SECTION TABLE OF CONTENTS

DIVISION 32 - EXTERIOR IMPROVEMENTS

SECTION 32 11 16

[BASE COURSE FOR RIGID][AND][SUBBASES FOR FLEXIBLE] PAVING

08/08

PART 1 GENERAL

1.1 UNIT PRICES
 1.1.1 Measurement
 1.1.1.1 Area
 1.1.1.2 Volume
 1.1.1.3 Weight
 1.1.2 Payment
 1.1.2.1 Course Material
 1.1.2.2 Stabilization
 1.1.3 Waybills and Delivery Tickets
1.2 REFERENCES
1.3 DEFINITION
1.4 SYSTEM DESCRIPTION
1.5 SUBMITTALS
1.6 QUALITY ASSURANCE
 1.6.1 Sampling
 1.6.2 Tests
 1.6.2.1 Sieve Analysis
 1.6.2.2 Liquid Limit and Plasticity Index
 1.6.2.3 Moisture-Density Determinations
 1.6.2.4 Field Density Tests
 1.6.2.5 Wear Test
 1.6.2.6 Weight of Slag
 1.6.3 Testing Frequency
 1.6.3.1 Initial Tests
 1.6.3.2 In-Place Tests
 1.6.4 Approval of Material
1.7 ENVIRONMENTAL REQUIREMENTS

PART 2 PRODUCTS

2.1 MATERIALS
 2.1.1 Subbase Course
 2.1.2 Select-Material Subbase Course
2.1.3 Rigid Pavement Base Course

PART 3 EXECUTION

3.1 OPERATION OF AGGREGATE SOURCES
3.2 STOCKPILING MATERIAL
3.3 PREPARATION OF UNDERLYING MATERIAL
3.4 GRADE CONTROL
3.5 MIXING AND PLACING MATERIALS
3.6 LAYER THICKNESS
3.7 COMPACTION
3.8 PROOF ROLLING
3.9 EDGES
3.10 SMOOTHNESS TEST
3.11 THICKNESS CONTROL
3.12 MAINTENANCE

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for subbase, select-material subbase and rigid base courses for airfield pavements, roads and streets.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This guide specification is applicable to subbase courses for airfield pavements, roads and streets including select-material subbase courses in the lower levels of the pavement structure. This specification will be used for any subbase course that has a design California bearing ratio (CBR) between 20 and 50 or any select-material with design CBR less than 20. Select material subbase will not require processing or blending.

This specification may also be used for:

a. The base course directly beneath the bituminous
surface of a pavement design for Class E and F roads and streets where the required CBR value of the material is 50 or more and the material conforms to Gradation No. 1.

b. The base course beneath rigid pavements.

When this guide specification is used for aggregate base course under rigid pavement, section title of the project specification will be: BASE COURSE FOR RIGID PAVING and the words "rigid pavement base course" selected throughout. When this guide specification is used in combination for a subbase course under flexible pavements and a base course under rigid pavements, the section title will be: BASE COURSE FOR RIGID AND SUBBASES FOR FLEXIBLE PAVING and the words "or rigid pavement base course" will be included after "subbase" throughout.

**

1.1 UNIT PRICES

**

NOTE: Delete unit price paragraphs when the work is covered by a lump-sum contract price.

**

1.1.1 Measurement

**

NOTE: Delete the method of measurement paragraph not applicable to job conditions. The provision for placing in stockpiles will be retained or deleted as applicable.

**

1.1.1.1 Area

Measure the quantity of [subbase] [and] [select-material subbase] [or] [rigid pavement base] course completed and accepted, as determined by the Contracting Officer, in square meters yards.

1.1.1.2 Volume

Measure the quantity of [subbase] [and] [select-material subbase] [or] [rigid pavement base] course completed and accepted, as determined by the Contracting Officer, in cubic meters yards. Determine the volume of material in-place and accepted by the average job thickness obtained in accordance with paragraph THICKNESS CONTROL and the dimensions shown.

1.1.1.3 Weight

The tonnage of [subbase] [and] [select-material subbase] [or] [rigid pavement base] course material will be the number of metric tons tons of aggregate, placed [and accepted in the completed course] [in authorized stockpiles] as determined by the Contracting Officer. Deductions will be made for any material wasted, unused, rejected, or used for convenience of the Contractor, and for water exceeding specified amount at time of weighing.
1.1.2 Payment

1.1.2.1 Course Material

Quantities of [subbase] [and] [select-material subbase] [or] [rigid pavement base] course, determined as specified in paragraph Measurement, will be paid for at the respective contract unit prices, which will constitute full compensation for the construction and completion of the [subbase] [and] [select-material subbase] [or] [rigid pavement base] course.

