UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2015

SECTION TABLE OF CONTENTS

DIVISION 31 - EARTHWORK

SECTION 31 62 13.20

PRECAST/PRESTRESSED CONCRETE PILES

08/09

PART 1 GENERAL

1.1 REFERENCES
1.2 LUMP SUM PAYMENT
 1.2.1 Acceptance Criteria
1.3 MEASUREMENT AND PAYMENT
 1.3.1 Pile Cut-Off
 1.3.2 Pile Build-ups
 1.3.3 Pile Splices
 1.3.4 Pulled Piles
 1.3.5 Pile Load Test
1.4 UNIT PRICES
 1.4.1 Furnishing and Delivering Prestressed Concrete Piles
 1.4.1.1 Payment
 1.4.1.2 Measurement
 1.4.1.3 Unit of Measure
 1.4.2 Driving Prestressed Concrete Piles
 1.4.2.1 Payment
 1.4.2.2 Measurement
 1.4.2.3 Unit of Measure
 1.4.3 Pulled Prestressed Concrete Piles
 1.4.3.1 Payment
 1.4.3.2 Measurement
 1.4.3.3 Unit of Measure
 1.4.4 Prestressed Concrete Pile Driving Tests
 1.4.4.1 Payment
 1.4.4.2 Measurement
 1.4.4.3 Unit of Measure
 1.4.5 Prestressed Concrete Piles for Load Tests
 1.4.5.1 Payment
 1.4.5.2 Measurement
 1.4.5.3 Unit of Measure
 1.4.6 Prestressed Concrete Pile Compressive Load Tests
 1.4.6.1 Payment
1.4.6.2 Measurement
1.4.6.3 Unit of Measure
1.4.7 Prestressed Concrete Pile Tensile Load Tests
1.4.7.1 Payment
1.4.7.2 Measurement
1.4.7.3 Unit of Measure
1.4.8 Prestressed Concrete Pile Lateral Load Tests
1.4.8.1 Payment
1.4.8.2 Measurement
1.4.8.3 Unit of Measure
1.4.9 Pulled Load Test Prestressed Concrete Piles
1.4.9.1 Payment
1.4.9.2 Measurement
1.4.9.3 Unit of Measure
1.4.10 Steel H-Pile Driving Points
1.4.10.1 Payment
1.4.10.2 Measurement
1.4.10.3 Unit of Measure
1.4.11 Prestressed Concrete Pile Splices
1.4.11.1 Payment
1.4.11.2 Measurement
1.4.11.3 Unit of Measure
1.5 PILE REQUIREMENTS
1.6 SUBMITTALS
1.7 QUALITY ASSURANCE
1.7.1 Piles
1.7.2 Quality Control Procedures
1.7.3 Installation Procedures
1.7.4 Geotechnical Consultant Documentation
1.7.5 Concrete Mix Design
1.7.6 Load Test Supporting Data
1.7.7 Silica Fume Manufacturer's Representative
1.8 DELIVERY, STORAGE, AND HANDLING
1.8.1 Damaged Piles
1.8.1.1 Repairable Cracks
1.8.1.2 Non-Repairable Cracks
1.8.2 Pile Sweep

PART 2 PRODUCTS

2.1 MATERIALS
2.1.1 Cementitious Materials
2.1.1.1 Cement
2.1.1.2 Fly Ash and Pozzolan
2.1.1.3 Ground Iron Blast-Furnace Slag
2.1.1.4 Silica-Fume
2.1.1.5 Supplemental Cementitious Materials (SCM) Content
2.1.2 Water
2.1.3 Aggregates
2.1.3.1 Alkali-Silica Reactivity (ASR)
2.1.4 Admixtures
2.1.5 Prestressing Steel
2.1.6 Reinforcing Steel
2.1.7 Ties and Spirals
2.1.8 Anchorages and End Fittings
2.1.9 Grout
2.1.10 Epoxy Coating
2.1.11 H-Pile Extensions
2.1.12 Pile Driving Points
2.2 CONCRETE MIX DESIGN
2.3 FABRICATION
 2.3.1 Formwork
 2.3.2 Pretensioning
 2.3.3 Casting
 2.3.3.1 Conveying
 2.3.3.2 Placing and Casting
 2.3.4 Curing of Piles
 2.3.4.1 Moist Curing
 2.3.4.2 Accelerated Curing
 2.3.5 Detensioning
2.4 PRODUCT QUALITY CONTROL
 2.4.1 Aggregate Tests
 2.4.2 Slump and Strength Tests
 2.4.3 Changes in Proportions
 2.4.4 Compressive Strength Test Results
 2.4.5 Chloride Ion Concentration
 2.4.6 Chloride Ion Penetration

PART 3 EXECUTION
3.1 PILE DRIVING EQUIPMENT
 3.1.1 Pile Hammers
 3.1.2 Driving Helmets and Cushion Blocks
 3.1.2.1 Driving Helmets or Caps and Pile Cushions
 3.1.2.2 Hammer Cushion or Capblock
3.2 PRELIMINARY WORK
 3.2.1 Wave Equation Analysis of Pile Drivability
 3.2.2 Order List
 3.2.3 Pile Length Markings
3.3 PILE DRIVING
 3.3.1 Driving Piles
 3.3.2 Protection of Piles
 3.3.3 Tolerances in Driving
 3.3.4 Rejected Piles
 3.3.5 Jetting of Piles
 3.3.6 Predrilling of Piles
 3.3.7 Splices
 3.3.8 Build-Ups
 3.3.9 Pile Cut-Off
3.4 FIELD QUALITY CONTROL
 3.4.1 Test Piles
 3.4.2 Dynamic Pile Analysis
 3.4.3 Static Load Tests
 3.4.3.1 Safe Design Capacity
 3.4.4 Tensile Load Test
 3.4.5 Lateral Load Test
 3.4.6 Pile Records
3.5 SPECIAL INSPECTION AND TESTING FOR SEISMIC-RESISTING SYSTEMS

ATTACHMENTS:

Pile and Driving Equipment Data Form

pile driving log

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for prestressed, pretensioned piles.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: TO DOWNLOAD UFGS GRAPHICS

NOTE: The extent and location of the work to be accomplished should be indicated on the project drawings or included in the project specification.

NOTE: The following information shall be shown on the drawings:

1. Locations and design loads of piles. If both tension and compression piles are contained in design, identify by type.
2. Size, shape, and length of piles.

3. Locations, sizes, and number of prestressing steel strands. Unit stresses for prestressing strands.

4. Details of reinforcement.

5. Details of splices, if required.

6. Locations of test piles, if required.

7. Soil data, where required.

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 214R (2011) Evaluation of Strength Test Results of Concrete

ACI 318 (2014; Errata 2014) Building Code Requirements for Structural Concrete and Commentary

ACI 318M (2011; Errata 2013) Building Code
Requirements for Structural Concrete & Commentary

AMERICAN WELDING SOCIETY (AWS)

AWS D1.4/D1.4M (2011) Structural Welding Code - Reinforcing Steel

ASTM INTERNATIONAL (ASTM)

ASTM A572/A572M (2013a) Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel

ASTM A996/A996M (2014a) Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement

ASTM C1202 (2012) Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration

Analysis of Fine and Coarse Aggregates

ASTM C172/C172M (2014a) Standard Practice for Sampling Freshly Mixed Concrete

ASTM C618 (2012a) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

ASTM C666/C666M (2003; R 2008) Resistance of Concrete to Rapid Freezing and Thawing

ASTM D4945 (2012) High-Strain Dynamic Testing of Piles
1.2 LUMP SUM PAYMENT

**
NOTE: Use this paragraph for lump-sum contracts, consult with Contracting Officer’s Technical Representative (Geotechnical Branch) on applicability of use prior to selection. This paragraph will be typically used when there are 1) relatively small quantity of piles, 2) allowable pile loading is less than 40 tons, and 3) the subsurface conditions are well defined. Fill in Table I as required selecting columns applicable to project. Generally, pile capacity, location, and minimum tip elevation are shown on plans. Test piles and load tests are not incorporated on lump sum contracts. Delete this paragraph for unit-price contracts.
**

Base bids upon providing the number, size, capacity, and length of piles as indicated on the drawings. [following Table I:

<table>
<thead>
<tr>
<th>Location</th>
<th>Number</th>
<th>Size</th>
<th>Capacity</th>
<th>Length (tip to cut-off)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The contract price for piling shall include the cost of all necessary equipment, tools, material, labor, and supervision required to: deliver, handle, install, cut-off, dispose of any cut-offs, and meet the applicable contract requirements. The contract price also includes mobilization, pre-drilling, and redriving heaved piles. If, in redriving, it is found that any pile is not of sufficient length to provide the capacity specified, notify the Contracting Officer, who reserves the right to increase or decrease the total length of piles to be furnished and installed by changing the pile locations or elevations, requiring the installation of additional piles, or directing the omission of piles from the requirements shown and specified. Should total number of piles or number of each length vary from that specified as the basis for bidding, an adjustment in the contract price or time for completion, or both, will be made in accordance with the contract documents. Payment for piles will be based on successfully installing piles to both the minimum tip elevation and satisfying the acceptance criteria identified herein. No additional payment will be made for: damaged, rejected, or misplaced piles; withdrawn
piles; any portion of a pile remaining above the cut-off elevation; backdriving; cutting off piles; splicing; build-ups; any cut-off length of piles; or other excesses beyond the assumed pile length indicated for which the Contractor is responsible.

1.2.1 Acceptance Criteria

Safe design capacity for piles is [_____] tons. Piles shall be driven to a minimum depth of [_____] feet below cut-off elevation, and to such additional depth as required to obtain a bearing capacity of not less than [_____] tons.

