SECTION TABLE OF CONTENTS

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

SECTION 28 31 76

INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM

08/11

PART 1 GENERAL

1.1 RELATED SECTIONS
1.2 SUMMARY
 1.2.1 Scope
1.3 REFERENCES
1.4 DEFINITIONS
 1.4.1 Interface Device
 1.4.2 Remote Fire Alarm and Mass Notification Control Unit
 1.4.3 Fire Alarm Control Unit and Mass Notification Autonomous Control Unit (FMCP)
 1.4.4 Local Operating Console (LOC)
 1.4.5 Terminal Cabinet
1.5 SUBMITTALS
1.6 TECHNICAL DATA AND COMPUTER SOFTWARE
1.7 QUALITY ASSURANCE
 1.7.1 Qualifications
 1.7.1.1 Design Services
 1.7.1.2 Supervisor
 1.7.1.3 Technician
 1.7.1.4 Installer
 1.7.1.5 Test Personnel
 1.7.1.6 Manufacturer's Representative
 1.7.1.7 Manufacturer
 1.7.2 Regulatory Requirements
 1.7.2.1 Requirements for Fire Protection Service
 1.7.2.2 Fire Alarm/Mass Notification System
 1.7.2.3 Fire alarm Testing Services or Laboratories
1.8 DELIVERY, STORAGE, AND HANDLING

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT
 2.1.1 Standard Products
 2.1.2 Nameplates
 2.1.3 Keys
2.2 GENERAL PRODUCT REQUIREMENT
2.3 SYSTEM OPERATION
 2.3.1 Alarm Initiating Devices and Notification Appliances (Visual, Voice, Textural)
 2.3.2 Functions and Operating Features
2.4 SYSTEM MONITORING
 2.4.1 Valves
 2.4.2 Independent Fire Detection System
2.5 MASS NOTIFICATION SYSTEM FUNCTIONS
 2.5.1 Notification Appliance Network
 2.5.2 Strobes
 2.5.3 Text Displays
 2.5.4 Wide Area MNS
 2.5.5 Voice Notification
 2.5.6 Installation-Wide Control
2.6 OVERVOLTAGE AND SURGE PROTECTION
 2.6.1 Signaling Line Circuit Surge Protection
 2.6.2 Sensor Wiring Surge Protection
2.7 ADDRESSABLE INTERFACE DEVICES
2.8 ADDRESSABLE CONTROL MODULE
2.9 ISOLATION MODULES
2.10 SMOKE SENSORS
 2.10.1 Photoelectric Smoke Sensors
 2.10.2 Ionization Type Smoke Sensors
 2.10.3 Projected Beam Smoke Detectors
 2.10.4 Duct Smoke Sensors
 2.10.5 Air Sampling Smoke Detectors
 2.10.6 Smoke Sensor Testing
2.11 HEAT DETECTORS
 2.11.1 Heat Detectors
 2.11.1.1 Combination Fixed-Temperature and Rate-of-Rise Detectors
 2.11.1.2 Rate Compensating Detectors
 2.11.1.3 Fixed Temperature Detectors
 2.11.2 Self-Test Routines
 2.11.3 Operator Access
 2.11.4 Operator Control
2.12 MULTI SENSOR DETECTORS
2.13 MULTI CRITERIA DETECTORS
2.14 ELECTRIC POWER
 2.14.1 Primary Power
2.15 SECONDARY POWER SUPPLY
 2.15.1 Batteries
 2.15.1.1 Capacity
 2.15.1.2 Battery Power Calculations
 2.15.2 Battery Chargers
2.16 FIRE ALARM CONTROL UNIT AND MASS NOTIFICATION CONTROL UNIT (FMCP)
 2.16.1 Cabinet
 2.16.2 Control Modules
 2.16.3 Silencing Switches
 2.16.3.1 Alarm Silencing Switch
 2.16.3.2 Supervisory/Trouble Silencing Switch
 2.16.4 Non-Interfering
 2.16.5 Audible Notification System
 2.16.5.1 Outputs and Operational Modules
 2.16.5.2 Mass Notification
 2.16.6 Memory
 2.16.7 Field Programmability
 2.16.8 Input/Output Modifications
 2.16.9 Resetting

SECTION 28 31 76 Page 2
2.16.10 Instructions
2.16.11 Walk Test
2.16.12 History Logging
2.16.13 Remote LCD Text Display

2.17 REMOTE FIRE ALARM/MASS NOTIFICATION CONTROL UNITS
2.17.1 Cabinet
2.17.2 Control Modules
2.17.3 Silencing Switches
2.17.4 Non-Interfering
2.17.5 Memory
2.17.6 Field Programmability
2.17.7 Input/Output Modifications
2.17.8 Resetting
2.17.9 Instructions
2.17.10 Walk Test
2.17.11 History Logging

2.18 AMPLIFIERS, PREAMPLIFIERS, TONE GENERATORS
2.18.1 Operation
2.18.2 Construction
2.18.3 Inputs
2.18.4 Tone Generator
2.18.5 Protection Circuits

2.19 LCD, LED DISPLAY UNIT (VDU)

2.20 ANNUNCIATOR
2.20.1 Annunciator Panel
2.20.2 Programming

2.21 MANUAL STATIONS

2.22 NOTIFICATION APPLIANCES
2.22.1 Fire Alarm/Mass Notification Speakers
2.22.2 Visual Notification Appliances
2.22.3 Chimes

2.23 ENVIRONMENTAL ENCLOSURES OR GUARDS

2.24 INTERFACE TO THE BASE WIDE MASS NOTIFICATION NETWORK
2.24.1 Fiber Optic
2.24.2 Radio
2.24.2.1 Radio Frequency Communications
2.24.2.2 Licensed Radio Frequency Systems
2.24.3 Telephone
2.24.4 Secure Radio System
2.24.4.1 Communications Network
2.24.4.2 Radio Frequency Communications
2.24.4.3 Licensed Radio Frequency Systems

2.25 AUTOMATIC FIRE TRANSMITTERS
2.25.1 Radio Transmitter and Interface Panels
2.25.1.1 Operation
2.25.1.2 Battery Power
2.25.1.3 Transmitter Housing
2.25.1.4 Antenna
2.25.2 Digital Alarm Communicator Transmitter (DACT)
2.25.3 Signals to Be Transmitted to the Base Receiving Station

2.26 WIRING
2.26.1 Alarm Wiring

PART 3 EXECUTION

3.1 INSTALLATION OF FIRE ALARM INITIATING DEVICES AND NOTIFICATION APPLIANCES
3.1.1 FMCP
3.1.2 Manual Stations:

SECTION 28 31 76 Page 3
3.1.3 Notification Appliance Devices
3.1.4 Smoke and Heat Sensors
3.1.5 Annunciator
3.1.6 Water Flow Detectors and Tamper Switches
3.1.7 Firefighter Telephones
3.1.8 Local Operating Console (LOC)

3.2 SYSTEM FIELD WIRING
3.2.1 Wiring within Cabinets, Enclosures, and Boxes
3.2.2 Terminal Cabinets
3.2.3 Alarm Wiring
3.2.4 Conductor Terminations

3.3 DISCONNECTION AND REMOVAL OF EXISTING SYSTEM
3.4 CONNECTION OF NEW SYSTEM
3.5 FIRESTOPPING
3.6 PAINTING

3.7 FIELD QUALITY CONTROL
3.7.1 Testing Procedures
3.7.2 Tests Stages
3.7.2.1 Preliminary Testing
3.7.2.2 Request for Formal Inspection and Tests
3.7.2.3 Final Testing
3.7.2.4 System Acceptance
3.7.3 Minimum System Tests
3.7.3.1 Intelligibility Tests

3.8 INSTRUCTION OF GOVERNMENT EMPLOYEES
3.8.1 Instructor
3.8.2 Required Instruction Time
3.8.2.1 Technical Training

3.9 Technical Data and Computer Software

3.10 OPERATION AND MAINTENANCE (O&M) INSTRUCTIONS

3.11 EXTRA MATERIALS
3.11.1 Repair Service/Replacement Parts
3.11.2 Interchangeable Parts
3.11.3 Spare Parts
3.11.4 Special Tools

-- End of Section Table of Contents --
NOTE: This specification covers the requirements for an integrated fire detection, fire alarm evacuation and mass notification system.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1. On electrical floor plans, show location of control panel, batteries and charger (if remotely mounted), transmitter, annunciator, primary power supply, remote trouble device, remote annunciator, detectors, notification appliances (unless performance requirements are specified), and each alarm initiating device including fire extinguishing system switches.

2. Show single-line fire alarm/mass notification systems riser diagram, device and zone schedules. Each device on the riser should be identified by type and location, with device number. Indicate connection of equipment by circuit runs, or conduit/cable runs.
3. In larger facilities, or systems with multiple types of devices and interfacing to other systems, it is recommended that a fire alarm operating matrix/mass notification system be placed on the drawings. Show actions of detectors, manual initiators, water flow contacts, etc. on one axis and bells, door releases, smoke control fans, elevator relays, etc. on the other. Entries which require descriptions, explanation of processes, sequences, interfaces, etc. can be flagged by symbols keyed to supplementary notes. Alternately provide a zone-by-zone sequence of operation or a schedule identifying all initiators, outputs, and interfaces.

4. Addressable Fire Alarm Systems generally utilized Signal Line Circuits (SLC) for communication between devices. Normally all devices are addressable or will have an addressable interface device installed integrally with the device. Initiating Device Circuits (IDC) should be provided for interfacing to existing IDC loops. IDC will be provided for special requirements. The IDC option has been left in the specification as to assist spec writers interfacing to older systems.