1.1.2.2 Stabilization

Cohesionless subgrades or select subbase courses to be stabilized, as specified in paragraph PREPARATION OF UNDERLYING MATERIAL, will be paid as a special item on the tonnage basis including extra manipulation as required.

1.1.3 Waybills and Delivery Tickets

Submit copies of waybills and delivery tickets during the progress of the work.

1.2 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO T 180 (2010) Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop

AASHTO T 224 (2010) Standard Method of Test for
Correction for Coarse Particles in the Soil Compaction Test

ASTM INTERNATIONAL (ASTM)

ASTM C117

ASTM C131/C131M

ASTM C136

ASTM C29/C29M

ASTM D1556
(2007) Density and Unit Weight of Soil in Place by the Sand-Cone Method

ASTM D1557
(2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³) (2700 kN-m/m³)

ASTM D2167
(2008) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D2487
(2011) Soils for Engineering Purposes (Unified Soil Classification System)

ASTM D422
(1963; R 2007; E 2014; E 2014) Particle-Size Analysis of Soils

ASTM D4318
(2010; E 2014) Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D6938
(2010) Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

ASTM D75/D75M

ASTM E11
(2013) Wire Cloth and Sieves for Testing Purposes

1.3 DEFINITION

Degree of compaction required is expressed as a percentage of the maximum laboratory dry density obtained by the test procedure presented in ASTM D1557 abbreviated as a percent of laboratory maximum dry density. One exception is as follows: Since ASTM D1557 applies only to soils that have 30 percent or less by weight of their particles retained on the 9.0 mm 3/4
inch sieve, the degree of compaction for material having more than 30 percent by weight of their particles retained on the 9.0 mm 3/4 inch sieve will be expressed as a percentage of the laboratory maximum dry density in accordance with AASHTO T 180 Method D and corrected with AASHTO T 224.

1.4 SYSTEM DESCRIPTION

**
NOTE: If desirable, requirements for types of equipment applicable to methods of construction based on local conditions will be included.
**

All plant, equipment, and tools used in the performance of the work will be subject to approval before the work is started and shall be maintained in satisfactory working condition at all times. Submit a list of proposed equipment, including descriptive data. Provide equipment which is adequate and has the capability of producing the required compaction, meeting grade controls, thickness control, and smoothness requirements as set forth herein.

1.5 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.
**

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed
item for Army projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data Equipment Waybills and Delivery Tickets

SD-06 Test Reports
Sampling and Testing Field Density Tests

1.6 QUALITY ASSURANCE

Sampling and testing are the responsibility of the Contractor, to be performed by an approved testing laboratory in accordance with Section 01 45 00.00 1001 45 00.00 2001 45 00.00 40 QUALITY CONTROL. Perform tests at the specified frequency. No work requiring testing will be permitted until the testing laboratory has been inspected and approved. Test the materials to establish compliance with the specified requirements.

1.6.1 Sampling

Take samples for laboratory testing in conformance with ASTM D75/D75M. When deemed necessary, the sampling will be observed by the Contracting Officer.

1.6.2 Tests

1.6.2.1 Sieve Analysis

NOTE: Testing in accordance with ASTM D422 will be required when the materials need to be tested for the 0.02 mm frost susceptibility requirements.

1.6.2.2 Liquid Limit and Plasticity Index

Determine liquid limit and plasticity index in accordance with ASTM D4318.

1.6.2.3 Moisture-Density Determinations

NOTE: ASTM D1557 will be used for maximum density
determinations if the anticipated material gradation would contain less than 30 percent retained on the 19 mm (3/4 inch) sieve. AASHTO T 180, Method D will be used for the maximum density determinations if the anticipated material gradation would contain more than 30 percent retained on the 19 mm (3/4 inch) sieve.

Determine the laboratory maximum dry density and optimum moisture in accordance with [ASTM D1557] [AASHTO T 180, Method D and corrected with AASHTO T 224].