The following formulas are presented only as a guide to aid in establishing the controlling penetration per blow, which, together with the minimum depth of penetration will serve to determine the required minimum depth of penetration of each individual pile:

\[
R = \frac{2E}{S + 0.1} \quad \text{For double acting hammers}
\]

\[
R = \frac{2WH}{S + 0.1} \quad \text{For single acting hammers}
\]

Where \(R \) is the approximate allowable pile load in kips; \(E \) equals the energy in foot-kips per blow based on an acceptable certified statement from the manufacturer of the hammer; \(W \) equals the weight of the hammer or ram in kips; \(H \) equals the height of fall of the hammer of ram in feet; and \(S \) equals the average inches of penetration per blow for the last three blows. An allowance shall be made for reduced penetration caused by shock absorption of the cushion or cap blocks.

[1.3 MEASUREMENT AND PAYMENT]

**

NOTE: Delete this paragraph for lump-sum contracts.

For NAVFAC PAC projects: Where there is unit pricing for piles, use this paragraph and edit applicable attachments from Section 00 22 13.00 20 SUPPLEMENTARY INSTRUCTIONS TO OFFERORS for inclusion in Standard Form 1142, "Solicitation, Offer and Award" and "Schedule of Bid Items." Select first bracketed text.

For NAVFAC Southeast projects, where there is a need for unit pricing of piles, include this paragraph. Refer to NAVFAC SE Instruction 00010, "Instructions for Preparing Basis of Bid Statement With Unit-Priced Items," for method of specifying unit price bid items. Select first bracketed text.

**

NOTE: For NAVFAC LANT projects, use the following
Requirements of "FAR 52.211-18, Variation in Estimated Quantity" shall not apply to payment for piling. Each pile and test pile acceptably provided will be paid for at the bid unit price per unit length, which price shall include items incidental to furnishing and driving the piles including mobilization and demobilization, [jetting] [predrilling] [probing], redriving uplifted piles, [an additional 1.5 m 5 feet in furnished length for any test pile not driven beyond estimated pile length,] and cutting off piles at the cut-off elevation. [The cost for additional length for the test piles shall be included in the total unit price cost for the job.] Payment will be made for job [and test piles] at the bid unit price for the length of pile, from tip to final cut-off, actually provided, excluding buildups and splices directed by the Contracting Officer to be made. Should the actual cumulative pile length driven (tip to cut-off) vary more than 25 percent from the total pile length specified as a basis for bidding, at the direction of the Contracting Officer, the unit price per unit length will be adjusted in accordance with provisions of "FAR 52.236-2, Differing Site Conditions."

1.3.1 Pile Cut-Off

Where the tip to cut-off length is less than that calculated from the results of test pile driving [and load testing], payment for that portion of pile not driven will be made at 75 percent of the bid unit price and no other payment will be made for making the cut-off.

1.3.2 Pile Build-ups

Payment for buildups will be made at 125 percent of the bid unit price.

1.3.3 Pile Splices

Payment for splices, as specified, will be made at 25 times the unit price per 300 mm foot bid for 250 mm 10 inch piling, 22 times the unit price per 300 mm foot bid for 300 mm 12 inch piling, and 18 times the unit price per 300 mm foot bid for all other piling.

1.3.4 Pulled Piles

Piles required to be pulled at no fault of the Contractor will be paid for at the bid unit price for furnishing and driving the pile in its original position plus 25 percent of the amount to cover the cost of pulling. Such pulled piles when redriven will be paid for at 25 percent of the bid unit price for the length driven.

1.3.5 Pile Load Test

Payment for each acceptably provided complete test loading of a single pile will be made at the contract unit price per test, which price shall include furnishing, placing, and removing testing equipment, and placing and removing test loads. At the direction of the Contracting Officer, load tests may be waived at a credit to the Government of the unit price bid therefore.
1.4.1 Furnishing and Delivering Prestressed Concrete Piles

1.4.1.1 Payment

Payment will be made for costs associated with furnishing and delivering the required lengths of permanent prestressed concrete piles, [including H-pile extensions,] which includes costs of furnishing and delivering piles to the work site. No payment will be made for the driving head or lengths of piles exceeding required lengths. No payment will be made for piles damaged during delivery, storage, or handling to the extent that they are rendered unsuitable for the work, in the opinion of the Contracting Officer.

1.4.1.2 Measurement

Furnishing and delivering permanent prestressed concrete piles will be measured for payment by the linear meter foot of piles required below the cut-off elevation as [determined by the Contracting Officer and furnished to the Contractor] [indicated].

1.4.1.3 Unit of Measure

Unit of measure: linear meter foot.

1.4.2 Driving Prestressed Concrete Piles

1.4.2.1 Payment

Payment will be made for costs associated with driving permanent prestressed concrete piles, which includes costs of handling, driving, [and splicing of piles,] [performing dynamic testing, interpreting data and submitting reports,] measuring heave, redriving heaved piles, removal of [build-ups] driving heads or cutting off piles at the cut-off elevation and removing from the work site, compiling and submitting pile driving records, backfilling voids around piles, and any other items incidental to driving piles to the required elevation.

1.4.2.2 Measurement

Permanent prestressed concrete piles will be measured for payment for driving on the basis of lengths, to the nearest hundredth tenth of a linear meter foot, along the axis of each pile acceptably in place below the cut-off elevation shown.

1.4.2.3 Unit of Measure

Unit of measure: linear meter foot.
1.4.3 Pulled Prestressed Concrete Piles

1.4.3.1 Payment

Payment will be made for costs associated with piles pulled at the direction of the Contracting Officer and found to be undamaged. The cost of furnishing and delivering pulled and undamaged piles will be paid for at the applicable contract unit price for payment item "Furnishing and Delivering Prestressed Concrete Piles". The cost of driving pulled and undamaged piles will be paid for at the applicable contract unit price for payment item "Driving Prestressed Concrete Piles". The cost of pulling pulled and undamaged piles will be paid for at twice the applicable contract unit price for payment item "Driving Prestressed Concrete Piles", which includes backfilling any remaining void. The cost of redriving pulled and undamaged piles will be paid for at the applicable contract unit price for payment item "Driving Prestressed Concrete Piles". No payment will be made for furnishing, delivering, driving, pulling, and disposing of piles, including pile driving points, pulled and found to be damaged and backfilling voids. New piles replacing damaged piles will be paid for at the applicable contract unit price for payment items "Furnishing and Delivering Prestressed Concrete Piles" and "Driving Prestressed Concrete Piles".

1.4.3.2 Measurement

Furnishing and delivering pulled and undamaged permanent prestressed concrete piles will be measured for payment as specified in paragraph UNIT PRICES, subparagraph FURNISH AND DELIVER PRESTRESSED CONCRETE PILES. Pulling undamaged prestressed concrete piles will be measured for payment as specified in paragraph UNIT PRICES, subparagraph DRIVING PRESTRESSED CONCRETE PILES. Redriving pulled undamaged prestressed concrete piles will be measured for payment as specified in paragraph UNIT PRICES, subparagraph DRIVING PRESTRESSED CONCRETE PILES. New piles replacing damaged piles will be measured for payment as specified in paragraph UNIT PRICES, subparagraphs FURNISH AND DELIVER PRESTRESSED CONCRETE PILES and DRIVING PRESTRESSED CONCRETE PILES.

1.4.3.3 Unit of Measure

Unit of measure: linear meter foot.

1.4.4 [Prestressed Concrete Pile Driving Tests]

1.4.4.1 Payment

Payment will be made for costs associated with furnishing, delivering, driving, pulling, and disposing of driven test piles, [including [pile driving points] [and] [splices]]; conducting pile driving tests; backfilling voids around piles; compiling pile driving test records [, performing dynamic testing; interpreting data; and submitting reports].

1.4.4.2 Measurement

Prestressed concrete pile driving tests will be measured for payment on the basis of the applicable contract unit price per pile driving test.
1.4.4.3 Unit of Measure

Unit of measure: each.

1.4.5 [Prestressed Concrete Piles for Load Tests]

1.4.5.1 Payment

Payment will be made for costs associated with furnishing, delivering, driving, pulling, and disposing of load test piles [including [pile driving points] [and] [splices]]; backfilling voids around piles; compiling pile driving records []; furnishing, fabricating, and mounting of strain rods and protective assembly]; [furnishing, fabricating, and mounting of inclinometer and inclinometer protective assembly]; [performing dynamic testing; interpreting data; and submitting reports]. No additional payment will be made for load test piles incorporated in the permanent work other than as provided.

1.4.5.2 Measurement

Prestressed concrete piles for load tests will be measured for payment on the basis of the applicable contract unit price per load test pile.

1.4.5.3 Unit of Measure

Unit of measure: each.

1.4.6 [Prestressed Concrete Pile Compressive Load Tests]

1.4.6.1 Payment

Payment will be made for costs associated with prestressed concrete pile compressive load tests, including material and labor for fabricating and furnishing load frames; calibrating load cells and hydraulic jacks; furnishing specified test equipment; installing strain rods; placing and removing test loads and test equipment; recording, reducing, and submitting test data; and compiling and submitting pile load test reports. No payment will be made for rejected pile compressive load tests.

1.4.6.2 Measurement

Prestressed concrete pile compressive load tests will be measured for payment on the basis of the applicable contract unit price per load test.

1.4.6.3 Unit of Measure

Unit of measure: each.