1.1 RELATED SECTIONS

Section 26 00 00.00 20 BASIC ELECTRICAL MATERIALS AND METHODS, applies to this section, with the additions and modifications specified herein. In addition, refer to the following sections for related work and coordination:

- Section 21 13 13.00 20 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION
- Section 21 30 00 FIRE PUMPS
- Section 21 23 00.00 20 WET CHEMICAL FIRE EXTINGUISHING for KITCHEN CABINET
- Section 21 13 16.00 20 DRY-PIPE FIRE SPRINKLER SYSTEMS
- Section 21 13 19.00 20 [DELUGE][PREACTION] FIRE SPRINKLER SYSTEMS
- Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS
- Section 21 13 13.00 10 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION
- Section 21 21 00 FIRE EXTINGUISHING SPRINKLER SYSTEMS (RESIDENTIAL)
- Section 21 13 17.00 10 DRY PIPE SPRINKLER SYSTEM, FIRE PROTECTION
- Section 21 13 18.00 10 PREACTION AND DELUGE SPRINKLER SYSTEMS, FIRE PROTECTION
- Section 21 13 24.00 10 AQUEOUS FILM-FORMING FOAM (AFFF) FIRE PROTECTION SYSTEM
- Section 21 13 20.00 20 FOAM FIRE EXTINGUISHING FOR AIRCRAFT HANGARS
- Section 21 13 21.00 20 FOAM FIRE EXTINGUISHING FOR FUEL TANK PROTECTION
- Section 21 13 22.00 20 FOAM FIRE EXTINGUISHING FOR HAZ/FLAM MATERIAL FACILITY
- Section 21 21 01.00 20 CARBON DIOXIDE FIRE EXTINGUISHING (HIGH PRESSURE)
- Section 21 21 02.00 20 CARBON DIOXIDE FIRE EXTINGUISHING (LOW PRESSURE)
- Section 21 21 03.00 10 WET CHEMICAL FIRE EXTINGUISHING SYSTEM
- Section 08 71 00 DOOR HARDWARE for [door release][door unlocking] and
Section [s] [14 21 00.00 20 ELECTRIC TRACTION ELEVATORS] [and] [14 24 00 HYDRAULIC ELEVATORS] for additional work related to elevators.

Section 07 84 00 FIRESTOPPING for additional work related to firestopping.

1.2 SUMMARY

1.2.1 Scope

**
NOTE: Indicate the location of fire alarm and mass notification system devices and riser locations on floor plans. Provide a fire alarm and mass notification system riser diagram indicating circuits and risers.
**

a. This work includes completion of design and [providing a new, complete,] [and] [modifying the existing] fire alarm and mass notification system as described herein and on the contract drawings for the [building name]. Include in the system wiring, raceways, pull boxes, terminal cabinets, outlet and mounting boxes, control equipment, alarm, and supervisory signal initiating devices, alarm notification appliances, supervising station fire alarm system transmitter, and other accessories and miscellaneous items required for a complete operating system even though each item is not specifically mentioned or described. Provide system[s] complete and ready for operation.

b. Provide equipment, materials, installation, workmanship, inspection, and testing in strict accordance with the required and advisory provisions of NFPA 72, ISO 7240-16, IEC 60268-16, except as modified herein. [The system layout on the drawings show the intent of coverage and are shown in suggested locations. Submit plan view drawing showing device locations, terminal cabinet locations, junction boxes, other related equipment, conduit routing, wire counts, circuit identification in each conduit, and circuit layouts for all floors. Drawings shall comply with the requirements of NFPA 170. Final quantity, system layout, and coordination are the responsibility of the Contractor.] [A single fire alarm control panel is indicated with terminal cabinets at each floor, at each riser location.]

c. [Where remote fire alarm control units are needed, they shall be provided at a terminal cabinet location.] Each remote fire alarm control unit shall be powered from a wiring riser specifically for that use or from a local emergency power panel located on the same floor as the remote fire alarm control unit. Where remote fire control units are provided, equipment for notification appliances may be located in the remote fire alarm control units.

1.3 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.
**
Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ACOUSTICAL SOCIETY OF AMERICA (ASA)

ASME INTERNATIONAL (ASME)

FM GLOBAL (FM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

IEC 60268-16 (2003; ED 4.0) Sound System Equipment – Part 16: Objective Rating Of Speech Intelligibility By Speech Transmission Index

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

Commissioning and Service of Sound Systems for Emergency Purposes

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2014; AMD 1 2013; Errata 1 2013; AMD 2 2013; Errata 2 2013; AMD 3 2014; Errata 3-4 2014; AMD 4-6 2014) National Electrical Code

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 4-021-01 (2008; Change 1 2010) Design and O&M: Mass Notification Systems

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

47 CFR 15 Radio Frequency Devices

47 CFR 90 Private Land Mobile Radio Services

UNDERWRITERS LABORATORIES (UL)

UL 1638 (2001; Reprint Oct 2013) Visual Signaling Appliances - Private Mode Emergency and General Utility Signaling

UL 1971 (2002; Reprint Oct 2008) Signaling Devices for the Hearing Impaired

UL 2017 (2008; Reprint May 2011) General-Purpose Signaling Devices and Systems

UL 268 (2009) Smoke Detectors for Fire Alarm Systems

UL 464 (2009; Reprint Apr 2012) Standard for Audible Signal Appliances

1.4 DEFINITIONS

Wherever mentioned in this specification or on the drawings, the equipment, devices, and functions shall be defined as follows:

1.4.1 Interface Device

An addressable device that interconnects hard wired systems or devices to an analog/addressable system.

1.4.2 Remote Fire Alarm and Mass Notification Control Unit

A control panel, electronically remote from the fire alarm and mass notification control panel, that receives inputs from automatic and manual fire alarm devices; may supply power to detection devices and interface devices; may provide transfer of power to the notification appliances; may provide transfer of condition to relays or devices connected to the control unit; and reports to and receives signals from the fire alarm control panel.

1.4.3 Fire Alarm Control Unit and Mass Notification Autonomous Control Unit (FMCP)

A master control panel having the features of a fire alarm and mass notification control unit and fire alarm and mass notification control units are interconnected. The panel has central processing, memory, input and output terminals, and [LCD, LED Display units].

1.4.4 Local Operating Console (LOC)

A unit designed to allow emergency responders and/or building occupants to operate the MNS including delivery or recorded and/or live messages, initiate strobe and textural visible appliance operation and other relayed functions.

1.4.5 Terminal Cabinet

A steel cabinet with locking, hinge-mounted door that terminal strips are securely mounted.

1.5 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality,
with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.](information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Nameplates; G[, [______]]
Instructions; G[, [______]]
Wiring Diagrams; G[, [______]]
System Layout; G[, [______]]
System Operation; G[, [______]]
Notification Appliances; G[, [______]]
Amplifiers; G[, [______]]

SD-03 Product Data

Technical Data And Computer Software; G[, [______]]
Fire Alarm Control Unit and Mass Notification Control Unit (FMCP); G[, [______]]
LCD, LED Display Unit (VDU); G[, [______]]
Terminal cabinets; G[, [______]]
Manual stations; G[, [______]]
Transmitters (including housing); G[, [______]]
Batteries; G[, [______]]
Battery chargers; G[, [_____]]
Smoke sensors; G[, [_____]]
Heat detectors; G[, [_____]]
Notification appliances; G[, [_____]]
Addressable interface devices; G[, [_____]]
Amplifiers; G[, [_____]]
Tone generators; G[, [_____]]
Digitalized voice generators; G[, [_____]]
Remote Fire Alarm/Mass Notification Control Units; G[, [_____]]
Radio transmitter and interface panels; G[, [_____]]
Digital alarm communicator transmitter (DACT); G[, [_____]]
Local Operating Console (LOC); G[, [_____]]

SD-05 Design Data

Battery power; G[, [_____]]
Battery chargers; G[, [_____]]

SD-06 Test Reports

Field Quality Control
Testing Procedures; G[, [_____]]
Smoke sensor testing procedures; G[, [_____]]

SD-07 Certificates

 Installer
Formal Inspection and Tests
Final Testing

SD-09 Manufacturer's Field Reports

System Operation; G[, [_____]]
Fire Alarm/Mass Notification System

SD-10 Operation and Maintenance Data

Operation and Maintenance (O&M) Instructions; G[, [_____]]
Instruction of Government Employees; G[, [_____]]

SD-11 Closeout Submittals

As-Built Drawings

1.6 TECHNICAL DATA AND COMPUTER SOFTWARE

Technical data and computer software (meaning technical data that relates to computer software) that are specifically identified in this project, and may be defined/required in other specifications, shall be delivered, strictly in accordance with the CONTRACT CLAUSES. Identify data delivered by reference to the particular specification paragraph against which it is furnished. Data to be submitted shall include complete system, equipment, and software descriptions. Descriptions shall show how the equipment will operate as a system to meet the performance requirements of this contract. The data package shall also include the following:

a. Identification of programmable portions of system equipment and capabilities.
b. Description of system revision and expansion capabilities and methods of implementation detailing both equipment and software requirements.

c. Provision of operational software data on all modes of programmable portions of the fire alarm and detection system.

d. Description of Fire Alarm and Mass Notification Control Panel equipment operation.

e. Description of auxiliary and remote equipment operations.

f. Library of application software.

g. Operation and maintenance manuals.