1.6.2.4 Field Density Tests

Measure field density in accordance with ASTM D1556, ASTM D2167, or ASTM D6938. For the method presented in ASTM D1556, use the base plate, as shown in the drawing. For the method presented in ASTM D6938, check and adjust the calibration curves, if necessary, using only the sand cone method as described in paragraph Calibration, of the ASTM publication. Tests performed in accordance with ASTM D6938 result in a wet unit weight of soil and ASTM D6938 will be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D6938. The calibration checks of both the density and moisture gauges shall be made by the prepared containers of material method, as described in paragraph Calibration, in ASTM D6938, on each different type of material to be tested at the beginning of a job and at intervals as directed.

a. Submit certified copies of test results for approval not less than [30] [_____] days before material is required for the work.

b. Submit calibration curves and related test results prior to using the device or equipment being calibrated.

c. Submit copies of field test results within [24] [_____] hours after the tests are performed.

1.6.2.5 Wear Test

NOTE: This paragraph will be deleted only when select-material subbase course materials are specified.

Perform wear tests in conformance with ASTM C131/C131M.

1.6.2.6 Weight of Slag

NOTE: This paragraph will be deleted only when select-material subbase course materials are specified.

Determine weight per cubic meter foot of slag in accordance with ASTM C29/C29M.
1.6.3 Testing Frequency

1.6.3.1 Initial Tests

Perform one of each of the following tests on the proposed material prior to commencing construction to demonstrate that the proposed material meets all specified requirements prior to installation.

a. Sieve Analysis [including 0.02 mm size material]
b. Liquid limit and plasticity index
c. [Moisture-density relationship]
d. [Wear]
e. [Weight per cubic meter foot of Slag]
f. [____].

1.6.3.2 In-Place Tests

Perform one of each of the following tests on samples taken from the placed and compacted [subbase] [and] [select-material subbase] [or rigid pavement base] course. Samples shall be taken and tested at the rates indicated.

a. Perform density tests on every lift of material placed and at a frequency of one set of tests for every 500 [_____] square meters yards, or portion thereof, of completed area.

b. Perform sieve analysis [including 0.02 mm size material] on every lift of material placed and at a frequency of one sieve analysis for every 1000 [_____] square meters yards, or portion thereof, of material placed.

c. Perform liquid limit and plasticity index tests at the same frequency as the sieve analysis.

d. Measure the thickness of each course at intervals providing at least one measurement for each 500 [_____] square meters yards or part thereof. The thickness measurement shall be made by test holes, at least 75 mm 3 inches in diameter through the course.

1.6.4 Approval of Material

Select the source of materials [30] [_____] days prior to the time the material will be required in the work. Tentative approval will be based on initial test results. Final approval of the materials will be based on tests for gradation, liquid limit, and plasticity index performed on samples taken from the completed and compacted course.

1.7 ENVIRONMENTAL REQUIREMENTS

**
NOTE: This paragraph may be deleted in localities where freezing temperatures do not occur, and elsewhere when it is definitely known that the work will not be carried on during periods when such temperatures are to be expected. Otherwise, this requirement will be retained, but the protective measures specified may be modified to suit local conditions and individual project requirements.
**

SECTION 32 11 16 Page 10
Perform construction when the atmospheric temperature is above 2 degrees C (35 degrees F). When the temperature falls below 2 degrees C (35 degrees F), protect all completed areas by approved methods against detrimental effects of freezing. Correct completed areas damaged by freezing, rainfall, or other weather conditions to meet specified requirements.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Subbase Course

**

NOTE: As written, this paragraph applies to general conditions. Other materials such as disintegrated granite, volcanic ash or cinders, limerock, caliche, or asphalt millings will be specified when supported by adequate performance data. The requirement for percentage of wear will be deleted when local experience indicates the material is satisfactory. The material requirements from State or other local highway agency specifications may be incorporated in contract documents for constructing subbase course for roads, streets, or similar-use pavements if conditions a, b, c, and d below are met:

a. The percentage of material by weight passing the 0.075 mm (No. 200) sieve will not exceed 8.

b. When local conditions dictate a nonfrost-susceptible material, particles having a diameter of less than 0.02 mm will not be in excess of 3 percent.

c. The portion of the material passing the 0.425 mm (No. 40) sieve will have a liquid limit not greater than 25 and a plasticity index not greater than 5.

d. The project requires less than 600 cubic meters (750 cubic yards) of material and it is not an airfield pavement. (See item e below if project does not meet this requirement).

e. Approval from AFCEC, the Navy EFDs, or USACE TSMCX is required before state or other local highway specifications may be used for road or street projects requiring over 600 cubic meters (750 cubic yards) and/or airfield projects. Project specific information will be submitted to AFCEC, the Navy EFDs, or USACE TSMCX with the request for approval.

