitumen, percent</td>
<td>65-75</td>
</tr>
</tbody>
</table>

2.5.2.1.2 Absorptive Aggregate

When the water-absorption value of the entire blend of aggregate exceeds 2.5 percent as determined in ASTM C127 and ASTM C128, the aggregate is designated as absorptive. Use bulk-impregnated specific gravity, as determined from [______], in computing the percentages of the voids total mix and voids filled with bitumen; the mixture shall meet the requirements in TABLE 4.
TABLE 4. ABSORPTIVE AGGREGATE MIXTURE

<table>
<thead>
<tr>
<th>Test Property</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability, minimum, kilonewtons pounds</td>
<td>8.01800</td>
</tr>
<tr>
<td>Flow, maximum, 25/100-millimeter 1/100-inch units</td>
<td>16</td>
</tr>
<tr>
<td>Voids total mix, percent</td>
<td>3-5</td>
</tr>
<tr>
<td>Voids filled with bitumen, percent</td>
<td>70-80</td>
</tr>
</tbody>
</table>

2.5.2.2 Reduction in Stability by Immersion

If the index of retained stability of specimens of composite mixture as determined from [_____] is less than 75 percent, reject the aggregates or treat the bitumen with an approved antistripping agent. The quantity or type of antistripping agent to add to the bitumen shall be sufficient, as approved, to produce an index of retained stability of not less than 75 percent. Payment will not be made for the addition of the antistripping agent that may be required.

PART 3 EXECUTION

3.1 CONDITIONING OF UNDERLYING COURSE

Prior to placing the bituminous base course, clean the underlying surface of foreign or objectionable matter. The condition of the underlying course will be inspected and approved.

3.2 MIXING

3.2.1 Preparation of Mineral Aggregates

Place and maintain each aggregate stockpile in such a manner to prevent segregation. Regulate rates of feed of aggregates so that the moisture content and temperature of aggregates will be within tolerances specified herein. Provide dry storage for mineral filler.

3.2.2 Preparation of Bituminous Mixtures

Convey aggregates, mineral filler, and bitumen into the mixer in proportionate quantities required to meet the JMF. Set the mixing time as required to obtain a uniform coating of the aggregate with the bituminous material. The temperature of bitumen at time of mixing shall not exceed 150 degree C 300 degrees F. The temperature of aggregate and mineral filler in the mixer shall not exceed 160 degree C 325 degrees F when bitumen is added. Overheated and carbonized mixtures or mixtures that foam will be rejected.

3.2.3 Water Content of Aggregates

Perform drying operations to reduce the water content of mixture to less than 0.75 percent. The water content test will be conducted in accordance with ASTM D2216. If the water content is determined on hot bin samples, the water content will be a weighted average based on composition of blend.
3.2.4 Storage of Bituminous Paving Mixture

Store the mixture according to the requirements of AASHTO M 156.

3.3 TRANSPORTATION OF BITUMINOUS MIXTURE

Transport the bituminous mixture from the paving plant to the site in trucks having tight, clean, smooth beds lightly coated with an approved releasing agent to prevent adhesion of mixture to truck bodies. Excessive releasing agent will be drained prior to loading. Cover each load with canvas or other approved material of ample size to protect mixture from weather and prevent loss of heat. Loads that have crusts of cold, unworkable material or have become wet by rain will be rejected. Hauling over freshly placed material will not be permitted.

3.4 PLACING

Do not place bituminous mixtures without ample time to complete spreading and rolling during daylight hours, unless satisfactory artificial lighting is provided.

3.4.1 Spraying of Contact Surfaces of Structures

Spray contact surfaces of previously constructed pavement, curbs, manholes, and similar structures with a thin coat of bituminous material conforming to the requirements of Section 32 12 10 BITUMINOUS TACK AND PRIME COATS.

3.4.2 Offsetting Joints in Bituminous Base Course

Place the bituminous base course so that longitudinal joints will be offset from joints in the underlying course by at least 300 mm 1 foot. Transverse joints shall be offset by at least 600 mm 2 feet from transverse joints in the underlying course.

3.4.3 Use of Mechanical Spreader

The range of temperatures of mixtures, when dumped into the mechanical spreader, shall be as approved. Mixtures having temperatures less than 110 degrees C 225 degrees F when dumped into the mechanical spreader will be rejected. Adjust the mechanical spreader and regulate the speed so that the surface of the course being laid will be smooth and continuous without tears and pulls, and of such depth that, when compacted, the surface will conform to the cross section, grade, and contour indicated. Placing with respect to the center line, areas with crowned sections, or the high side of areas with one-way slope shall be as directed. Place the mixture as nearly continuous as possible, and adjust the speed of placing as directed, to permit proper rolling. When segregation occurs in the mixture during placing, suspend the spreading operation until the cause is determined and corrected. Correct irregularities in alignment of the course left by the mechanical spreader by trimming directly behind machine. Immediately after trimming, the edges of the course shall be thoroughly compacted by tamping laterally with a lute. Distortion of the course during tamping will not be permitted.

3.4.4 Placing Strips Succeeding Initial Strips

In placing each succeeding strip after the initial strip has been spread and compacted as specified below, the screed of the mechanical spreader shall overlap previously placed strip 75 to 100 mm 3 to 4 inches and shall
be sufficiently high so that compaction will produce a smooth, dense joint. The mixture placed on the edge of the previously placed strip by the mechanical spreader shall be pushed back to the edge of the strip being placed by using a lute. Excess mixture shall be removed and wasted.