1.7 QUALITY ASSURANCE

Equipment and devices shall be compatible and operable with existing station fire alarm system and shall not impair reliability or operational functions of existing supervising station fire alarm system. [The proprietary type Supervising Station (PSS) is located [in building [_____[[_____[[The supervising equipment is existing and consists of the following brands and models: [supervising station control panel [_____[[_____[[signal reporting components [_____[[_____[[annunciator [_____[[_____[].

a. In NFPA publications referred to herein, consider advisory provisions to be mandatory, as though the word "shall" had been substituted for "should" wherever it appears; interpret reference to "authority having jurisdiction" to mean the [Naval Facilities Engineering Command, [_____[[Fire Protection Engineer] [Air Force Civil Engineer Support Agency, Fire Protection Engineering Subject Matter Expert][Contracting Offices Designated Representative (COR)].

b. The recommended practices stated in the manufacturer's literature or documentation shall be considered as mandatory requirements.

c. Devices and equipment for fire alarm service shall be listed by UL Fire Prot Dir or approved by FM APP GUIDE.

1.7.1 Qualifications

1.7.1.1 Design Services

**
NOTE: For Navy utilize only a registered fire protection engineer.
**

Installations requiring completion of installation drawings and specification or modifications of fire detection, fire alarm, mass notification system, fire suppression systems or mass notification systems shall require the services and review of a qualified engineer. For the purposes of meeting this requirement, a qualified engineer is defined as an individual meeting one of the following conditions:

a. A registered professional engineer having a Bachelor of Science or Masters of Science Degree in Fire Protection Engineering from an accredited university engineering program, plus a minimum of four years
work experience in fire protection engineering.

b. A registered professional engineer (P.E.) in fire protection engineering.

c. Registered Professional Engineer with verification of experience and at least five years of current experience in the design of the fire protection and detection systems.

1.7.1.2 Supervisor

**

NOTE: NICET (National Institute for Certification in Engineering Technologies) establishes the qualifications of an individual as an Engineering Technologist with verification of experience by having a current NICET certification.

**

[NICET Fire Alarm Technicians to perform the installation of the system. A NICET Level [3][4] Fire Alarm Technician shall supervise the installation of the fire alarm system/mass notification system.] [A Fire Alarm Technician with a minimum of 8 years of experience shall perform/supervise the installation of the fire alarm/mass notification system.] The Fire Alarm technicians supervising the installation of equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.3 Technician

Fire Alarm Technicians with a minimum of four years of experience utilized to install and terminate fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians installing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.4 Installer

[Fire Alarm installer with a minimum of two years of experience utilized to assist in the installation of fire alarm/mass notification devices, cabinets and panels] [NICET Level II technician to assist in the installation of fire alarm/mass notification devices, cabinets and panels]. An electrician shall be allowed to install wire, cable, conduit and backboxes for the fire alarm system/mass notification system. The Fire Alarm installer shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.5 Test Personnel

Fire Alarm Technicians with a minimum of eight years of experience (NICET Level [III][IV]) utilized to test and certify the installation of the fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians testing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.
1.7.1.6 Manufacturer's Representative

The fire alarm and mass notification equipment manufacturer's representative shall be present for the connection of wiring to the control panel. The Manufacturer's Representative shall be an employee of the manufacturer with necessary technical training (NICET Level [III][IV]) on the system being installed.

1.7.1.7 Manufacturer

Components shall be of current design and shall be in regular and recurrent production at the time of installation. Provide design, materials, and devices for a protected premises fire alarm system, complete, conforming to NFPA 72, except as otherwise or additionally specified herein.

1.7.2 Regulatory Requirements

1.7.2.1 Requirements for Fire Protection Service

Equipment and material shall have been tested by UL and listed in UL Fire Prot Dir or approved by FM and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, they shall mean listed in UL Fire Prot Dir or FM APP GUIDE. The omission of these terms under the description of any item of equipment described shall not be construed as waiving this requirement. All listings or approval by testing laboratories shall be from an existing ANSI or UL published standard.

1.7.2.2 Fire Alarm/Mass Notification System

Furnish equipment that is compatible and is UL listed, FM approved, or listed by a nationally recognized testing laboratory for the intended use. All listings by testing laboratories shall be from an existing ANSI or UL published standard. Submit a unique identifier for each device, including the control panel and initiating and indicating devices, with an indication of test results, and signature of the factory-trained technician of the control panel manufacturer and equipment installer. With reports on preliminary tests, include printer information. Include the NFPA 72 Record of Completion and NFPA 72 Inspection and Testing Form, with the appropriate test reports.

1.7.2.3 Fire alarm Testing Services or Laboratories

construct fire alarm and fire detection equipment in accordance with UL Fire Prot Dir, UL Electrical Constructn, or FM APP GUIDE.

1.8 DELIVERY, STORAGE, AND HANDLING

Protect equipment delivered and placed in storage from the weather, humidity, and temperature variation, dirt and dust, and other contaminants.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Submit annotated catalog data as required in the paragraph SUBMITTAL, in table format on the drawings, showing manufacturer's name, model, voltage, and catalog numbers for equipment and components. Submitted shop drawings shall not be smaller than ISO A1. Also provide UL or FM listing cards for equipment provided.
2.1.1 Standard Products

Provide materials, equipment, and devices that have been tested by a nationally recognized testing laboratory, such as UL or FM Approvals, LLC (FM), and listed or approved for fire protection service when so required by NFPA 72 or this specification. Select material from one manufacturer, where possible, and not a combination of manufacturers, for any particular classification of materials. Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least two years prior to bid opening.

2.1.2 Nameplates

Major components of equipment shall have the manufacturer's name, address, type or style, model or serial number, catalog number, date of installation, installing Contractor's name and address, and the contract number provided on a new plate permanently affixed to the item or equipment. Major components include, but are not limited to, the following:

a. FMCPs
b. Automatic transmitter/transceiver
c. Terminal Cabinet

Furnish nameplate illustrations and data to obtain approval by the Contracting Officer before installation. Obtain approval by the Contracting Officer for installation locations. Nameplates shall be etched metal or plastic, permanently attached by screws to panels or adjacent walls.

2.1.3 Keys

Keys and locks for equipment shall be identical. Provide not less than six keys of each type required. [Master all keys and locks to a single key as required by the [Installation Fire Department][]]. [Keys shall be CAT [60][______].]

LOC is not permitted to be locked or lockable.

2.2 GENERAL PRODUCT REQUIREMENT

All fire alarm and mass notification equipment shall be listed for use under the applicable reference standards. Interfacing of Listed UL 864 or similar approved industry listing with Mass Notification Panels listed to UL 2017 shall be done in a laboratory listed configuration, if the software programming features cannot provide a listed interface control. If a field modification is needed, such as adding equipment like relays, the manufacturer of the panels being same or different brand from manufacturer shall provide the installing contractor for review and confirmation by the installing contractor. As part of the submittal documents, provide this information.

2.3 SYSTEM OPERATION

**
NOTE: For Air Force projects, all wiring will be Class "B". Otherwise, circuit wiring shall be Class
"B" unless Class "A" or "X" is required by the local installation and as permitted by NFPA 72 (SLC: "A", "B", or "X"; IDC and NAC: "A" or "B"). If cable is used in lieu of conductors and conduits, the Army and Navy will require class "A". Classes "A", "B", and "X" will be as defined by NFPA 72.

Circuits and pathways shall have survivability levels as defined by NFPA 72.

If an addition to an existing fire alarm/mass notification system is required, provide the make, model number, and other pertinent information on existing components that are to operate with the new equipment. Since new interfaces will have to be compatible with the existing system or to the central fire alarm reporting system, it may be necessary to edit major items out of this specification. If a new fire alarm panel is required, it has to be compatible with the existing central fire alarm reporting system.

**

The Addressable Interior Fire Alarm and Mass Notification System shall be a complete, supervised, noncoded, analog/addressable fire alarm and mass notification system conforming to NFPA 72, UL 864, and UL 2017. The system shall be activated into the alarm mode by actuation of any alarm initiating device. The system shall remain in the alarm mode until the initiating device is reset and the control panel is reset and restored to normal. The system may be placed in the alarm mode by local microphones, LOC, or remotely from authorized locations/users.

Submit data on each circuit to indicate that there is at least [25][50] percent spare capacity for notification appliances, [25][50] percent spare capacity for initiating devices. Annotate data for each circuit on the drawings. Submit a complete description of the system operation [in matrix format] on the drawings. Submit a complete list of device addresses and corresponding messages.