The desired maximum top size will be inserted in the blank. The necessity for meeting grades dictates that maximum top size should not exceed 75 mm (3 inches).
Gradation band No. 1 or 2 may be used for lower design CBR values than specified above where no increase in price results. Gradation No. 1 will be used when a drainage layer will be placed above the subbase and the subbase is designed as a separation layer. Exceptions to the gradation requirements will be permitted when supported by adequate in-place CBR data. When this specification is to be used as base course for roads, streets, and parking areas, the maximum top size will not exceed 50 mm (2 inches) for a layer thickness of less than 150 mm (6 inches). The inapplicable gradation will be deleted.

Where local conditions dictate a nonfrost-susceptible material, retain the sentence in brackets requiring particles having a diameter of less than 0.02 mm not to exceed 3 percent by weight of the total aggregate, as determined in accordance with ASTM D422.

When this specification is used for base course under rigid pavements, the gradation band for rigid pavement base course will be used. The gradation will also meet the requirements in the applicable technical manual or engineering instruction for pavement design for frost conditions.

**

Provide aggregates consisting of crushed stone or slag, gravel, shell, sand, or other sound, durable, approved materials processed and blended or naturally combined. Provide aggregates which are durable and sound, free from lumps and balls of clay, organic matter, objectionable coatings, and other foreign material. Material retained on the 4.75 mm No. 4 sieve shall have a percentage of wear not to exceed 50 percent after 500 revolutions when tested as specified in ASTM C131/C131M. Aggregate shall be reasonably uniform in density and quality. Slag shall be an air-cooled, blast-furnace product having a dry weight of not less than 1050 kg/cubic meter 65 pcf. Aggregates shall have a maximum size of [_____] mm inch and shall be within the limits specified as follows:

<table>
<thead>
<tr>
<th>Gradation No.</th>
<th>Design CBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 Max</td>
</tr>
<tr>
<td>2</td>
<td>40 Max</td>
</tr>
<tr>
<td>3</td>
<td>30 Max</td>
</tr>
<tr>
<td>Select Material</td>
<td>20 Max</td>
</tr>
<tr>
<td>Sieve Designation</td>
<td>No. 1</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>2 mm No. 10</td>
<td>50</td>
</tr>
<tr>
<td>0.075 mm No. 200</td>
<td>8</td>
</tr>
</tbody>
</table>

[Particles having diameters less than 0.02 mm 0.0008 inches shall not be in excess of 3 percent by weight of the total sample tested as determined in accordance with ASTM D422.] The portion of any blended component and of the completed course passing the 0.425 mm No. 40 sieve shall be either nonplastic or shall have a liquid limit not greater than 25 and a plasticity index not greater than 5.

2.1.2 Select-Material Subbase Course

**

NOTE: When used as material for embankment, the applicable specification will be used to determine the maximum size of particles. The requirement on the amount passing the 0.075 mm (No. 200) sieve may be increased for locally available materials but will not be relaxed to the point where materials with insufficient CBR under ASTM D4429 will pass.

Where local conditions dictate a nonfrost-susceptible material, retain the sentence in brackets requiring particles having a diameter of less than 0.02 mm not exceed 3 percent by weight of the total aggregate, as determined in accordance with ASTM D422.

**

Provide materials consisting of selected soil or other materials from field excavation, stockpiles, or other sources and free from lumps and balls of clay and from organic and other objectionable matter. Not more than 25 percent by weight shall pass the 0.075 mm No. 200 sieve. The portion of material passing the 0.425 mm No. 40 sieve shall have a liquid limit less than 35 and a plasticity index less than 12. The maximum particle size shall not exceed 75 mm 3 inches.[Particles having diameters less than 0.02 mm shall not be in excess of 3 percent by weight of the total sample tested as determined in accordance with ASTM D422.]