1.4.7 [Prestressed Concrete Pile Tensile Load Tests]

1.4.7.1 Payment

Payment will be made for costs associated with prestressed concrete pile tensile load tests, including material and labor for fabricating and furnishing load frames; calibrating load cells and hydraulic jacks; furnishing specified test equipment; installing strain rods; placing and removing test loads and test equipment; recording, reducing, and submitting test data; and compiling and submitting pile load test reports. No payment will be made for rejected pile tensile load tests.
1.4.7.2 Measurement

Prestressed concrete pile tensile load tests will be measured for payment on the basis of the applicable contract unit price per number of tensile load test.

1.4.7.3 Unit of Measure

Unit of measure: each.

1.4.8 [Prestressed Concrete Pile Lateral Load Tests]

1.4.8.1 Payment

Payment will be made for costs associated with prestressed concrete pile lateral load tests, including material and labor for fabricating and furnishing load frames; calibrating load cells and hydraulic jacks; furnishing specified test equipment; installing inclinometers; placing and removing test loads and test equipment; recording, reducing, and submitting test data; and compiling and submitting pile load test reports. No payment will be made for rejected pile lateral load tests.

1.4.8.2 Measurement

Prestressed concrete pile lateral load tests will be measured for payment on the basis of the applicable contract unit price per lateral load test.

1.4.8.3 Unit of Measure

Unit of measure: each.

1.4.9 [Pulled Load Test Prestressed Concrete Piles]

1.4.9.1 Payment

Payment will be made for costs associated with load test prestressed concrete piles pulled prior to load testing at the direction of the Contracting Officer and found to be undamaged. The cost of furnishing, delivering, driving, and pulling undamaged load test piles will be paid for at the applicable contract unit price for payment item "Prestressed Concrete Piles for Load Tests". The cost of pulling undamaged load test piles the second time after redriving and testing will be paid for at twice the applicable contract unit price for payment item "Driving Prestressed Concrete Piles". The cost of redriving pulled undamaged load test piles will be paid for at the applicable contract unit price for payment item "Driving Prestressed Concrete Piles". No payment will be made for furnishing, delivering, driving, pulling, and disposing of load test piles pulled at the direction of the Contracting Officer and found to be damaged. New load test piles replacing damaged piles will be paid for at the applicable contract unit price for payment item "Prestressed Concrete Piles for Load Tests".

1.4.9.2 Measurement

Pulled undamaged load test prestressed concrete piles will be measured for payment as specified in paragraph UNIT PRICES, subparagraph PRESTRESSED CONCRETE PILES FOR LOAD TESTS. Pulling undamaged load test prestressed concrete piles the second time after redriving and testing will be measured
for payment as specified in paragraph UNIT PRICES, subparagraph DRIVING PRESTRESSED CONCRETE PILES. Redriving pulled undamaged prestressed concrete piles will be measured for payment as specified in paragraph UNIT PRICES, subparagraph DRIVING PRESTRESSED CONCRETE PILES. New load test prestressed concrete piles replacing damaged piles will be measured for payment as specified in paragraph UNIT PRICES, subparagraph PRESTRESSED CONCRETE PILES FOR LOAD TESTS.

1.4.9.3 Unit of Measure

Unit of measure: as specified in paragraph UNIT PRICES, subparagraphs DRIVING PRESTRESSED CONCRETE PILES and PRESTRESSED CONCRETE PILES FOR LOAD TESTS, respectfully.

1.4.10 [Steel H-Pile Driving Points]

1.4.10.1 Payment

Payment will be made for costs associated with steel H-pile driving points, including furnishing, delivering, and installing.

1.4.10.2 Measurement

Steel H-pile driving points will be measured for payment on the basis of the number of steel H-pile driving points required.

1.4.10.3 Unit of Measure

Unit of measure: each.

1.4.11 [Prestressed Concrete Pile Splices]

1.4.11.1 Payment

Payment will be made for costs associated with prestressed concrete pile splices, including all plant, labor, and material required to make the splice.

1.4.11.2 Measurement

Prestressed concrete pile splices will be measured for payment on the basis of the applicable contract unit price per pile splice.

1.4.11.3 Unit of Measure

Unit of measure: each.

1.5 PILE REQUIREMENTS

**
NOTE: Delete sentence in brackets when test piles are not required. On large scale Design-Bid-Build projects, the Government may still require the Contractor to employ a Geotechnical Consultant to determine the calculated tip elevation and provide oversight of piling installation and testing.
**

Provide precast prestressed concrete piles per PCI Journal Volume 38,
Number 2) (PCI JR-382). Production of piles shall be in accordance with PCI MNL-116. The Government Contractor's Geotechnical Consultant will determine and list "calculated" tip elevations or driving resistance for each pile [from test pile data]. This information will be given to the Contractor no later than 7 days from receipt of complete test data. Use this list as the basis for ordering the piles. Do not order piles until list is provided by the Government Contractor's Geotechnical Consultant. [Test piles shall be [1.5] [_____] meter [5] [_____] feet longer than the bid length.]

1.6 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
SD-01 Preconstruction Submittals

Installation Procedures; G[, [____]]

Geotechnical Consultant Documentation; G[, [____]]

Wave Equation Analysis; G[, [____]]

Order List; G[, [____]]

Precasting manufacturer's quality control procedures; G[, [____]]

Provide instructions and procedures on how the Contractor will assist the Government in the processes of Dynamic Pile Testing, Inspection and Monitoring of piles during installation and testing.

SD-02 Shop Drawings

**
NOTE: When the size and complexity of project warrants certification by a registered engineer, insert requirements; otherwise delete.
**

Piles; G[, [____]]

SD-03 Product Data

Pile Driving Equipment; G[, [____]]

Submit descriptions of pile driving equipment, including hammers, power packs, driving helmets, cap blocks, pile cushions, leads, extractors, jetting equipment, and preboring equipment at least 30 days prior to commencement of work.

SD-05 Design Data

Concrete mix design; G[, [____]]

Submit a concrete mix design before concrete is placed, for each type of concrete used for the piles.

SD-06 Test Reports

Aggregates; G[, [____]]

Silica Fume; G[, [____]]

Concrete Compressive Strength; G[, [____]]

Test piles; G[, [____]]

Load tests; G[, [____]]

Submit concrete cylinder compressive strength test results. [Submit test pile records] [and] [load test data].

Dynamic Pile Analysis; G[, [____]]
Submit a summary report of dynamic test results for test piles within [7][_____] calendar days of completing field work. [For permanent piles, submit a field summary report within one (1) day of testing. Submit a typed report summarizing the results of dynamic testing of permanent piles on a monthly basis.]

SD-07 Certificates

Aggregates; G[, [_____]]
Admixtures; G[, [_____]]

Silica fume manufacturer's representative[; G][; G, [_____]]
Prestressing steel; G[, [_____]]
Cement; G[, [_____]]
Fly ash and pozzolan; G[, [_____]]
Ground Slag; G[, [_____]]

Epoxy coating; G[, [_____]]

Load Test Supporting Data; G[, [_____]]

SD-11 Closeout Submittals

Pile records; G[, [_____]]

Submit pile [and test pile] records.[Submit load test data and results.]

1.7 QUALITY ASSURANCE

1.7.1 Piles

Prepare in accordance with ACI SP-66. Indicate placement of reinforcement including tendons. Indicate location of special embedded or attached lifting devices, employment of pick-up points, support points other than pick-up points, and any other methods of pick-up. [Provide certification of a Professional Engineer registered in any jurisdiction of the U. S. or its territories, that layout and details of reinforcement and tendons conform with that shown on the structural design drawings.]

1.7.2 Quality Control Procedures

Submit the precasting manufacturer's quality control procedures and inspection records established in accordance with PCI MNL-116.

1.7.3 Installation Procedures

a. Submit information on the type of equipment proposed to be used, proposed methods of operation, pile driving plan including proposed sequence of driving, and details of all pile driving equipment and accessories.

SECTION 31 62 13.20 Page 18
[b. Provide details of pile driving equipment and a Wave Equation Analysis of pile drivability for selection of the hammer along with a statement of driving procedures. The Wave Equation Analysis is to be completed by the Contractor's Geotechnical Consultant for each test pile location where different subsurface conditions exist and is to include the following information pertaining to the proposed pile driving equipment:

1. Complete Pile and Driving Equipment Data Form, (which can be downloaded at: http://www.wbdg.org/ccb/NAVGRAPH/ graphtoc.pdf) for each proposed pile hammer and pile type combination.

2. Copies of computer input and output sheets and graphs showing soil resistance versus blow count as well as maximum tension and compression stresses versus blow count. Analysis shall be run at the estimated tip elevation as well as other required elevations to define maximum stress levels in the pile during driving.

c. Provide detailed procedures for conducting the dynamic pile load test and equipment to be used for conducting the load test. The detailed description shall explain how specific information of pile performance will be evaluated.

][1.7.4 Geotechnical Consultant Documentation

The services of an independent, Registered Professional Geotechnical Engineer, experienced in soil mechanics and Pile Dynamic Analysis, shall be hired by the Contractor to observe test pile installation and job pile installation as specified herein. The Geotechnical Consultant shall be independent of the Contractor and shall have no employee of employer relationship which could constitute a conflict of interest.

]1.7.5 Concrete Mix Design

Certify, using a Government-approved independent commercial testing laboratory, that proportioning of mix is in accordance with ACI 211.1 or ACI 318M ACI 318 for specified strength and is based on aggregate data which has been determined by laboratory tests during last twelve months. Submit a complete list of materials including type; brand; source and amount of cement, fly ash, pozzolan, ground slag, and admixtures; and applicable reference specifications. Submit additional data regarding concrete aggregates if the source of aggregate changes. Submittal shall clearly indicate where each mix design will be used when more than one mix design is submitted.