2.3.1 Alarm Initiating Devices and Notification Appliances (Visual, Voice, Textural)

a. Connect alarm initiating devices [to initiating device circuits (IDC) [Class "A"] [Class "B"][, or] [to signal line circuits (SLC)] [Class "A"] [Class "B"] [Class "X"] and installed in accordance with NFPA 72.

b. Connect alarm notification appliances and speakers to notification appliance circuits (NAC) [Class "A"] [Class "B"].

c. The system shall operate in the alarm mode upon actuation of any alarm initiating device or a mass notification signal. The system shall remain in the alarm mode until initiating device(s) or mass notification signal is/are reset and the control panel is manually reset and restored to normal. Audible, and visual appliances and systems shall comply with NFPA 72 and as specified herein. Fire alarm system/mass notification system components requiring power, except for the control panel power supply, shall operate on 24 Volts dc.
2.3.2 Functions and Operating Features

The system shall provide the following functions and operating features:

a. The FMCP shall provide power, annunciation, supervision, and control for the system. Addressable systems shall be microcomputer (microprocessor or microcontroller) based with a minimum word size of eight bits with sufficient memory to perform as specified.

b. For Class "A" or "X" circuits with conductor lengths of 3m (10 feet) or less, the conductors shall be permitted to be installed in the same raceway in accordance with NFPA 72.

c. Provide signaling line circuits for each floor.

d. Provide signaling line circuits for the network.

e. Provide notification appliance circuits. The visual alarm notification appliances shall have the flash rates synchronized as required by NFPA 72.

f. Provide electrical supervision of the primary power (AC) supply, presence of the battery, battery voltage, and placement of system modules within the control panel.

g. Provide an audible and visual trouble signal to activate upon a single break or open condition, or ground fault (or short circuit for Class "X"). The trouble signal shall also operate upon loss of primary power (AC) supply, absence of a battery supply, low battery voltage, or removal of alarm or supervisory panel modules. Provide a trouble alarm silence feature that shall silence the audible trouble signal, without affecting the visual indicator. After the system returns to normal operating conditions, the trouble signal shall again sound until the trouble is acknowledged. A smoke sensor in the process of being verified for the actual presence of smoke shall not initiate a trouble condition.

h. Provide program capability via switches in a locked portion of the FACP to bypass the automatic notification appliance circuits, fire reporting system, smoke control operation, elevator recall, door release, door unlocking features. Operation of this programming shall indicate this action on the FACP display and printer output.

i. Alarm, supervisory, and/or trouble signals shall be automatically transmitted to [the fire department][a UL listed central station].

j. Alarm functions shall override trouble or supervisory functions. Supervisory functions shall override trouble functions.

k. The system shall be capable of being programmed from the panels keyboard. Programmed information shall be stored in non-volatile memory.

l. The system shall be capable of operating, supervising, and/or monitoring both addressable and non-addressable alarm and supervisory devices.

m. There shall be no limit, other than maximum system capacity, as to the
number of addressable devices, that may be in alarm simultaneously.

n. Where the fire alarm/mass notification system is responsible for initiating an action in another emergency control device or system, such as [an HVAC system][an atrium exhaust system][a smoke control system][an elevator system] [releasing panel], the addressable fire alarm relay shall be in the vicinity of the emergency control device.

o. An alarm signal shall automatically initiate the following functions:

(1) Transmission of an alarm signal to [the fire department][a UL listed central station].

(2) Visual indication of the device operated on the control panel (FACP/MNCP), [LCD, LED Display unit (VDU),] [and on the graphic annunciator]. Indication on the graphic annunciator shall be by floor, zone or circuit, and type of device.

(3) Continuous actuation of all alarm notification appliances.

(4) Recording of the event via electronically in the history log of the fire control system unit.

(5) Release of doors held open by electromagnetic devices.

(6) Operation of the [smoke control system][atrium exhaust system].

(7) Release of power to electric locks (delayed egress locks) on doors that are part of the means of egress.

(8) Operation of a smoke sensor in an elevator lobby or other location associated with the automatic recall of elevators, shall recall the elevators in addition to other requirements of this paragraph.

(9) Operation of a duct smoke sensor shall shut down the appropriate air handler in accordance with NFPA 90A in addition to other requirements of this paragraph and as allowed by NFPA 72.

**
NOTE: Use this paragraph only where a sensor or detection system is to release a special fire extinguishing system.
**

(10) Operation of [_____] shall release the [_____] fire extinguishing system after a [_____] second time delay.

(11) Operation of a sprinkler waterflow switch serving an elevator machinery room or elevator shaft shall operate shunt trip circuit breaker(s) to shut down power to the elevators in accordance with ASME A17.1/CSA B44.

(12) Operation of an interface, that operates vibrating pagers worn by hearing-impaired occupants.

p. A supervisory signal shall automatically initiate the following functions:
(1) Visual indication of the device operated on the FACP, [VDU,] and on the graphic annunciator, and sound the audible alarm at the respective panel.

(2) Transmission of a supervisory signal to [the fire department][a UL listed central station].

(3) Recording of the event electronically in the history log of the control unit.

q. A trouble condition shall automatically initiate the following functions:

(1) Visual indication of the system trouble on the FACP, [VDU,] and on the graphic annunciator, and sound the audible alarm at the respective panel.

(2) Transmission of a trouble signal to [the fire department][a UL listed central station].

(3) Recording of the event in the history log of the control unit.

r. The maximum permissible elapsed time between the actuation of an initiating device and its indication at the FACP is 10 seconds.

s. The maximum elapsed time between the occurrence of the trouble condition and its indication at the FACP is 200 seconds.

t. Activation of a LOC pushbutton shall activate the audible and visual alarms in the facility. The audible message shall be the one associated with the pushbutton activated.

2.4 SYSTEM MONITORING

2.4.1 Valves

Each valve affecting the proper operation of a fire protection system, including automatic sprinkler control valves, standpipe control valves, sprinkler service entrance valve, valves at fire pumps, isolating valves for pressure type waterflow or supervision switches, and valves at backflow preventers, whether supplied under this contract or existing, shall be electrically monitored to ensure its proper position. Provide each tamper switch with a separate address[, unless they are within the same room, then a maximum of five can use the same address].

2.4.2 Independent Fire Detection System

Each existing independent smoke detection subsystem, kitchen fire extinguishing system, and releasing system (e.g. AFFF) shall be monitored both for the presence of an alarm condition and for a trouble condition. Provide each monitored condition with a separate address.

2.5 MASS NOTIFICATION SYSTEM FUNCTIONS

2.5.1 Notification Appliance Network

The audible notification appliance network consists of speakers located to provide intelligible instructions at [all locations in the building][areas as indicated][______]. The Mass Notification System announcements shall
take priority over all other audible announcements of the system including the output of the fire alarm system in a normal or alarm state. When a mass notification announcement is activated during a fire alarm, all fire alarm system functions shall continue in an alarm state except for the output signals of the fire alarm audible and visual notification appliances.

2.5.2 Strobes

Provide strobes to alert hearing-impaired occupants.

2.5.3 Text Displays

LED text displays (textural visible appliances) for hearing impaired occupants. The textual displays shall be programmable and shall display the same content of the voice message being played. The signs shall be able to provide a minimum of 100 mm 4 inch high letters and be located in high traffic areas easily seen by building occupants. The system shall interface with the Programmable sign controller to activate the proper message.

2.5.4 Wide Area MNS

The Wide Area MNS system (if available) in the area of the building shall not be activated by the in-building MNS.

2.5.5 Voice Notification

An autonomous voice notification control unit is used to monitor and control the notification appliance network and provide consoles for local operation. Using a console, personnel in the building can initiate delivery of pre-recorded voice messages, provide live voice messages and instructions, and initiate visual strobe and optional textual message notification appliances. The autonomous voice notification control unit will temporarily override audible fire alarm notification while delivering Mass Notification messages to ensure they are intelligible.

2.5.6 Installation-Wide Control

**

NOTE: Show on the drawings the manufacturer make and model number of any existing installation-wide control system to facilitate communications with the system being specified in this section.

**

If an installation-wide control system for mass notification exists on the base, the autonomous control unit shall communicate with the central control unit of the installation-wide system. The autonomous control unit shall receive commands/messages from the central control unit and provide status information.

2.6 OVERVOLTAGE AND SURGE PROTECTION

2.6.1 Signaling Line Circuit Surge Protection

For systems having circuits located outdoors, communications equipment shall be protected against surges induced on any signaling line circuit and shall comply with the applicable requirements of IEEE C62.41.1 and IEEE C62.41.2. Cables and conductors, that serve as communications links,
shall have surge protection circuits installed at each end that meet the following waveform(s):

a. A 10 microsecond by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 microsecond by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Protection shall be provided at the equipment. Additional triple electrode gas surge protectors, rated for the application, shall be installed on each wireline circuit within 1 m 3 feet of the building cable entrance. Fuses shall not be used for surge protection.

2.6.2 Sensor Wiring Surge Protection

Digital and analog inputs and outputs shall be protected against surges induced by sensor wiring installed outdoors and as shown. The inputs and outputs shall be tested with the following waveform(s):

a. A 10 by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Fuses shall not be used for surge protection.

2.7 ADDRESSABLE INTERFACE DEVICES

**
NOTE: Remove this paragraph when not required.
**

The initiating device being monitored shall be configured as a [Class "A"] [Class "B"] initiating device circuits. The system shall be capable of defining any module as an alarm module and report alarm trouble, loss of polling, or as a supervisory module, and reporting supervisory short, supervisory open or loss of polling such as waterflow switches, valve supervisory switches, fire pump monitoring, independent smoke detection systems, relays for output function actuation, etc. The module shall be UL or FM listed as compatible with the control panel. The monitor module shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. Monitor module shall contain an integral LED that flashes each time the monitor module is polled and is visible through the device cover plate. Pull stations with a monitor module in a common backbox are not required to have an LED. [Existing fire alarm system initiating device circuits shall be connected to a single module to power and supervise the circuit.]

2.8 ADDRESSABLE CONTROL MODULE

**
NOTE: Remove this paragraph when not required.
**

The control module shall be capable of operating as a relay (dry contact form C) for interfacing the control panel with other systems, and to control door holders or initiate elevator fire service. The module shall be UL or FM listed as compatible with the control panel. The indicating device or the external load being controlled shall be configured as a Class
"B" notification appliance circuits. The system shall be capable of supervising, audible, visual and dry contact circuits. The control module shall have both an input and output address. The supervision shall detect a short on the supervised circuit and shall prevent power from being applied to the circuit. The control model shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. The control module shall contain an integral LED that flashes each time the control module is polled and is visible through the device cover plate. Control Modules shall be located in environmental areas that reflect the conditions to which they were listed.

2.9 ISOLATION MODULES

**
NOTE: Remove this paragraph when not required.
**

Provide isolation modules to subdivide each signaling line circuit into groups of not more than 20 addressable devices between adjacent isolation modules.