2.1.3 Rigid Pavement Base Course

Provide aggregates consisting of crushed stone or slag, gravel, shell, sand, or other sound, durable, approved materials processed and blended or naturally combined. Provide aggregates which are durable and sound, free from lumps and balls of clay, organic matter, objectionable coatings, and other foreign material. Material retained on the 4.75 mm No. 4 sieve shall have a percentage of wear not to exceed 50 percent after 500 revolutions when tested as specified in ASTM C131/C131M. At least 50 percent by weight retained on each sieve shall have one freshly fractured face with the area at least equal to 75 percent of the smallest midsectional area of the piece. Aggregate shall be reasonably uniform in density and quality. Slag shall be an air-cooled, blast-furnace product having a dry weight of not less than 1050 kg/cubic meter 65 pcf. Aggregates shall have a maximum size
of 50 mm 2 inches and shall be within the limits specified as follows:

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Rigid Pavement Base Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm No. 10</td>
<td>85</td>
</tr>
<tr>
<td>0.075 mm No. 200</td>
<td>8</td>
</tr>
</tbody>
</table>

[Particles having diameters less than 0.02 mm shall not be in excess of 3 percent by weight of the total sample tested as determined in accordance with ASTM D422.] The portion of any blended component and of the completed course passing the 0.425 mm No. 40 sieve shall be either nonplastic or shall have a liquid limit not greater than 25 and a plasticity index not greater than 5. The Contractor is responsible for any additional stability required to provide a working platform for construction equipment. If the Contractor can demonstrate with a test section that a material has adequate stability to support construction equipment, the fractured face requirement can be deleted, subject to the approval of the Contracting Officer.

PART 3 EXECUTION

3.1 OPERATION OF AGGREGATE SOURCES

Clearing, stripping and excavating are the responsibility of the Contractor. Operate the aggregate sources to produce the quantity and quality of materials meeting the specified requirements in the specified time limit. [Upon completion of work, aggregate sources on Government property shall be conditioned to drain readily, and shall be left in a satisfactory condition.] Aggregate sources on private lands shall be conditioned in agreement with local laws and authorities.

3.2 STOCKPILING MATERIAL

**
NOTE: In cases where material previously stockpiled under a separate contract is utilized in the construction of the base course, this requirement will be included in the specifications. When applicable, a separate item of work will be shown in the bid schedule to provide for the use of previously stockpiled materials.
**

Prior to stockpiling of material, clear and level storage sites. Stockpile all materials, including approved material available from excavation and grading, in the manner and at the locations designated. Aggregates shall be stockpiled on the cleared and leveled areas designated by the Contracting Officer to prevent segregation. Materials obtained from different sources shall be stockpiled separately.

3.3 PREPARATION OF UNDERLYING MATERIAL

Prior to constructing the [subbase] [or] [select-material subbase] [or] [rigid pavement base] course, clean the underlying course or subgrade of all foreign substances. The surface of the underlying course or subgrade shall meet specified compaction and surface tolerances. Correct ruts, or
soft yielding spots, in the underlying courses, subgrade areas having inadequate compaction, and deviations of the surface from the specified requirements, by loosening and removing soft or unsatisfactory material and by adding approved material, reshaping to line and grade, and recompressing to specified density requirements. For cohesionless underlying courses or subgrades containing sands or gravels, as defined in ASTM D2487, the surface shall be stabilized prior to placement of the overlying course. Accomplish stabilization by mixing the overlying course material into the underlying course, and compacting by approved methods. [The stabilized material shall be considered as part of the underlying course and shall meet all requirements for the underlying course.] The finished underlying course shall not be disturbed by traffic or other operations and shall be maintained in a satisfactory condition until the overlying course is placed.

3.4 GRADE CONTROL

The finished and completed course shall conform to the lines, grades, and cross sections shown. The lines, grades, and cross sections shown shall be maintained by means of line and grade stakes placed by the Contractor at the work site.

3.5 MIXING AND PLACING MATERIALS

**
NOTE: More details on applicable method for placing, mixing, and spreading should be included when appropriate.
**

Mix and place the materials to obtain uniformity of the material at the water content specified. Make such adjustments in mixing or placing procedures or in equipment as may be directed to obtain the true grades, to minimize segregation and degradation, to reduce or accelerate loss or increase of water, and to insure a satisfactory subbase course.

3.6 LAYER THICKNESS

The compacted thickness of the completed course shall be as indicated. When a compacted layer of 150 mm 6 inches is specified, the material may be placed in a single layer; when a compacted thickness of more than 150 mm 6 inches is required, no layer shall be thicker than 150 mm 6 inches nor be thinner than 75 mm 3 inches when compacted.