]1.7.6 Load Test Supporting Data

Submit Jack calibration records, a testing arrangement description and diagram, and the proposed loading sequence.

]1.7.7 Silica Fume Manufacturer's Representative

Provide statement that the manufacturer's representative will be present at plant to ensure proper mix, including high range water reducer (HRWR), and batching methods.

1.8 DELIVERY, STORAGE, AND HANDLING

Piles shall be stored, handled, and transported in accordance with PCI MNL-116 except as follows. Methods used for handling and storage of
piles shall be such that the piles are not subjected to excessive bending stress, cracking, spalling, or other damage.

1.8.1 Damaged Piles

The Contractor shall inspect each pile for sweep and structural damage such as cracking and spalling before transporting them to the project site and immediately prior to placement in the driving leads. Any unusual cracks (cracks other than crazing, surface drying, shrinkage cracks and end cracks) shall be brought to the attention of the Contracting Officer. Piles which are damaged during delivery, storage, or handling to the extent they are rendered unsuitable for the work, in the opinion of the Contracting Officer, shall be rejected and removed from the project site, or may be repaired, if approved, at no cost to the Government.

1.8.1.1 Repairable Cracks

Piles with cracks equal to or greater than 0.15 mm 0.006 inches but less than 1.5 mm 0.06 inches shall be rejected or repaired. As an alternate to pile rejection, the Contractor may submit a proposal to repair deficient piles, which shall be restored prior to driving to provide its required design capacity, perform its intended function in the structure, and take into consideration long term durability in corrosive environment.

1.8.1.2 Non-Repairable Cracks

Piles with cracks equal to or greater than 1.5 mm 0.06 inches shall be rejected.

1.8.2 Pile Sweep

Sweep shall be limited to 3 mm per 3 M 1/8 inch per 10 feet over the length of the pile. Piles having excessive sweep shall be rejected.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Cementitious Materials

Cementitious materials shall be portland cement, [blended cement] or portland cement in combination with natural pozzolan or fly ash [or ground granulated blast furnace slag] and conforms to appropriate specifications listed below.

2.1.1.1 Cement

**
NOTE: Insert type of cement required. Generally, Types II, or I/II, is preferred. Type I, or Type III with 8 percent maximum C3A and "low alkali", may be used. Do not use Type III in conjunction with silica fume. In very special cases, Type V, "low alkali," which has limited availability, may be used.
**

**
NOTE: Cement type and quantity of cement required
in mix design is dependent upon the environment, soil conditions, need for corrosion protection, and location of piling:

(a) **CHLORIDE PROTECTION:**

Normal Use. In fresh water or air environment, specify Type I or Type II cement. Type III may be permitted provided tricalcium aluminate (C3A) content is limited to 8 percent and it is low alkali.

Marine Use. In soil or water environments, subject to chlorides above 1,000 ppm, within about 300 m (1000 feet) of the ocean or tidal water, specify Type II or Type III (with a maximum tricalcium aluminate (C3A) content of 8 percent and low alkali) cement, a minimum cementitious materials content of 335 kilograms per cubic meter 564 pounds per cubic yard and a maximum water to cementitious materials ratio of 0.40.

Seawater Exposure. In direct contact with ocean water, specify Type II or Type III (with a maximum tricalcium aluminate (C3A) content of 8 percent and low alkali) cement, a minimum cementitious materials content of 390 kilograms per cubic meter 658 pounds per cubic yard and a maximum water to cementitious materials ratio of 0.40.

(b) **SULFATE RESISTANCE**

A minimum cementitious materials content of 335 kilograms per cubic meter 564 pounds per cubic yard is recommended.

Normal Use. In soils with negligible amount of sulfate, specify Type I or Type II cement. Type III cement may be permitted provided tricalcium aluminate (C3A) content is limited to 8 percent and it is low alkali.

Moderate Sulfate Exposure. In exposures with moderate sulfate content (between 0.10 and 0.20 percent in soil and less than 1500 ppm in water), specify Type II or Type III (with a maximum tricalcium aluminate (C3A) content of 8 percent and low alkali) cement and a maximum water to cementitious materials ratio of 0.40. Do not use Class C fly ash, blast furnace slag, or silica fume for cement replacement.

Severe Sulfate Exposure. In exposures with high sulfate content (exceeds 0.20 percent in soil or 1500 ppm in water), specify Type V or Type II (with a maximum tricalcium aluminate content of 5 percent) cement, and a maximum water to cementitious materials ratio of 0.40. Do not use Class C fly ash, blast furnace slag, or silica fume for cement replacement.

Alkali-Silica Reactivity. When alkali-silica
reactivity is a concern, it is recommended to limit the maximum alkali content of cement to 0.40 or 0.50, when it is locally available, otherwise use 0.60.

**

ASTM C150/C150M, [Type I, II, or III[_____] with a maximum alkali content of[0.40] 0.60 percent][; or][ASTM C595/C595M, Type [IP(MS) or IS(MS)] [_____] blended cement except as modified herein. The blended cement shall consist of a mixture of ASTM C150/C150M cement (with alkali content not exceeding 0.40 percent) and one of the following materials: ASTM C618 pozzolan or fly ash, or ASTM C989/C989M ground iron blast-furnace slag, or ASTM C1240 silica fume. If no satisfactory test results are available (made within the past six months) to prove that the cement alkali content is less than 0.40 percent, then cement with a maximum of 0.60 percent alkali shall be used. Cement certificates shall include test results in accordance with ASTM C150/C150M, including equivalent alkalies indicated in the optional chemical requirements. [Use cement with a tricalcium aluminate (C3A) content of less than [8][5] percent.] Type III cement shall not be used in conjunction with silica fume.

**

NOTE: Fly ash, pozzolan, and ground iron blast-furnace slag increase durability. They may produce uneven discoloration of the concrete during the early stages of construction, depending upon the type of curing provided. Use Fly ash/pozzolan (loss on ignition not exceeding 3 percent) for frost areas to reduce carbon interference with air entraining admixture. Straight replacement with fly ash or natural pozzolan beyond 15 percent may decrease the concrete’s strength gain rate. The following options can help mitigate this slower gain rate: (1) a lower water/cement ratio may be used, (2) partial cement replacement can be completed, e. g., 1 sack of cement can be replaced by 1.5 sacks of fly ash, as long as the final replacement ratio meets the requirements, and (3) very fine fly ashes or pozzolans (e. g. with average particle sizes below 5 microns) can be used.

**

2.1.1.2 Fly Ash and Pozzolan

**

NOTE: Loss on ignition greater than 3 percent may result in significant variations in air content. The air entrainment admixture content may need to be varied often to maintain the same level of entrained air.

**

ASTM C618, Class N, or F except that the maximum total alkalies shall be 3.0 percent, and the maximum allowable loss on ignition shall be 3 [6] percent. If the aggregates are reactive, the maximum calcium oxide content shall be 13.0 percent. Class C shall not be used.
2.1.1.3 Ground Iron Blast-Furnace Slag

ASTM C989/C989M, Grade 120.

2.1.1.4 Silica-Fume

**
NOTE: Use silica fume concrete for marine structures where low permeability and enhanced durability are necessary. The silica fume and HRWR additive should be from the same manufacturer. The Contractor and batch plant may need help from the manufacturer. Select weight percentage based on performance required. If used, a replacement of 7 percent is recommended.
**
**
NOTE: Use for high durability and low permeability. The initial cost of the concrete will increase, and supervision at the batch plant, finishing, and curing is necessary. A HRWR must be used with silica fume. The slump can be increased 50 to 125 mm 2 to 5 inches without reducing strength. Finishing may be more difficult. Proper curing is essential because there is a tendency for plastic shrinkage cracking.
**

ASTM C1240, provide silica fume that is a by-product of silicon or ferrosilicon production. Provide percent by weight of the total cementitious materials as indicated in the table below.

2.1.1.5 Supplemental Cementitious Materials (SCM) Content

The concrete mix shall contain one of the SCMs listed below, or a linear combination thereof.

<table>
<thead>
<tr>
<th>SUPPLEMENTARY CEMENTITIOUS MATERIALS CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM</td>
</tr>
<tr>
<td>Class N Pozzolan or Class F Fly Ash with SiO2 plus Al2O3 plus Fe2O3 greater than 70 percent</td>
</tr>
<tr>
<td>Class N Pozzolan or Class F Fly Ash with SiO2 plus Al2O3 plus Fe2O3 greater than 80 percent</td>
</tr>
<tr>
<td>Class N Pozzolan or Class F Fly Ash with SiO2 plus Al2O3 plus Fe2O3 greater than 90 percent</td>
</tr>
</tbody>
</table>
SUPPLEMENTARY CEMENTITIOUS MATERIALS CONTENT

<table>
<thead>
<tr>
<th>SCM</th>
<th>Minimum Content</th>
<th>Maximum Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGBF Slag</td>
<td>30 percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>Silica Fume</td>
<td>5 percent</td>
<td>10 percent</td>
</tr>
</tbody>
</table>

2.1.2 Water

Water shall be fresh, clean, and potable; free from injurious amounts of oils, acids, alkalis, salts, organic materials, or other substances deleterious to concrete or steel.

2.1.3 Aggregates

NOTE: For exposed piles in areas where reactive aggregates are likely to be supplied, provide for additional tests and certification to insure that reactive aggregates will not be used. While not wholly conclusive, petrographic examination (ASTM C295/C295M), chemical test (ASTM C289/C289M), and mortar bar method (ASTM C227) are valuable indicators.