2.10 SMOKE SENSORS

**
NOTE: Provide smoke sensors only in spaces where they are specifically required by UFC 3-600-01, DESIGN: FIRE PROTECTION ENGINEERING FOR FACILITIES.
**

Smoke detectors provided in elevator machinery rooms are to be provided per requirements of UFC 3-600-01. Coordinate with Section 14 21 13 ELECTRIC TRACTION FREIGHT ELEVATORS, Section 14 21 23 ELECTRIC TRACTION PASSENGER ELEVATORS and/or Section 14 24 00 HYDRAULIC ELEVATORS.

2.10.1 Photoelectric Smoke Sensors

Provide addressable photoelectric smoke sensors as follows:

a. Provide analog/addressable photoelectric smoke sensors utilizing the photoelectric light scattering principle for operation in accordance with UL 268. Smoke sensors shall be listed for use with the fire alarm control panel.

b. Provide self-restoring type sensors that do not require any readjustment after actuation at the FACP to restore them to normal operation. Sensors shall be UL listed as smoke-automatic fire sensors.

c. Components shall be rust and corrosion resistant. Vibration shall have no effect on the sensor's operation. Protect the detection chamber with a fine mesh metallic screen that prevents the entrance of insects or airborne materials. The screen shall not inhibit the movement of smoke particles into the chamber.

d. Provide twist lock bases [with sounder that produces a minimum of 90 dBA at 3 m 10 feet] for the sensors. The sensors shall maintain contact with their bases without the use of springs. Provide companion mounting base with screw terminals for each conductor. Terminate field
wiring on the screw terminals. The sensor shall have a visual indicator to show actuation.

e. The sensor address shall identify the particular unit, its location within the system, and its sensitivity setting. Sensors shall be of the low voltage type rated for use on a 24 VDC system.

f. An operator at the control panel, having a proper access level, shall have the capability to manually access the following information for each initiating device.

 (1) Primary status
 (2) Device type
 (3) Present average value
 (4) Present sensitivity selected
 (5) Sensor range (normal, dirty, etc.)

2.10.2 Ionization Type Smoke Sensors

**
NOTE: These type of detectors are not permitted in new Air Force OCONUS facilities.
**

Provide addressable ionization type smoke sensors as follows:

a. Provide analog smoke sensors that operate on the ionization principle and are actuated by the presence of visible or invisible products of combustion. Smoke sensors shall be listed for use with the fire alarm control panel.

b. Provide self-restoring type sensors that do not require any readjustment after actuation at the FACP to restore them to normal operation. Sensors shall be UL or FM listed as smoke-automatic fire sensors.

c. Components shall be rust and corrosion resistant. Vibration shall have no effect on the sensor's operation. Protect the detection chamber with a fine mesh metallic screen that prevents the entrance of insects or airborne materials. The screen shall not inhibit the movement of smoke particles into the chamber.

d. Provide twist lock bases for the sensors. The sensors shall maintain contact with their bases without the use of springs. Provide companion mounting base with screw terminals for each conductor. Terminate field wiring on the screw terminals. The sensor shall have a visual indicator to show actuation.

[e. The sensor address shall identify the particular unit, its location within the system, and its sensitivity setting. Sensors shall be of the low voltage type rated for use on a 24 VDC system.]

f. An operator at the control panel, having a proper access level, shall have the capability to manually access the following information for each initiating device.
(1) Primary status
(2) Device type
(3) Present average value
(4) Present sensitivity selected
(5) Sensor range (normal, dirty, etc.)
(6) Sensitivity adjustments for smoke detectors.

2.10.3 Projected Beam Smoke Detectors

Detectors shall be designed for detection of abnormal smoke densities. Detectors shall consist of [combined transmitter and receiver unit] [separate transmitter and receiver units]. The transmitter unit shall emit an infrared beam to the receiver unit [the use of a supplied reflector is required for the combined unit]. When the signal at the receiver falls below a preset sensitivity, the detector shall initiate an alarm. The receiver shall contain an LED that is powered upon an alarm condition. Long-term changes to the received signal caused by environmental variations shall be automatically compensated. Detectors shall incorporate features to assure that they are operational; a trouble signal shall be initiated if the beam is obstructed, the limits of the compensation circuit are reached, or the housing cover is removed. Detectors shall have multiple sensitivity settings in order to meet UL listings for the different distances covered by the beam. In the event of beam interference for more than three seconds a trouble alarm shall be transmitted.

2.10.4 Duct Smoke Sensors

**
NOTE: The requirements for Duct Detectors will be coordinated with the HVAC requirements and Sections 23 09 23.13 20 BAncet DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC, 23 09 23 DIRECT DIGITAL CONTROL FOR HVAC AND OTHER LOCAL BUILDING SYSTEMS, 28 31 74.00 20 INTERIOR FIRE DETECTION AND ALARM SYSTEM, or 28 31 63.00 20 ANALOG/ADDRESSABLE INTERIOR FIRE ALARM SYSTEM. All required duct detectors will be shown on the contract drawings.
**

Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated and in accordance with NFPA 90A. Units shall consist of a smoke detector as specified in paragraph Photoelectric Detectors, mounted in a special housing fitted with duct sampling tubes. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. (It is not permitted to cut the duct insulation to install the duct detector directly on the duct). Detectors shall have a manual reset. Detectors shall be rated for air velocities that include air flows between [2.5 and 20][_____] m/s [500 and 4000] [_____] fpm. Detectors shall be powered from the fire alarm panel.

a. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the requirements of NFPA 90A, UL 268A, and shall be UL listed for use in air-handling systems. The control
functions, operation, reset, and bypass shall be controlled from the fire alarm control panel.

b. Lights to indicate the operation and alarm condition; and the test and reset buttons shall be visible and accessible with the unit installed and the cover in place. Remote indicators shall be provided where required by NFPA 72 and these shall be provided with test and reset switches.

c. Remote lamps and switches as well as the affected fan units shall be properly identified in etched plastic placards. Detectors shall provide for control of auxiliary contacts that provide control, interlock, and shutdown functions specified in Section [23 09 23 to LONWORKS DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS][28 31 74.00 20 INTERIOR FIRE DETECTION AND ALARM SYSTEM][28 31 63.00 20 ANALOG/ADDRESSABLE INTERIOR FIRE ALARM SYSTEM]. Auxiliary contacts provide for this function shall be located within 1 m (3 feet) of the controlled circuit or appliance. The detectors shall be supplied by the fire alarm system manufacturer to ensure complete system compatibility.

[2.10.5 Air Sampling Smoke Detectors]

Air sampling detectors are early warning devices used to detect what may be the beginning of a fire. The detector uses a series of perforated pipes in the protected area to continuously draw smoke into the sampling chamber. Once in the sampling chamber, the air is sampled by [mass scattering of light] [laser particle counting] [cloud density measuring] to determine if there is possibly a fire in the protected area. These units shall be programmable in multiple levels to indicate detection of particles that are not normally present, to indicate the presence of particles that could be produced by a fire and to indicate the presence of particles of the proper size and quantity to indicate that a fire condition exists.

[2.10.6 Smoke Sensor Testing]

Smoke sensors shall be tested in accordance with NFPA 72 and manufacturer's recommended calibrated test method. Submit smoke sensor testing procedures for approval. In addition to the NFPA 72 requirements, smoke detector sensitivity shall be tested during the preliminary tests.

2.11 HEAT DETECTORS

**
NOTE: Heat detectors provided in elevator machinery rooms are strictly for the warning sign in the elevator cab and shall not alarm the FACP. Coordinate with Section 14 21 13 ELECTRIC TRACTION FREIGHT ELEVATORS, Section 14 21 23 ELECTRIC TRACTION PASSENGER ELEVATORS and/or Section 14 24 00 HYDRAULIC ELEVATORS.
**

2.11.1 Heat Detectors

Heat detectors shall be designed for detection of fire by [fixed temperature][combination fixed temperature and rate-of-rise principle] [rate-compensating principle]. The alarm condition shall be determined by comparing sensor valve with the stored values. Heat detector spacing shall
be rated in accordance with UL 521. Detectors located in areas subject to moisture, exterior atmospheric conditions, or hazardous locations [as defined by NFPA 70] [and] [as indicated], shall be types approved for such locations.

2.11.1.1 Combination Fixed-Temperature and Rate-of-Rise Detectors

Detectors shall be designed for [surface][semi-flush] outlet box mounting and supported independently of wiring connections. Contacts shall be self-resetting after response to rate-of-rise principle. Under fixed temperature actuation, the detector shall have a permanent external indication that is readily visible. Detector units located in boiler rooms, showers, or other areas subject to abnormal temperature changes shall operate on fixed temperature principle only. The UL 521 test rating for the fixed temperature portion shall be [57.2] [_____] degrees C [135] [_____] degrees F [as shown]. The UL 521 test rating for the Rate-of-Rise detectors shall be rated for 15 by 15 m 50 by 50 feet.

2.11.1.2 Rate Compensating Detectors

Detectors shall be [surface][flush] mounted [vertical][horizontal] type, with outlet box supported independently of wiring connections. Detectors shall be hermetically sealed and automatically resetting. Rate Compensated detectors shall be rated for 15 by 15 m 50 by 50 feet.

2.11.1.3 Fixed Temperature Detectors

Detectors shall be designed for [surface] [semi-flush] outlet box mounting and supported independently of wiring connections. Detectors shall be designed to detect high heat. The detectors shall have a specific temperature setting of [57.2] [_____] degrees C [135] [_____] degrees F [as shown]. The UL 521 test rating for the fixed temperature detectors shall be rated for 15 by 15 m 50 by 50 feet.