3.4.5 Handwork Behind Machine Spreading

A sufficient number of shovelers and rakers shall follow the spreading machine, adding or removing hot mixture and raking mixtures as required to obtain a course that, when completed, will conform to all requirements specified herein. Excessive handwork will not be permitted. Broadcasting or fanning of the mixture over areas being compacted will not be permitted.

3.4.6 Hand Spreading in Lieu of Machine Spreading

In areas where the use of machine spreading is impractical, spread the mixture by hand. Prevent segregation during spreading. Spread the mixture uniformly with hot rakes in a loose layer of thickness that, when compacted, will conform to the required grade and thickness.

3.5 GRADE AND SURFACE-SMOOTHNESS REQUIREMENTS

Finished surfaces of bituminous base courses, when tested as specified below, shall conform to the gradeline and elevations shown and to surface-smoothness requirements specified.

3.5.1 Plan Grade

Finished surfaces shall conform, within tolerances specified, to the lines, grades, and cross sections indicated. Finished surfaces of runways, taxiways, and aprons shall vary not more than 12.2 mm 0.04 foot from the plan gradeline or elevation established and approved at the site of work. Finished surfaces of nonaircraft traffic areas, such as blast pads and stabilized shoulders, shall vary not more than 18.3 mm 0.06 foot from the plan gradeline and elevation established and approved at the site. Finished surfaces at the juncture with other pavements shall coincide with finished surfaces of abutting pavements. The 12.2 and 18.3 mm 0.04-and 0.06-foot deviations from the plan gradeline and elevation will not be permitted in areas of pavements where closer conformance with plan grade and elevation is required for the proper functioning of drainage and other appurtenant structures involved.

3.5.2 Surface Smoothness

Finished surfaces shall not deviate from the testing edge of a 3.66 meter 12 foot straightedge more than 5 mm 1/4 inch in any direction.

3.5.3 Equipment

Furnish and maintain at the site, in good condition, one straightedge for each bituminous paver for use in testing the finished surface. Straightedges shall be aluminum and have blades of box or box-girder cross section with flat bottom reinforced to insure rigidity and accuracy. Straightedges shall have handles to facilitate movement on pavement.

3.6 COMPACTION OF MIXTURE

Begin rolling as soon after placing as the mixture will bear roller without undue displacement. Delays in rolling freshly spread mixture will not be
permitted. After the initial rolling, perform preliminary tests of the crown, grade, and smoothness. Correct deficiencies so that the finished course will conform to requirements for the grade and smoothness specified herein. After meeting crown, grade, and smoothness requirements, continue rolling until a density of at least 96 percent of laboratory compacted specimens of the same mixture is obtained. Places inaccessible to rollers shall be thoroughly compacted with hot hand tampers.

3.6.1 Testing of Mixture

At the start of plant operation, a quantity of the mixture sufficient to construct a test section at least 15 meters 50 feet long and two spreader widths wide shall be prepared. The mixture shall be placed, spread, and rolled with equipment to be used in the project and in accordance with requirements specified above. This test section shall be tested and evaluated and shall conform to all specified requirements. If tests indicate that the pavement does not conform to specification requirements, make necessary adjustments immediately to plant operations and rolling procedures. Additional test sections shall be constructed and sampled for conformance to specification requirements. In no case shall the Contractor start production of the bituminous base course mixture without approval.

3.6.2 Correcting Deficient Areas

Remove mixtures that become contaminated or are defective. Skin patching of an area that has been rolled will not be permitted. Cut holes the full thickness of the base course so that the sides are perpendicular and parallel to the direction of traffic and the edges are vertical. Spray bulges with bituminous materials conforming to requirements of Section 32 12 10 BITUMINOUS TACK AND PRIME COATS. Place fresh paving mixture in the holes in sufficient quantity so that the finished surface will conform to grade, smoothness, and density requirements.

3.7 JOINTS

3.7.1 General

Joints between old and new pavements or between successive day's work, or joints that have become cold because of delay, shall be made carefully to insure continuous bond between old and new sections of course. All joints shall have the same texture, density, and smoothness as other sections of the course. Contact surfaces of previously constructed pavements that have become coated with dust, sand, or other objectionable material shall be cleaned by brushing or cut back with approved power saw, as directed. Spray the surface against which new material is placed with a thin, uniform coat of bituminous material conforming to requirements of Section 32 12 10 BITUMINOUS TACK AND PRIME COATS. Apply the material far enough in advance of placement of the fresh mixture to insure adequate curing. Take care to prevent damage or contamination of sprayed surface.

3.7.2 Transverse Joints

Pass the roller over the unprotected end of freshly placed mixture only when placing of the course is discontinued or when delivery of the mixture is interrupted to the extent that the unrolled material may become cold. In all cases, cut back the edge of the previously placed course to expose an even, vertical surface for the full thickness of the course. In continuing placement of the strip, position the mechanical spreader on the transverse joint so that sufficient hot mixture will be spread to obtain a
joint after rolling that conforms to the required density and smoothness specified herein.

3.7.3 Longitudinal Joints

Cut back edges of a previously placed strip that have cooled or are irregular, honeycombed, poorly compacted, damaged, or otherwise defective, and unsatisfactory sections of the joint to expose a clean, sound surface for the full thickness of the course as directed.

3.8 EDGES OF PAVEMENT

Neatly trim bulges adjacent to shoulders to the line.

3.9 PROTECTION OF PAVEMENT

After final rolling of the pavement, do not permit vehicular traffic of any kind until the pavement has cooled to ambient temperature.

-- End of Section --