While more reliable, the concrete prism test (ASTM C1293) takes 1 to 2 years to complete and is not practical. The accelerated mortar bar method (ASTM C1260) is similarly reliable and takes only 16 days to yield results. In areas where reactive aggregates can not be avoided, specify use of low alkali cement, and/or cements modified to mitigate alkali-silica reactivity. Service records of concrete made with these materials along with tests should be used in evaluating these materials.

NOTE: Include modification to ASTM C33/C33M when reactive aggregates could be encountered. More modifications may be required. Additional tests and certifications may be required in the submittal paragraphs.

ASTM C33/C33M [, except as modified herein. Provide aggregate free from any substance which may be deleteriously reactive with alkalies in cement in an amount sufficient to cause excessive expansion of concrete]. Do not mix, store in same stockpile, or use fine aggregates from different sources of supply in same concrete mix or same structure without approval. The fineness modulus of fine aggregate shall be not less than 2.40 or greater than 3.0. For piles that will be exposed to freezing and thawing, fine and coarse aggregate subjected to five cycles of the sodium sulfate soundness test shall show a loss not greater than 10 percent. If the selected aggregates fail the soundness test, the Contractor may use the aggregate source, provided concrete specimens made with the aggregates to be used for the piles shall have a durability factor of not less than 80 based on 300...
cycles of freezing and thawing when tested in accordance with
ASTM C666/C666M. Prior to pile fabrication, submit certified test reports
for the following tests specified in ASTM C33/C33M[, in addition, [twice]
[_____] during each shift when the concrete plant is operating, the
gradation of each size of aggregate shall be tested in accordance with
ASTM C136):

a. Grading

Amount of material finer than 75 micrometers No. 200 sieve

Organic impurities

Soundness

Clay lumps and friable particles

Coal and lignite

Weight of slag

Abrasion of coarse aggregate

Fineness modulus

Reactive aggregates

Freezing and thawing

2.1.3.1 Alkali-Silica Reactivity (ASR)

Fine and coarse aggregates to be used in all concrete shall be evaluated
and tested by the Contractor for alkali-aggregate activity.

The fine and coarse aggregates shall be evaluated separately, using
ASTM C1260. Test results of the individual aggregates shall have a
measured expansion equal to or less than 0.08 percent at 16 days after
casting. Should the test data indicate an expansion of greater than 0.08
percent, the aggregates(s) shall be rejected or additional testing, using
ASTM C1567, shall be performed as follows: utilize the Contractor's
proposed low alkali portland cement [blended cement] and SCM in combination
with the proposed aggregate for the test portioning. The SCM quantity
shall be determined that will meet all the requirements of these
specifications and that will lower the ASTM C1567 expansion to equal or
less than 0.08 percent at 16 days after casting.

If the above option does not lower the expansion to less than 0.08 percent
at 16 days after casting, reject the aggregate(s) and submit new aggregate
sources for retesting. Submit the results of testing to the Contracting
Officer for evaluation and acceptance.

2.1.4 Admixtures

**
NOTE: For guidance in use of either water-reducing
admixtures, set retarding admixtures, or combination
of admixtures, see ACI 543R-74, “Recommendations for
Design, Manufacture, and Installation of Concrete
Piles.”

SECTION 31 62 13.20 Page 25
Chemical admixtures shall conform to ASTM C494/C494M, [Type A] [Type B]. [Air-entraining admixture shall conform to ASTM C260/C260M.] Do not use admixtures containing chlorides.

2.1.5 Prestressing Steel

Use seven-wire stress-relieved or low-relaxation strand conforming to ASTM A416/A416M, Grade 270. Use prestressing steel free of grease, oil, wax, paint, soil, dirt, and loose rust. Do not use prestressing strands or wire having kinks, bends, or other defects.

2.1.6 Reinforcing Steel

NOTE: Minimum cover for reinforcing steel in concrete structures is dependent upon the environment, soil conditions, need for corrosion protection, and location of piling. For normal exposure minimum cover is 50 mm 2 inches. For piles exposed to marine conditions (chloride content above 1000 ppm) in or within about 300 m 1000 feet of the ocean or tidal water, use 75 mm 3 inches minimum cover, including the chamfered corners. For additional detailed guidance, see following publications: ACI 543R, "Recommendations for Design, Manufacture and Installation of Concrete Piles" (ACI Manual, Part 3); State of California, Department of Public Works, Design Specifications, Volume I, Bridge Planning and Design Manual, Chapter 6. Piles to be used in a marine environment may receive a protective coating, particularly if the piles are steam cured. The protective coating should be applied to that portion of pile which remains aboveground or water line. Show areas to be protected on drawings.

NOTE: Insert grade of reinforcement. Specify ASTM A615/A615M, Grade [300] [420] [60]; [ASTM A706/A706M, Grade [420] [60]]; or ASTM A996/A996M, Grade [350] [420] [50] [60]. [Weld reinforcing steel in accordance with AWS D1.4/D1.4M.]

2.1.7 Ties and Spirals

NOTE: If project has been designed for epoxy rebar, add ASTM A934/A934M, "Epoxy-Coated Prefabricated Steel Reinforcing Bars" in this paragraph and in the paragraph entitled "References."
Steel, ASTM A1064/A1064M for spirals and ASTM A615/A615M[ASTM A706/A706M] for ties.

2.1.8 Anchorages and End Fittings

ACI 318M ACI 318.

2.1.9 Grout

Provide cement grout for prestressed piles using materials conforming to requirements stipulated herein for concrete mixes. Use admixtures, if required, known to have no injurious effects on steel or concrete. Do not use calcium chloride.

2.1.10 Epoxy Coating

[EP-3][_____] conforming to Section [____], "Epoxy-Resin Systems" of [_____]DOT RBS. The top 7500 mm 25 feet of piles shall be coated.

2.1.11 H-Pile Extensions

H-pile extensions for composite prestressed concrete-steel piles shall be of steel conforming to the requirements of [ASTM A36/A36M] [ASTM A572/A572M].

2.1.12 Pile Driving Points

Pile driving points shall be of steel conforming to the requirements of ASTM A27/A27M or [ASTM A36/A36M] [ASTM A572/A572M], of the [type] [details] indicated.

2.2 CONCRETE MIX DESIGN

**
NOTE: Insert the minimum 28 day compressive strength required by the design. A minimum of 35 MPa 5000 psi is generally required. Insert aggregate size, either 19 mm 3/4 inch or 25 mm one inch is generally maximum. For marine exposure, (or moderate and severe sulfate exposure) include last bracketed sentence, which limits the water-cement ratio to a maximum of 0.40.
**
**
NOTE: Air-entrainment may be considered optional only in regions that do not experience freezing temperatures.
**

ACI 211.1 or ACI 318M ACI 318, Chapter 4. Concrete shall have a minimum compressive strength of [35] MPa [5000] psi at 28 days and a maximum size aggregate of [_____] mm inches. Concrete shall be air entrained with a minimum of 4.5 percent and a maximum of 7.5 percent. Mix shall contain fly ash, ground iron blast furnace slag or silica fume to meet the requirements specified herein to mitigate Alkali-Silica Reactivity (ASR).[For marine exposure, ensure a dense concrete free of shrinkage cracks, with a minimum degree of permeability. The maximum water cement ratio shall be 0.40.]

SECTION 31 62 13.20 Page 27
2.3 FABRICATION

2.3.1 Formwork

Formwork and dimensional tolerances shall be in accordance with PCI MNL-116, and as specified herein. Provide forms of metal, braced and stiffened against deformation, accurately constructed, watertight, and supported on unyielding casting beds. Forms shall permit movement of pile without damage during release of prestressing force. Form precast dowel holes with galvanized flexible metal conduit. [Inside forms or void tubes not to be grouted may be treated cardboard, plywood, or other material.]

2.3.2 Pretensioning

Pretensioning shall be performed in accordance with PCI MNL-116, and as specified herein. Use gage calibrated within last 6 months by a laboratory approved by Contracting Officer. Provide means for measuring elongation of steel to nearest 3 mm 1/8 inch. Give tensioning steel a uniform prestress prior to being brought to design prestress. Induce same initial prestress in each unit when several units of prestressing steel in a pile are stretched simultaneously.

2.3.3 Casting

2.3.3.1 Conveying

Convey concrete to formwork in accordance with PCI MNL-116, and as specified herein. Clean conveying equipment thoroughly before each run. During placing, make any free vertical drop of the concrete less than 0.91 m 3 feet. Remove concrete which has segregated in conveying or placing.

2.3.3.2 Placing and Casting

**
NOTE: Select the size of chamfer required. Consult with local producers. Where project requires a large quantity of piling a specific value may be specified, otherwise, use a minimum or a range of values.
**

Perform concrete casting within 3 days after pretensioning steel; however, do not deposit concrete in forms until placement of reinforcement and anchorages has been inspected and approved by pile manufacturer's quality control representative. Produce each pile of dense concrete straight with smooth surfaces with reinforcement retained in its proper position during fabrication. Use vibrator with heads smaller than the minimum distance between steel for pretensioning. Make surface of pile ends perpendicular to axis of pile. Chamfer, [a minimum of 19 mm 3/4 inch,] [[_____] mm [_____] inch,] [between 19 mm and 31 mm 3/4 inch and 1 1/4 inch,] ends of piles and corners of square piles.

2.3.4 Curing of Piles

Cure piles using moist or accelerated curing. Curing of piles shall be in accordance with the PCI MNL-116 except as follows.
2.3.4.1 Moist Curing

Moisture cure using moist burlap coverings, plastic sheeting, or membrane curing compound until minimum strength to detension is achieved.