2.11.2 Self-Test Routines

Automatic self-test routines shall be performed on each sensor that will functionally check sensor sensitivity electronics and ensure the accuracy of the value being transmitted. Any sensor that fails this test shall indicate a trouble condition with the sensor location at the control panel.

2.11.3 Operator Access

An operator at the control panel, having the proper access level, shall have the capability to manually access the following information for each heat sensor:

a. Primary status
b. Device type
c. Present average value
d. Sensor range ([_____])

2.11.4 Operator Control

An operator at the control panel, having the proper access level, shall have the capability to manually control the following information for each
heat sensor:

a. Alarm detection sensitivity values
b. Enable or disable the point/device
c. Control sensors relay driver output

2.12 MULTI SENSOR DETECTORS

Multi-sensor detectors shall contain [fixed temperature [_____] degrees C F heat sensor], [rate-of-rise heat sensor], [photoelectric smoke sensor], [carbon monoxide sensor], [_____] elements in a single housing. Each detection sensor shall be listed to initiate a fire alarm condition.

2.13 MULTI CRITERIA DETECTORS

**
The designer shall select the sensor required to initiate a fire alarm condition.
**

Multi-criteria detectors shall contain [fixed temperature [_____] degrees C F heat sensor], [rate-of-rise heat sensor], [photoelectric smoke sensor], [carbon monoxide sensor], [_____] elements in a single housing. Only one detection sensor shall be listed to initiate a fire alarm condition. The others shall initiate a trouble alarm.

2.14 ELECTRIC POWER

2.14.1 Primary Power

Power shall be 120 VAC service for the FMCP from the AC service to the building in accordance with NFPA 72.

2.15 SECONDARY POWER SUPPLY

Provide for system operation in the event of primary power source failure. Transfer from normal to auxiliary (secondary) power or restoration from auxiliary to normal power shall be automatic and shall not cause transmission of a false alarm.

2.15.1 Batteries

Provide sealed, maintenance-free, [sealed lead acid] [lead-calcium] [gel cell] batteries as the source for emergency power to the FMCP. Batteries shall contain suspended electrolyte. The battery system shall be maintained in a fully charged condition by means of a solid state battery charger. Provide an automatic transfer switch to transfer the load to the batteries in the event of the failure of primary power.

2.15.1.1 Capacity

Battery size shall be the greater of the following two capacities.

a. Sufficient capacity to operate the fire alarm system under supervisory and trouble conditions, including audible trouble signal devices for 24 hours and audible and visual signal devices under alarm conditions for an additional 15 minutes.
b. Sufficient capacity to operate the mass notification for 60 minutes after loss of AC power.

2.15.1.2 Battery Power Calculations

a. Verify that battery capacity exceeds supervisory and alarm power requirements.

(1) Substantiate the battery calculations for alarm, alert, and supervisory power requirements. Include ampere-hour requirements for each system component and each panel component, and compliance with UL 864.

(2) Provide complete battery calculations for both the alarm, alert, and supervisory power requirements. Submit ampere-hour requirements for each system component with the calculations.

(3) A voltage drop calculation to indicate that sufficient voltage is available for proper operation of the system and all components, at the minimum rated voltage of the system operating on batteries.

b. For battery calculations use the following assumptions: Assume a starting voltage of 24 VDC for starting the calculations to size the batteries. Calculate the required Amp-Hours for the specified standby time, and then calculate the required Amp-Hours for the specified alarm time. Calculate the nominal battery voltage after operation on batteries for the specified time period. Using this voltage perform a voltage drop calculation for circuit containing device and/or appliances remote from the power sources.

2.15.2 Battery Chargers

Provide a solid state, fully automatic, variable charging rate battery charger. The charger shall be capable of providing 120 percent of the connected system load and shall maintain the batteries at full charge. In the event the batteries are fully discharged (20.4 Volts dc), the charger shall recharge the batteries back to 95 percent of full charge within 48 hours after a single discharge cycle as described in paragraph CAPACITY above. Provide pilot light to indicate when batteries are manually placed on a high rate of charge as part of the unit assembly if a high rate switch is provided.

2.16 FIRE ALARM CONTROL UNIT AND MASS NOTIFICATION CONTROL UNIT (FMCP)

**
NOTE: The control unit shall be located in an air conditioned space where the ambient temperature is maintained between 15 and 27 degrees C(60 and 80 degrees F).
**

Provide a complete control panel fully enclosed in a lockable steel cabinet as specified herein. Operations required for testing or for normal care and maintenance of the systems shall be performed from the front of the enclosure. If more than a single unit is required at a location to form a complete control panel, the unit cabinets shall match exactly. [If more than a single unit is required, and is located in the lobby/entrance, notify the [Naval Facilities Engineering Command, [_____],

SECTION 28 31 76 Page 29
Fire Protection Engineer][Contracting Offices Designated Representative (COR)], prior to installing the equipment.

a. Each control unit shall provide power, supervision, control, and logic for the entire system, utilizing solid state, modular components, internally mounted and arranged for easy access. Each control unit shall be suitable for operation on a 120 volt, 60 hertz, normal building power supply. Provide each panel with supervisory functions for power failure, internal component placement, and operation.

b. Visual indication of alarm, supervisory, or trouble initiation on the fire alarm control panel shall be by liquid crystal display or similar means with a minimum of 80 characters. The mass notification control unit shall have the capability of temporarily deactivate the fire alarm audible notification appliances while delivering voice messages.

c. Provide secure operator console for initiating recorded messages, strobes and displays; and for delivering live voice messages. Provide capacity for at least eight pre-recorded messages. Provide the ability to automatically repeat pre-recorded messages. Provide a secure microphone for delivering live messages. Provide adequate discrete outputs to temporarily deactivate fire alarm audible notification, and initiate/synchronize strobes. Provide a complete set of self-diagnostics for controller and appliance network. Provide local diagnostic information display and local diagnostic information and system event log file.

2.16.1 Cabinet

Install control panel components in cabinets large enough to accommodate all components and also to allow ample gutter space for interconnection of panels as well as field wiring. The enclosure shall be identified by an engraved laminated phenolic resin nameplate. Lettering on the nameplate shall say "Fire Alarm and Mass Notification Control Panel" and shall not be less than 25 mm 1 inch high. Provide prominent rigid plastic or metal identification plates for lamps, circuits, meters, fuses, and switches. The cabinet shall be provided in a sturdy steel housing, complete with back box, hinged steel door with cylinder lock, and surface mounting provisions.

2.16.2 Control Modules

Provide power and control modules to perform all functions of the FACP. Provide audible signals to indicate any alarm, supervisory, or trouble condition. The alarm signals shall be different from the trouble signal. Connect circuit conductors entering or leaving the panel to screw-type terminals with each terminal marked for identification. Locate diodes and resistors, if any, on screw terminals in the FACP. Circuits operating at 24 VDC shall not operate at less than the UL listed voltage at the sensor or appliance connected. Circuits operating at any other voltage shall not have a voltage drop exceeding 10 percent of nominal voltage.

2.16.3 Silencing Switches

2.16.3.1 Alarm Silencing Switch

Provide an alarm silencing switch at the FMCP that shall silence the audible and visual. This switch shall be overridden upon activation of a subsequent alarm.
2.16.3.2 Supervisory/Trouble Silencing Switch

Provide supervisory and trouble silencing switch that shall silence the audible trouble and supervisory signal, but not extinguish the visual indicator. This switch shall be overridden upon activation of a subsequent alarm, supervision, or trouble condition. Audible trouble indication must resound automatically every 24 hours after the silencing feature has been operated.

2.16.4 Non-Interfering

Power and supervise each circuit such that a signal from one device does not prevent the receipt of signals from any other device. Circuits shall be manually reset by switch from the FACP after the initiating device or devices have been restored to normal.

2.16.5 Audible Notification System

**
NOTE: Use the proper bracketed item depending upon whether the fire alarm system is to cause total evacuation upon an alarm.
**

The Audible Notification System shall comply with the requirements of NFPA 72 for Emergency Voice/Alarm Communications System requirements ISO 7240-16, IEC 60268-16, except as specified herein. The system shall be a [one-way][two-way] multi-channel voice notification system incorporating user selectability of a minimum eight distinct sounds for tone signaling, and the incorporation of a voice module for delivery of prerecorded messages. Audible appliances shall produce a temporal code 3 tone for three cycles followed by a voice message that is repeated until the control panel is reset or silenced. Automatic messages shall be broadcast through speakers throughout the building/facility but not in stairs or elevator cabs. A live voice message shall override the automatic audible output through use of a microphone input at the control panel or the LOC.

a. When using the microphone, live messages shall be broadcast throughout a selected floor or floors or all call. The system shall be capable of operating all speakers at the same time. [The Audible Notification System shall support Public Address (PA) paging for the facility.] The microprocessor shall actively interrogate circuitry, field wiring, and digital coding necessary for the immediate and accurate rebroadcasting of the stored voice data into the appropriate amplifier input. Loss of operating power, supervisory power, or any other malfunction that could render the digitalized voice module inoperative shall automatically cause the code 3 temporal tone to take over all functions assigned to the failed unit in the event an alarm is activated.

b. The Mass Notification functions shall override the manual or automatic fire alarm notification or Public Address (PA) functions. Other fire alarm functions including transmission of a signal(s) to the fire department shall remain operational. The system shall have the capability of utilizing LOC with redundant controls of the notification system control panel. Notification Appliance Circuits (NAC) shall be provided for the activation of strobe appliances. The activation of the NAC Circuits shall follow the operation of the speaker NAC circuits. Audio output shall be selectable for line level. Amplifier outputs shall be not greater than 100 watts RMS output. The strobe NAC
Circuits shall provide at least 2 amps of 24 VDC power to operate strobes and have the ability to synchronize all strobes. A hand held microphone shall be provided and, upon activation, shall take priority over any tone signal, recorded message or PA microphone operation in progress, while maintaining the strobe NAC Circuits activation.