3.7 COMPACTION

Compact each layer of the material, as specified, with approved compaction equipment. Maintain water content during the compaction procedure to within plus or minus [2] percent of optimum water content, as determined from laboratory tests, as specified in paragraph SAMPLING AND TESTING. In all places not accessible to the rollers, compact the mixture with hand-operated power tampers. [Compaction of the subbase [or select-material subbase] shall continue until each layer is compacted through the full depth to at least 100 percent of laboratory maximum density.] [Compaction of the rigid base course shall continue until each layer is compacted through the full depth to at least 95 percent of laboratory maximum density.] Make such adjustments in compacting or finishing procedures as may be directed to obtain true grades, to minimize segregation and degradation, to reduce or increase water content, and to ensure a satisfactory subbase course. Any materials that are found to be
unsatisfactory shall be removed and replaced with satisfactory material or reworked, as directed, to meet the requirements of this specification.

3.8 PROOF ROLLING

**

NOTE: Proof rolling is only required when a subbase course is used under a flexible airfield pavement with the following conditions:

Air Force Bases: Proof roll the top of the completed subbase course of Type A traffic areas and the center 23 m (75 feet) of heavy, modified heavy, and medium load runways with 30 coverages.

Army Airfields: On Class IV airfields with runways greater than 1525 meters (5000 feet), proof roll the top of the completed subbase course in Type A traffic areas and center 23 meters (75 feet) of runways with 30 coverages.

Navy and Marine Corps Airfields: Proof roll top of completed subbase course on center 12 meters (40 feet) of taxiways and on center 30.5 meters (100 feet) of runways with 8 coverages. Apply 4 coverages to all other paved areas, exclusive of runway overrun and blast protection areas.

**

Areas designated on the drawings to be proof rolled shall receive an application of [_____] coverages with a heavy pneumatic-tired roller having four or more tires abreast, each tire loaded to a minimum of 13.6 metric tons 30,000 pounds and inflated to a minimum of 1.034 MPa 125 psi. A coverage is defined as the application of one tire print over the designated area. In the areas designated, apply proof rolling to the top layer of the subbase course. Maintain water content of the top layer of the subbase course such that the water content is within plus or minus [2] [_____] percent of optimum water content, as determined from laboratory tests, as specified in paragraph SAMPLING AND TESTING. Any material in the subbase courses or underlying materials indicated to be unsatisfactory by the proof rolling shall be removed, dried, and recompacted, or removed and replaced with satisfactory materials.

3.9 EDGES

Place approved material along the edges of the [subbase] [and] [select-material subbase] course in such quantity as will compact to the thickness of the course being constructed. When the course is being constructed in two or more layers, at least a 300 mm 1 foot width of the shoulder shall be rolled and compacted simultaneously with the rolling and compacting of each layer of the subbase course, as directed.

3.10 SMOOTHNESS TEST

The surface of the top layer shall show no deviations in excess of 10 mm 3/8 inch when tested with a 3.66 m 12 foot straightedge. Take measurements in successive positions parallel to the centerline of the area to be paved. Measurements shall also be taken perpendicular to the centerline at [15] [_____] meter [50] [_____] foot intervals. Correct deviations
exceeding this amount by removing material and replacing with new material,
or by reworking existing material and compacting it to meet these
specifications.

3.11 THICKNESS CONTROL

**
NOTE: When subbase or rigid pavement base courses are constructed less than 150 mm (6 inches) in total thickness, a deficiency of 13 mm (1/2 inch) in the thickness of any area of such paving is considered excessive. Applicable to job conditions, the thickness tolerance provisions will therefore be modified as required, restricting all deficiencies to less than 6 mm (1/4 inch).
**

The completed thickness of the course(s) shall be in accordance with the thickness and grade indicated. The completed course shall not be more than 13 mm 1/2 inch deficient in thickness nor more than 13 mm 1/2 inch above or below the established grade. Where any of these tolerances are exceeded, correct such areas by scarifying, adding new material of proper gradation or removing material, and compacting, as directed. Where the measured thickness is 13 mm 1/2 inch or more thicker than shown, the course will be considered as conforming with the specified thickness requirements plus 13 mm 1/2 inch. The average job thickness is the average of the job measurements as specified above but within 6 mm 1/4 inch of the thickness shown.

3.12 MAINTENANCE

Maintain the completed course in a satisfactory condition until accepted.

-- End of Section --