2.3.4.2 Accelerated Curing

After placement of concrete, moist cure for a period of 4 hours. Follow by accelerated curing until concrete has reached specified release strength. Enclose casting bed for accelerated curing with a suitable enclosure. During application of steam or heat, increase the air temperature at a rate not to exceed 22 degrees C 40 degrees F per hour. Cure at a maximum temperature of 65 degrees C 150 degrees F until concrete has reached specified release strength. Reduce temperature at a rate not to exceed 11 degrees C 20 degrees F per hour until a temperature of 11 degrees C 20 degrees F above ambient air temperature is reached. After accelerated curing, moist cure using either water or membrane curing until a total accelerated and moist curing time of 72 hours is achieved.

2.3.5 Detensioning

**
NOTE: Specify "release strength." Release strength of 30 MPa 4000 psi (Design strength) of 35 MPa 5000 psi or 0.8 of the 28 day design strength is desirable; however, some regions use 0.7 of the design strength 25 MPa 3500 psi for design strength of 35 MPa 5000 psi. A minimum release strength of 0.6 of the design strength is required. Check with local pile manufacturers.
**

Detensioning shall be performed in accordance with PCI MNL-116, and as specified herein. Gradually release tension in strands from anchorage. Detension after approval by pile manufacturer's quality control representative. Perform transfer of prestressing force when concrete has reached a minimum compressive strength of [_____] MPa psi.

2.4 PRODUCT QUALITY CONTROL

Where piling is manufactured in a plant with an established quality control program as attested to by a current certification in the PCI "Certification Program for Quality Control" perform product quality control in accordance with PCI MNL-116. Where piling is manufactured by specialists or in plants not currently enrolled in the PCI "Certification Program for Quality Control," set-up a product quality control system in accordance with PCI MNL-116 and perform concrete and aggregate quality control testing using an independent commercial testing laboratory approved by the Contracting Officer in accordance with the following.

2.4.1 Aggregate Tests

Take samples of fine and coarse aggregate at concrete batch plant and test. Perform mechanical analysis (one test for each aggregate size) in accordance with ASTM C136. Tabulate results of tests in accordance with ASTM C33/C33M.
2.4.2 Slump and Strength Tests

Sample concrete in accordance with ASTM C172/C172M at time concrete is deposited for each production line. Perform slump tests in accordance with ASTM C143/C143M. Mold cylinders in accordance with ASTM C31/C31M. Mold at least six cylinders per day or one for every [15] [45] cubic meter [20] [60] cubic yards of concrete placed, whichever is greater. Cure cylinders in same manner as piles and for accelerated curing, place at coolest point in casting bed. Perform strength tests in accordance with ASTM C39/C39M. Test two cylinders of each set at 7 days or 14 days, or at a time for establishing transfer of prestressing force (release strength) and removal of pile from forms. Test remaining cylinders of each set 28 days after molding.

2.4.3 Changes in Proportions

If, after evaluation of strength test results, compressive strength is less than specified compressive strength, make adjustments in proportions and water content and changes in temperature, moisture, and curing procedures as necessary to secure specified strength. Submit changes in mix design to Contracting Officer in writing.

2.4.4 Compressive Strength Test Results

Evaluate compressive strength test results at 28 days in accordance with ACI 214R using a coefficient of variation of 10 percent. Evaluate strength of concrete by averaging test results of each set of standard cylinders tested at 28 days. Not more than 10 percent of individual cylinders tested shall have a compressive strength less than specified design strength.

2.4.5 Chloride Ion Concentration

Sampling and determination of water soluble chloride ion content in accordance with ASTM C1218/C1218M. Maximum water soluble chloride ion concentrations in hardened concrete at ages from 28 to 42 days contributed from the ingredients including water, aggregates, cementitious materials, and admixtures shall not exceed 0.06 percent by weight of cement.

2.4.6 Chloride Ion Penetration

To ensure the durability of concrete in marine environment, concrete shall be proportioned to have the chloride ion penetration test in accordance with ASTM C1202, and be below 3000 coulombs for concrete specimens tested at 56 days.

PART 3 EXECUTION

3.1 PILE DRIVING EQUIPMENT

3.1.1 Pile Hammers

Furnish a hammer capable of developing the indicated ultimate pile capacity considering hammer impact velocity; ram weight; stiffness of hammer and pile cushions; cross section, length, and total weight of pile; and character of subsurface material to be encountered. [Use the same pile hammer, operating at the same rate and in the same manner, as that used for driving test piles.] Obtain required driving energy of hammer, except for diesel hammers, by use of a heavy ram and a short stroke with low impact velocity. At final driving, operate pile hammer in accordance with
manufacturer's recommendation for driving either end bearing piles or friction piles. At final driving, operate diesel powered hammers at rate recommended by manufacturer for hard driving. Maintain pressure at steam or air hammer so that: (1) for double-acting hammer, the number of blows per minute during and at completion of driving of a pile is equal approximately to that at which hammer is rated; (2) for single-acting hammer, there is a full upward stroke of the ram; and (3) for differential type hammer, there is a slight rise of hammer base during each upward stroke.

3.1.2 Driving Helmets and Cushion Blocks

3.1.2.1 Driving Helmets or Caps and Pile Cushions

Use a steel driving helmet or cap including a pile cushion between top of pile and driving helmet or cap to prevent impact damage to pile. Use a driving helmet or cap and pile cushion combination capable of protecting pile head, minimizing energy absorption and dissipation, and transmitting hammer energy uniformly over top of pile. Provide driving helmet or cap that fits sufficiently loose around top of pile so that pile may be free to rotate without binding within driving helmet. [During test pile installation, demonstrate to satisfaction of Contracting Officer that equipment to be used on project performs specified function.] Use pile cushion of solid wood or of laminated construction using plywood, softwood or hardwood boards with grain parallel to end of pile. Provide pile cushion with thickness of [_____] mm [3] inches minimum and the thickness shall be increased so as to be suitable for the size and length of pile, character of the sub-surface material to be encountered, hammer characteristics, and the required driving resistance. Replace pile cushion at the start of driving of each pile and when it becomes highly compressed, charred or burned, or has become spongy or deteriorated in any manner. Show details of driving helmets, capblocks, and pile cushions. Submit 2 weeks prior to [test] pile installation.

3.1.2.2 Hammer Cushion or Capblock

**

NOTE: Select either wood or aluminum/micarta capblock. Delete inappropriate sentences. An aluminum/micarta capblock is recommended because of its consistent elastic properties and long life. If final pile penetration resistance is based on a Wave Equation analysis, the type capblock used should be the same as that used in the analysis.

**

Use a hammer cushion or capblock between driving helmet or cap and hammer ram consisting of [a solid hardwood block with grain parallel to the pile axis and enclosed in a close-fitting steel housing] [aluminum and micarta (or equal) discs stacked alternately in a steel housing or a suitable polymer designed for this specific purpose as indicated by the hammer manufacturer]. Use steel plates at top and bottom of capblock. [Replace wood capblock when it becomes highly compressed, charred or burned or becomes spongy or deteriorated in any manner]. [Replace aluminum, micarta or polymer discs that have become damaged, split or deteriorated in any manner]. [Do not replace wood capblock during final driving of any pile.] Do not use small wood blocks, wood chips, rope or other materials that permit excessive loss of hammer energy.
3.2 PRELIMINARY WORK

[3.2.1 Wave Equation Analysis of Pile Drivability

a. Prior to driving any pile, the Contractor shall submit a pile Wave Equation Analysis, performed by his Geotechnical Consultant, for each size pile and distinct subsurface profile condition. These analyses shall take into account the proposed hammer assembly, pile cap block and cushion characteristics, the pile properties and estimated lengths and the soil properties anticipated to be encountered throughout the installed pile length based on static capacity analysis with consideration of driving gain/loss factors. Only one specific model of pile hammer may be used for each pile type and capacity.

b. The Wave Equation Analysis shall demonstrate that the piles will not be damaged during driving, shall indicate that the driving stresses will be maintained within the limits below and indicate the blow count necessary to achieve the required ultimate static pile capacities.

Allowable Driving Stresses

Steel Piles

Compression - 0.9 fy
Tension - 0.9 fy

Where fy is yield strength of steel

Concrete

Compression - 0.85f'c minus UPL
Tension - (3 times (the square root of f'c)) plus UPL

f'c is compressive strength of concrete
UPL = Unit Prestress after Losses
(Obtain values from pile manufacturer)

c. Upon completion of the dynamic and static testing programs outlined in this specification section, a refined Wave Equation Analysis shall be performed taking into consideration the evaluated capacities, gain/loss factors and recommended production pile lengths. Production pile driving criteria shall be developed based on the results of the refined Wave Equation Evaluations.

d. All pile driving equipment furnished by the Contractor shall be subject to the approval of the Contractor's Geotechnical Consultant. Complete the attached pile and driving equipment data form, including hammer information, in full as part of the submittal of the results of the Wave Equation Analyses.

e. The cost of performing the Wave Equation Analyses shall be paid for by the Contractor and included in the base bid.

]3.2.2 Order List

The Contractor shall submit to the Contracting Officer for approval, an itemized list for piles prior to placing the order with the supplier. The list shall indicate the pile lengths required at each location as shown on the plans and the corresponding ordered length of each pile.
and refined wave equation analysis shall be completed prior to submission of an order list.]

3.2.3 Pile Length Markings

The Contractor shall mark each pile prior to driving with horizontal lines at 305 mm one foot intervals, and the number of feet from pile tip at 1.52 m 5 foot intervals.