2.16.5.1 Outputs and Operational Modules

All outputs and operational modules shall be fully supervised with on-board diagnostics and trouble reporting circuits. Provide form "C" contacts for system alarm and trouble conditions. Provide circuits for operation of auxiliary appliance during trouble conditions. During a Mass Notification event the panel shall not generate nor cause any trouble alarms to be generated with the Fire Alarm system.

2.16.5.2 Mass Notification

**
NOTE: The specification writer shall comply with the requirements of UFC 4-021-01 and shall use messages approved for each specific installation since risks are different at each and every installation.

These message that follow are suggestions for use in the event that installation specific messages are not available.
**

a. Mass Notification functions shall take precedence over all other function performed by the Audible Notification System. Messages shall utilize a [male][female] voice and shall be similar to the following:

(1) 1000 Hz tones (as required in 18.4.2.1 of NFPA 72)

(2) "May I have your attention please. May I have your attention please. An fire emergency has been reported in the building. Please leave the building by the nearest exit or exit stairway. Do not use the elevators." (Provide a [2][_____] second pause.) "May I have your attention please, (repeat the message)."

(3) "May I have your attention please. May I have your attention please. [insert installation specific message here]" (Provide a [2][_____] second pause.) (repeat the message)

(4) "May I have your attention please. May I have your attention please. [insert installation specific message here]" (Provide a [2][_____] second pause.) (repeat the message)

(5) "May I have your attention please. May I have your attention please. [insert installation specific message here]" (Provide a [2][_____] second pause.) (repeat the message)

(6) "May I have your attention please. May I have your attention please. [insert installation specific message here]" (Provide a [2][_____] second pause.) (repeat the message)

b. Include ALL installation specific message in this section.
c. The LOC shall incorporate a Push-To-Talk (PTT) microphone, redundant controls and system status indicators of/for the system. The unit shall incorporate microphone override of any tone generation or prerecorded messages. The unit shall be fully supervised from the control panel. The housing shall contain a latch (not lock).

d. Auxiliary Input Module shall be designed to be an outboard expansion module to either expand the number of optional LOC's, or allow a telephone interface.

e. LOC shall incorporate a Push-To-Talk (PTT) microphone, and controls to allow Public Address paging in the facility. The Public Address paging function shall not override any alarm or notification functions and shall be disabled by such signals. The microphone shall be [desktop][handheld][______] style. All wiring to the LOC shall be supervised in accordance with UFC 4-021-01. Systems that require field modification or are not supervised for multiple LOC's shall not be approved.

f. When an installation has more than one LOC, the LOC's shall be programmed to allow only one LOC to be available for page or messaging at a time. Once one LOC becomes active, all other LOC's will have an indication that the system is busy (Amber Busy Light) and cannot be used at that time. This is to avoid two messages being given at the same time. Also, it must be possible to override or lockout the LOC's from the Master Command Panel (in accordance with NFPA 72.)

2.16.6 Memory

Provide each control unit with non-volatile memory and logic for all functions. The use of long life batteries, capacitors, or other age-dependent devices shall not be considered as equal to non-volatile processors, PROMS, or EPROMS.

2.16.7 Field Programmability

Provide control units and control panels that are fully field programmable for control, initiation, notification, supervisory, and trouble functions of both input and output. The system program configuration shall be menu driven. System changes shall be password protected and shall be accomplished using personal computer based equipment. Any proprietary equipment and proprietary software needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract.

2.16.8 Input/Output Modifications

The FMCP shall contain features that allow the bypassing of input devices from the system or the modification of system outputs. These control features shall consist of a panel mounted keypad[and a keyboard]. Any bypass or modification to the system shall indicate a trouble condition on the FMCP.

2.16.9 Resetting

Provide the necessary controls to prevent the resetting of any alarm, supervisory, or trouble signal while the alarm, supervisory or trouble condition on the system still exists.
2.16.10 Instructions

Provide a typeset printed or typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. [Install the instructions on the interior of the FACP.] [Install the frame in a conspicuous location observable from the FACP.] The card shall show those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions, normal, alarm, supervisory, and trouble. The instructions shall be approved by the Contracting Officer before being posted.

2.16.11 Walk Test

The FACP shall have a walk test feature. When using this feature, operation of initiating devices shall result in limited system outputs, so that the notification appliances operate for only a few seconds and the event is indicated on the system printer, but no other outputs occur.

2.16.12 History Logging

In addition to the required printer output, the control panel shall have the ability to store a minimum of 400 events in a log. These events shall be stored in a battery-protected memory and shall remain in the memory until the memory is downloaded or cleared manually. Resetting of the control panel shall not clear the memory.

2.16.13 Remote LCD Text Display

**
NOTE: Provide remote LCD Text display in locations where Hearing Impaired personnel might read instructions on the emergency. For Navy projects, the Text displays will be located over stairwell doors and major egress doors at the level of discharge.
**

An LCD text display shall be provided at locations as shown on the drawings. The size shall not exceed 400 mm length by 150 mm height by 75 mm deep 16 inches length by 3 inches deep with a height necessary to meet the requirements of Chapter 24 of NFPA 72). The text display shall as a minimum meet the following requirements:

a. Two lines of information for high priority messaging.
b. Minimum of 20 characters per line (40 total) displayed.
c. Text shall be no less than height requirements in Table 24.4.2.20.14.5 of NFPA 72 and color/contrast requirements of 24.4.2.20 of NFPA 72.
d. 32K character memory.
e. Display shall be wall or ceiling mounted.
f. Mounting brackets for a convenient wall/cubicle mount.
g. During non-emergency periods, display date and time.
h. All programming shall be accomplished from the Mass Notification
network. No user programming shall be required.

An LCD text display shall be provided at locations as shown on the drawings. The LCD text display shall spell out the words "EVACUATE" and "ANNOUNCEMENT" and the remainder of the emergency instructions. The design of LCD text display shall be such that it cannot be read when not illuminated.

2.17 REMOTE FIRE ALARM/MASS NOTIFICATION CONTROL UNITS

Provide complete remote control units fully enclosed in a lockable steel enclosure as specified herein. Operations required for testing or for normal care and maintenance of the control units shall be performed from the front of the enclosure. If more than a single unit is required at a location to form a complete control panel, the unit enclosures shall match exactly. Each control unit shall provide power, supervision, control, and logic for its portion of the entire system, utilizing solid state, modular components, internally mounted and arranged for easy access. Each control unit shall be suitable for operation on a 120 volt, 60 hertz, normal building power supply. Provide each unit with supervisory functions for power failure, internal component placement, and operation.

2.17.1 Cabinet

Install remote control unit components in cabinets large enough to accommodate components and also to allow ample gutter space for interconnection of units as well as field wiring. The enclosure shall be identified by an engraved laminated phenolic resin nameplate. Lettering on the nameplate shall be labeled "Remote Fire Alarm/Mass Notification Control Unit" and shall not be less than one inch high. Provide prominent rigid plastic or metal identification plates for lamps, circuits, meters, fuses, and switches. The cabinet shall be provided in a sturdy steel housing, complete with back box, hinged steel door with cylinder lock (keyed the same as the FMCP), and surface mounting provisions.

2.17.2 Control Modules

Provide power and control modules to perform all functions of the remote control unit. Provide audible signals to indicate any alarm or trouble condition. The alarm signals shall be different from the trouble signal. Connect circuit conductors entering or leaving the panel to screw-type terminals with each terminal marked for identification. Locate diodes and relays, if any, on screw terminals in the remote control unit. Circuits shall not have a voltage drop exceeding 10 percent of nominal voltage. Circuits shall be arranged so that there is 25 percent spare capacity for any circuit.

2.17.3 Silencing Switches

Provide an alarm silencing switch at the remote control unit that shall silence the audible signal and extinguish the visual alarms. This switch shall be overridden upon activation of a subsequent alarm. Provide trouble and supervisory silencing switch that shall silence the audible trouble and supervisory signal, but not extinguish the visual indicator. This switch shall be overridden upon activation of a subsequent trouble or supervisory signal. Audible trouble indication must resound automatically every 24 hours after the silencing feature has been operated.
2.17.4 Non-Interfering

Power and supervise each circuit such that a signal from one device does not prevent the receipt of signals from any other device. Circuits shall be manually resettable by switch from the remote control unit after the initiating device or devices have been restored to normal.

2.17.5 Memory

Provide each control unit with non-volatile memory and logic for all functions. The use of long life batteries, capacitors, or other age-dependent devices shall not be considered as equal to non-volatile processors, PROMS, or EPROMS.

2.17.6 Field Programmability

Provide control units that are fully field programmable for control, initiating, supervisory, and trouble functions of both input and output. The system program configuration shall be menu driven. System changes shall be password protected and shall be accomplished using personal computer based equipment. [Any proprietary equipment and proprietary software needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract.]

2.17.7 Input/Output Modifications

Each remote control unit shall contain features that allow the elimination of input devices from the system or the modification of system outputs. Any such modifications shall indicate a trouble condition on the remote control unit, the FACP, and a printed output of the trouble condition.

2.17.8 Resetting

Provide the necessary controls to prevent the resetting of any alarm, supervisory, or trouble signal while the alarm, supervisory, or trouble condition on the system still exists.