3.3 PILE DRIVING

3.3.1 Driving Piles

**
NOTE: Delete bracketed option for foundation excavation when not required. Delete items in brackets dealing with tip elevation and driving resistance when test piles or load tests are not used. Delete item in brackets regarding predrilling or jetting when procedure is not used. If needed, insert maximum hammer energy for no tip resistance. This can be determined by comparing tensile stresses in pile resulting from a Wave Equation Analysis with effective prestress in pile.
**

Notify Contracting Officer 10 days prior to driving of [test] piles [and load test]. [Foundation excavation shall be stopped at 300 mm 1 foot above foundation grade before piles are driven. When pile driving is completed, excavation shall be completed to lines and grade shown.]Piles may be driven when the specified 28-day concrete strength has been achieved but not less than 7 days after casting. Drive piles to [or below "calculated"] [indicated] tip elevation [to reach a driving resistance established by the wave equation analyses (WEAP) in accordance with the schedule which the Government Contractor's Geotechnical Consultant will prepare from the test-pile driving data]. During initial driving and until pile tip has penetrated beyond layers of very soft soil [or below bottom of predrilled or prejetted holes], use a reduced driving energy of the hammer as required to prevent pile damage. Refusal criteria shall be established by the Contracting Officer. If a pile fails to reach ["calculated"] [indicated] tip elevation, [or if a pile reaches ["calculated"] tip elevation without reaching required driving resistance,] notify Contracting Officer and perform corrective measures as directed. Provide hearing protection when noise levels exceed 140 dB. Piles or pile sections shall not be handled or moved in any manner that would result in cracking or permanent damage to the concrete or to the grout surrounding the prestressing cables. Piles may be driven without pile guides or leads providing a hammer guide frame is used to keep the pile and hammer in alignment.

3.3.2 Protection of Piles

**
NOTE: Delete references to batter piles when not applicable to the project.
**

Take care to avoid damage to piles during handling, placing pile in leads, and during pile driving operations. Support piles laterally during driving, but allow rotation in leads. [Where pile or projecting
reinforcement orientation is essential, take precautionary measures to maintain the orientation during driving. [Take special care in supporting battered piles to prevent excessive bending stresses in pile.] Square top of pile to longitudinal axis of pile. Maintain axial alignment of pile hammer with that of the pile. If the Contractor elects to use a pile head with projecting strands or mild steel reinforcement, prevent direct impact forces from being transmitted through the reinforcement, by using a special driving head.

3.3.3 Tolerances in Driving

NOTE: Omit references to batter piles when not applicable to the project. Select appropriate tolerances for type of pile.

Drive piles with a variation of not more than 2 percent from vertical for plumb piles or more than 4 percent from required angle for batter piles. Maintain and check axial alignment of pile and leads at all times. If subsurface conditions cause pile drifting beyond allowable axial alignment tolerance, notify Contracting Officer and perform corrective measures as directed. Place butts within 100 mm 4 inches of location indicated. [Manipulation of piles within specified tolerances [will not be permitted.][will be permitted, to a maximum of 1 1/2-percent of their exposed length above ground surface or mudline.]] In addition to specified tolerances, maintain a location to provide a clear distance of at least 125 mm 5 inches from butt to edge of pile cap. If clear distance can not be maintained, then notify Contracting Officer. Check each pile for heave. Redrive heaved piles to required point elevation.

3.3.4 Rejected Piles

Piles damaged or impaired for use during handling or driving, mislocated, or driven out of alignment beyond the maximum tolerance shall be withdrawn and replaced by new piles or shall be cut-off and abandoned and new piles driven as directed. Excess cut-off from piles and unacceptable piles shall be removed from the work site. All work in connection with withdrawing and removing rejected piles from the site shall be done at no additional cost to the Government.

3.3.5 Jetting of Piles

NOTE: Jetting should generally not be permitted for piles:

1. Dependent on side friction in fine-grained low permeability soils (high clay or silt content) where considerable time is required for the soil to reconsolidate around the piles.

2. Subject to uplift or lateral forces.

3. Adjacent to existing structures.

4. In closely spaced clusters unless the load capacity is confirmed by test.
Water jets will not be permitted. Jetting may be used to assist driving piles through strata that cannot be penetrated practicably by use of the hammer alone. Driving shall be restricted to a static weight while water is being injected to prevent inducing tensile stresses in the piles which damage the concrete. After the penetration of the strata requiring jetting has been accomplished, jetting shall be discontinued and hammer driving shall be resumed. Discontinue jetting when the pile tip is approximately 1.5 m 5 feet above the indicated pile tip elevation. Drive pile the final 1.5 m 5 feet of penetration. [Adequate measures shall be taken for collecting and disposing of runoff water.]

Predrilling of Piles

**

NOTE: Predrilling should generally not be permitted for piles:

1. Dependent on side friction in fine-grained low permeability soils (high clay or silt content) where considerable time is required for the soil to reconsolidate around the piles.

2. Subject to uplift or lateral forces.

3. Located in cohesionless soils.

4. In closely spaced clusters unless the load capacity is confirmed by test.

**

Predrilling to remove soil or other material representing the bulk of the volume of the pile to be driven will not be permitted. The diameter of the hole should not exceed two-thirds the width of the pile. Predrill only to a depth of [_____] meters feet below cut-off elevation prior to setting piles. Discontinue drilling when the pile tip is approximately 1.5 m 5 feet above the indicated pile tip elevation. Drive pile the final 1.5 m 5 feet of penetration.

3.3.7 Splices

**

NOTE: Splicing of piles normally should not be permitted except where extremely long or heavy piles are required. If splices are permitted, drawings should indicate splice details. (See PCI standard drawings for typical splice details).

**

[Splicing of piles is not permitted.] Make splices as indicated. Splices shall be capable of developing the full strength of the member in compression, tension, shear, and bending. Detail drawings of splices and design calculations demonstrating the strength of the splice shall be
3.3.8 Build-Ups

**
NOTE: Insert compressive strength required by design, usually a minimum of 35 MPa 5,000 psi. Insert maximum percent of build-ups permitted for project. The percent will depend on criticality of pile failure at build-up; whether the top of the pile is designed as a moment connection; exposure of piles to external physical or corrosive damage. Normally, for piles supporting piers exposed to seawater, limit percentage of build-ups to 10 percent.
**

Where required, pile section may be extended to cut-off elevation by means of a cast-in-place reinforced concrete build-up. Make build-up in accordance with PCI BDM. Construct build-ups made after completion of driving in accordance with detail, "Build-Up Without Driving." Make build-ups to be driven in accordance with detail "Build-Up With Driving." Have details of means for protecting joints by a suitable mortar or epoxy approved by Contracting Officer. Where build-ups are exposed to water, protect cast-in-place section from water during curing period. Concrete in build-up shall have a minimum compressive strength of [_____] MPa psi. Build-ups will not be permitted on more than [_____] percent of total number of piles. If this percent figure is exceeded, or if in the judgment of the Contracting Officer, the clustered location of build-ups is undesirable, withdraw piles of insufficient length and replace with longer piles. Payment for such withdrawal and replacement will be made as an adjustment to the contract price.

3.3.9 Pile Cut-Off

Cut-off piles with a smooth level cut using pneumatic tools, sawing, or other suitable methods approved by Contracting Officer. Use of explosives for cutting is not permitted. Cut-off sections of piles shall be removed from the site upon completion of the work.

3.4 FIELD QUALITY CONTROL

3.4.1 Test Piles

**
NOTE: Select the second bracketed option when soil conditions dictate the use of a test pile longer than job piles. The ordered pile length for test piles should be 1.5 m 5 feet longer than ordered length for job piles to allow additional penetration if driving conditions dictate. Indicate location and number (if required) of test piles on plans, or list appropriate soil boring test hole numbers.
**

[Use test piles of type, and drive as specified for piling elsewhere in this section.][Order test piles [_____] meters feet longer in length than
production piles. The additional test pile length shall be driven only at the direction of the Contracting Officer. The Government Contractor's Geotechnical Consultant will use test pile data to determine "calculated" pile tip elevation or necessary driving resistance. Drive test piles at the locations indicated [in vicinity of soil boring test holes Nos. [____,] [____,] and [____]]. Drive test piles to indicated tip elevation [indicated bidding lengths]. Use test piles, if located properly and offering adequate driving resistance in finished work. Pre-drilling or jetting is permitted only when test piles clearly establish validity of its use, or as directed by the Contracting Officer. [A pile dynamic analyzer shall be provided and operated as specified in paragraph DYNAMIC PILE ANALYSIS during the driving of each test pile. Modify driving as required based upon recommendation of Contractor's Geotechnical Consultant and approval of the Contracting Officer.

[3.4.2 Dynamic Pile Analysis]

The purpose of dynamic testing is to provide supplemental information for evaluating pile hammer performance, driving stresses, and bearing capacities. Dynamic testing shall be conducted during the entire time piles are initially driven or redriven and during pile restrike testing. Use test piles of type as specified elsewhere in this section. Equipment to obtain dynamic measurements, record, reduce and display its data shall be furnished and meet the requirement of ASTM D4945. The equipment shall have been calibrated within 12 months thereafter throughout the contract duration. Drive test piles at the locations indicated. The contractor shall employ an independent inspection firm, hereinafter referred to as the "Contractor's Geotechnical Consultant", experienced in the pile driving process, monitoring of test pile installation, and in the use of the Pile Driving Analyzer and its related equipment. Dynamic pile analysis shall be performed as follows:

a. Each dynamic pile analysis shall be performed in two steps. The first step is to check the hammer, pile and soil performance, and to determine the suitability of the proposed hammer for the size, length and type of pile being installed for the soil types encountered as the piles are driven. This initial monitoring shall determine whether pre-augering or jetting is appropriate, efficiency of the hammer relative to specified efficiency, effectiveness of cushion, level of compressive and tensile stress in pile and extent/location of any pile damage caused by the initial driving. With each blow of the pile the information listed below shall be electronically recorded and analyzed by the Pile Driving Analyzer:

(1) Blow number
(2) Blow rate per minute and/or stroke.
(3) Input and reflected values of force and velocity.
(4) Value of upward and downward traveling force wave with time.
(5) Maximum and final transferred energy to pile, hammer system efficiency.
(6) Maximum compressive stress, velocity, acceleration and displacement.
(7) Maximum tensile stress in pile.
(8) Pile structural integrity, damage detection, extent and location.

(9) Bearing capacity of pile by Case method.

If the pile, hammer and soil performance evaluation recommends changes to the hammer stroke, pile cushioning, augering or any other aspect for the pile driving operation these changes shall be incorporated into production pile driving in an effort to control excessive stresses and pile damage. Test piles damaged or broken during installation shall be replaced, incorporating driving modifications as determined by the Contractor's Geotechnical Consultant and reviewed and approved by the Contracting Officer. This procedure shall be repeated until allowable tensile and compressive stresses are achieved in the pile and/or pile damage is minimized. Selected initial driving records shall be subjected to rigorous computer analysis by the Case Pile Wave Analysis Program (CAPWAP) for determination of resistance distribution, soil resistance and properties, and estimation of anticipated gain/loss factors.

b. Upon completion of test pile driving the piles shall be allowed to set-up for at least 72 hours. After evaluation of pile, hammer and soil performance by the Contractor's Geotechnical Consultant, the second step of the dynamic pile analysis may proceed. This portion of the evaluation requires striking the set-up piles a minimum of 20-50 times, or as directed by the Contractor's Geotechnical Consultant using the same hammer which was used for the test pile driving and which will be used for production pile driving. The hammer shall be "warmed up" and in optimal readiness prior to restriking, in order to avoid capacity losses during evaluation of restrike data. Maximum hammer energy shall be applied during restrike in order to fully mobilize the soil resistance. However, care should be exercised as to not overstress the pile. In addition to those items listed above, selected restrike driving records (as directed by the Contractor's Geotechnical Consultant are to be subjected to rigorous computer analysis by the Case Pile Wave Analysis Program (CAPWAP) for determination of resistance distribution, soil resistance and properties, and plot of applied load vs. average pile displacement based on the calculated soil properties.

c. Performance Report:

(1) Upon satisfactory completion of each dynamic load test a minimum of three copies of a Pile Performance Report shall be submitted for the Contractor by the Contractor's Geotechnical Consultant. The submittal shall be prepared and sealed by a Professional Engineer registered in the State of Virginia and shall be made within three working days of the completion of the dynamic load test.

(2) The report for the Dynamic Pile Analysis shall contain the following information:

(a) Bearing capacity of pile from Case Pile Wave Analysis Program (CAPWAP). Information resulting from analysis of a selected restrike blow.
(b) Maximum and final transferred energy, hammer system efficiency during pile installation.

(c) Maximum compressive stress, velocity, acceleration and displacement.

(d) Maximum tensile stress in pile.

(e) Pile structural integrity, damage detection, extent and location.

(f) Blows per minute and blow number.

(g) Input and reflection values of force and velocity, upward and downward traveling force wave with time.

(h) Pile skin friction and toe resistance distribution.

(i) Maximum energy transferred to pile.

The maximum allowable pile design load will be proposed by the Contractor's Geotechnical Consultant based upon the results of a satisfactory pile load test conducted on a pile driven as specified herein and shall include the effects of load transfer to the soil above the foundation stratum.

d. The equipment to be used for dynamic testing of the pile hammer and soil performance and for dynamic load testing of the test pile shall be either a model GCPC or a PAK Pile Driving Analyzer as manufactured by Pile Dynamics, Inc., of Cleveland Ohio or approved equivalent.

e. All services of the Contractor's Geotechnical Consultant shall be paid for by the Contractor. The Contractor's Geotechnical Consultant shall be available throughout the pile driving operation to consult with the Contracting Officer when required by the Contracting Officer. The cost of changes in the Contractor's procedure, as required by evaluation of the results of the Pile Driving Analysis, shall be at the Contractor's expense.

3.4.3 Static Load Tests

**
NOTE: If pile load tests are required and approved by the Contracting Officer, specify number and location of piles. Select method of load test. In ASTM D1143/D1143M, permit anchor piles only if approved by the Contracting Officer's Technical Representative (Geotechnical Branch). Insert figure (tons) corresponding to 200 percent of the design load. Select appropriate acceptance criteria. The offset method (first option) is usually recommended.
**

Perform compressive load tests on [_____] test piles in accordance with ASTM D1143/D1143M (standard loading procedure) as modified herein. [Allow a minimum of 72 hours following final test pile driving for pile set-up prior to load testing.][Do not use anchor piles.] Provide apparatus for applying vertical loads as required by method, using load from weighted box...
or platform [or reaction frame attached to sufficient uplift piles to safely take required load] applied to pile by hydraulic jack. Increase load in increments until rapid progressive settlement takes place or until application of total compressive load of [_____] metric tons tons for compressive load tests. Consider load test satisfactory when [after one hour at full test load gross settlement of pile butt is not greater than gross elastic pile compression plus 4 mm 0.15 inch plus one percent of pile tip diameter or width in [_____] mm inches,] [slope of gross load-settlement curve under full test load does not exceed 1.5 mm per metric ton 0.05 inches per ton,] [net settlement after removal of test load does not exceed 19 mm 3/4 inch,] Perform load tests at locations[as proposed by the Contractor's Geotechnical Consultant and] as directed by the Contracting Officer. Additional load tests, at Government expense, may be required by the Contracting Officer. Loading, testing, and recording and analysis of data shall be under the direct supervision of a Registered Professional Engineer, registered in the state of project location, and provided and paid for by the Contractor.

3.4.3.1 Safe Design Capacity

The safe design capacity of a test pile as determined from the results of load tests shall be the lesser of the two values computed according to the following:

a. One-half of that load which causes a net settlement after rebound of not more than 0.28 mm per metric ton 0.01 inch per ton of total test load.

b. One-half of the load that causes a gross settlement of not more than 25 mm, 1 inch, provided the load settlement curve shows no sign of failure.

3.4.4 Tensile Load Test

Perform tensile load tests on [_____] test piles in accordance with ASTM D3689, as modified [and] in paragraph LOAD TESTS. A tensile load of [_____] kN tons shall be applied to each tensile load test pile. In performing the tension load test, the ultimate load to be applied shall be one and one-half times the safe tension capacity, and the Standard Loading Procedure shall be employed.

3.4.5 Lateral Load Test

Perform lateral load tests on [_____] piles in accordance with ASTM D3966/D3966M, as modified [and] in paragraph LOAD TESTS. Lateral load tests shall consist of jacking two piles apart with a hydraulic jack, with one pile serving as the reaction pile for the other. A lateral load of [_____] kN tons shall be applied to each pair of lateral load test piles. Required movement readings shall be made and recorded for each pile.

3.4.6 Pile Records

**

NOTE: Omit reference to load test when not required in project. Omit reference to test piles and "calculated tip elevation" when test piles are not driven. Where special or unusual soil conditions are expected, consultation with the Contracting Officer's Technical Representative (Geotechnical Branch) regarding special engineering supervision of
driving, testing, recording and analysis of data for project may be useful.

**

NOTE: The Specifier shall attach the specifications pile driving log graphic (for all pile driving projects) and the pile driving equipment data form (for projects using PDA) to the end of this specification section.

**

Keep a complete and accurate record of each pile driven. Indicate the pile location, deviations from pile location, cross section shape and dimensions, original length, ground elevation, tip elevation, cut-off elevations, [batter alignment,] number of blows required for each 300 mm foot of penetration and number of blows for the last 150 mm 6 inches penetration or fraction thereof [as required] for the "calculated" [driving resistance]. Include in the record the beginning and ending times of each operation during driving of pile, type and size of hammer used, rate of operation, stroke or equivalent stroke for diesel hammer, type of driving helmet, and type and dimension of hammer cushion (capblock) and pile cushion used. Record retap data and unusual occurrences during pile driving such as redriving, heaving, weaving, obstructions, [jetting,] and any driving interruptions. A preprinted pile driving log for recording pile driving data[and pile driving equipment data form], which can be downloaded at: http://www.wbdg.org/ccb/NAVGRAPH/grahtoc.pdf.

[3.5 SPECIAL INSPECTION AND TESTING FOR SEISMIC-RESISTING SYSTEMS

**

NOTE: Include this paragraph only when special inspection and testing for seismic-resisting systems is required by the International Building Code (IBC).

This paragraph will be applicable to both new buildings designed and to existing building seismic rehabilitation designs done according to UFC 1-200-01, "General Building Requirements" and UFC 3-310-04, "Seismic Design for Buildings".

The designer must indicate on the drawings all locations and all features for which special inspection and testing is required in accordance with Chapter 17 of the IBC. This includes indicating the locations of all structural components and connections requiring inspection.

Add any additional requirements as necessary.

**

Special inspections and testing for seismic-resisting systems and components shall be done in accordance with Section 01 45 35 SPECIAL INSPECTIONS.

} -- End of Section --