2.17.9 Instructions

Provide a typeset printed or typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. Install the frame in a conspicuous location observable from the remote fire alarm control unit.[Install the frame in a conspicuous location observable from the remote fire alarm control unit.] The card shall show those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions, normal, alarm, supervisory, and trouble. The instructions shall be approved by the Contracting Officer before being posted.

2.17.10 Walk Test

Each remote control unit shall have a walk test feature. When using this feature, operation of initiating devices shall result in limited system outputs, so that the notification appliances operate for only a few seconds and the event is indicated on the system printer, but no other outputs occur.
2.17.11 History Logging

In addition to the required printer output, the control panel shall have the ability to store a minimum of 1000 events in a log. These events shall be stored in a battery-protected memory and shall remain in the memory until the memory is downloaded or cleared manually. [Resetting of the control panel shall not clear the memory.]

2.18 AMPLIFIERS, PREAMPLIFIERS, TONE GENERATORS

Any amplifiers, preamplifiers, tone generators, digitalized voice generators, and other hardware necessary for a complete, operational, textual audible circuit conforming to NFPA 72 shall be housed in a remote FMCP, terminal cabinet, or in the FMCP. Submit data to indicate that the amplifiers have sufficient capacity to simultaneously drive all notification speakers at the maximum rating plus 50 percent spare capacity. Annotate data for each circuit on the drawings.

2.18.1 Operation

The system shall automatically operate and control all building speakers except those installed in the stairs and within elevator cabs. The speakers in the stairs and elevator cabs shall operate only when the microphone is used to deliver live messages.

2.18.2 Construction

Amplifiers shall utilize computer grade solid state components and shall be provided with output protection devices sufficient to protect the amplifier against any transient up to 10 times the highest rated voltage in the system.

2.18.3 Inputs

Equip each system with separate inputs for the tone generator, digitalized voice driver and panel mounted microphone [Public Address Paging Function (where allowed)]. Microphone inputs shall be of the low impedance, balanced line type. Both microphone and tone generator input shall be operational on any amplifier.

2.18.4 Tone Generator

The tone generator shall be of the modular, plug-in type with securely attached labels to identify the component as a tone generator and to identify the specific tone it produces. The tone generator shall produce a code 3 temporal tone and shall be constantly repeated until interrupted by either the digitalized voice message, the microphone input, or the alarm silence mode as specified. The tone generator shall be single channel with an automatic backup generator per channel such that failure of the primary tone generator causes the backup generator to automatically take over the functions of the failed unit and also causes transfer of the common trouble relay.

2.18.5 Protection Circuits

Each amplifier shall be constantly supervised for any condition that could render the amplifier inoperable at its maximum output. Failure of any component shall cause automatic transfer to a designated backup amplifier, illumination of a visual "amplifier trouble" indicator on the control panel.
panel, appropriate logging of the condition on the system printer, and other actions for trouble conditions as specified.

2.19 LCD, LED DISPLAY UNIT (VDU)

**
NOTE: Contact the cognizant NAVFAC Fire Protection Engineer to determine if a VDU is to be provided.
**

a. The VDU shall be the secondary operator-to-system interface for data retrieval, alarm annunciation, commands, and programming functions. The desk mounted VDU shall consist of an LCD monitor and a keyboard. The VDU shall have a [300][430][__] mm [12][17][__] inch minimum touch screen, capable of displaying 25 lines of 80 characters each. Communications with the FACP shall be supervised. Faults shall be recorded on the printer. Power required shall be 120 VAC, 60 Hz from the same source as the fire alarm control panel.

b. To eliminate confusion during an alarm situation, the screen shall have dedicated areas for the following functions:
 (1) Alarm and returns to normal
 (2) Commands, reports, and programming
 (3) Time, day, and date

c. Use Full English language throughout to describe system activity and instructions. Full English language descriptors defining system points shall be 100 percent field programmable by factory trained personnel, alterable and user definable to accurately describe building areas.

d. Alarms and other changes of status shall be displayed in the screen area reserved for this information. Upon receipt of alarm, an audible alarm shall sound and the condition and point type shall flash until acknowledged by the operator. Returns to normal shall also be annunciated and shall require operator acknowledgment. The following information shall be provided in English:
 (1) Condition of device (alarm, trouble, or supervisory).
 (2) Type of device (manual pull, water flow, etc.)
 (3) Location of device plus numerical system address.

e. The system shall have multiple levels of priority for displaying alarms to conform with UL 864. Priority levels shall be as follows:
 (1) Level 1 - Mass Notification
 (2) Level 2 - Fire Alarms
 (3) Level 3 - Supervisory Alarms
 (4) Level 4 - Trouble Signals

f. Provide the system with memory so that no alarm is lost. A highlighted message shall advise the operator when unacknowledged alarms are in the
g. Multiple levels of access shall be provided for operators and supervisors via user-defined passwords. Provide the following functions for each level:

(1) Operator level access functions:

(a) Display system directory, definable by device.

(b) Display status of an individual device.

(c) Manual command (alarm device with an associated command shall use the same system address for both functions).

(d) Report generation, definable by device, output on either the VDU or printer, as desired by the operator.

(e) Activate building notification appliances.

(2) Supervisory level access functions:

(a) Reset time and date.

(b) Enable or disable event initiated programs, printouts, and initiators.

(c) Enable or disable individual devices and system components.

h. The above supervisory level functions shall not require computer programming skills. Changes to system programs shall be recorded on the printer and maintained in the control panel as a trouble condition.

2.20 ANNUNCIATOR

**
NOTE: Provide the annunciator at a location in accordance with NFPA 72. A suggested location should be near the door through which the first responders will enter the building as indicated in their pre-fire plan.
**

2.20.1 Annunciator Panel

Provide an annunciator that includes an LCD display. The display shall indicate the device in trouble/alarm or any supervisory device. Display the device name, address[, and actual building location].

A building floor plan shall be provided mounted (behind plexiglass or similar protective material) at the annunciator location. The floor plan shall indicate all rooms by name and number including the locations of stairs and elevators. The floor plan shall show all devices and their programmed address to facilitate their physical location from the LCD display information.

2.20.2 Programming

Where programming for the operation of the annunciator is accomplished by a
separate software program than the software for the FMCP, the software program shall not require reprogramming after loss of power. The software shall be reprogrammable in the field.

2.21 MANUAL STATIONS

--
NOTE: Architectural Barriers Act (ABA) requires that manual alarm stations be mounted at a maximum of 1.1 m (44 inches) above finished floor (AFF).
--

Provide metal or plastic, semi-flush mounted, [single][double] action, addressable manual stations, that are not subject to operation by jarring or vibration. Stations shall be equipped with screw terminals for each conductor. Stations that require the replacement of any portion of the device after activation are not permitted. Stations shall be finished in fire-engine red with molded raised lettering operating instructions of contrasting color. The use of a key or wrench shall be required to reset the station. Manual stations shall be mounted at [1067][1117][_____] mm [42][44][_____] inches. Stations shall have a separate screw terminal for each conductor.

2.22 NOTIFICATION APPLIANCES

2.22.1 Fire Alarm/Mass Notification Speakers

--
NOTE: Speakers are normally the notification appliances and horns, bells, or chimes are not generally required. The designer shall layout speakers to achieve both the required dBA levels requires by NFPA 72 and also the required intelligibility required. See 3.7 for testing for intelligibility requirements that must be incorporated into the design.
--

Audible appliances shall conform to the applicable requirements of UL 464. Appliances shall be connected into notification appliance circuits. Surface mounted audible appliances shall be painted [red][white][______]. Recessed audible appliances shall be installed with a grill that is painted [red][white][______][with a factory finish to match the surface to which it is mounted].

a. Speakers shall conform to the applicable requirements of UL 1480. Speakers shall have six different sound output levels and operate with audio line input levels of 70.7 VRMs and 25 VRMs, by means of selectable tap settings. Tap settings shall include taps of 1/8, 1/4, 1/2, 1, and 2 watt. Speakers shall incorporate a high efficiency speaker for maximum output at minimum power across a frequency range of 150 Hz to 10,000 Hz, and shall have a sealed back construction. Speakers shall be capable of installation on standard 100 mm 4 inch square electrical boxes. Where speakers and strobes are provided in the same location, they may be combined into a single [wall mounted] unit. All inputs shall be polarized for compatibility with standard reverse polarity supervision of circuit wiring via the FMCP.

b. Provide speaker mounting plates constructed of cold rolled steel having
a minimum thickness of 1.519 mm (16 gauge) 16 gauge or molded high
impact plastic and equipped with mounting holes and other openings as
needed for a complete installation. Fabrication marks and holes shall
be ground and finished to provide a smooth and neat appearance for each
plate. Each plate shall be primed and painted.

c. Speakers shall utilize screw terminals for termination of all field
wiring.

2.22.2 Visual Notification Appliances

**
NOTE:
1. ABA requires that Visual Notification
Appliances be provided in buildings and facilities
in each of the following areas: restrooms, and any
general usage area (e.g., meeting rooms), hallways,
lobbies, and any other area for common use and other
areas stated at www.access-board.gov. The Visual
Notification Appliance shall be mounted as required
ABA that directs compliance with NFPA 72 except that
the maximum allowable sound level of audible
notification appliances shall have a sound level no
more than 110 dB at the minimum hearing distance
from the audible appliance. In addition, alarms in
guest rooms required to provide communication
features shall comply with sections 18.5.4.6 of NFPA
72. Shop drawings shall indicate location,
dimensions, content, details, and other required
information to indicate extent of complying with ABA
requirements.

2. Currently NFPA 72 requires "clear color"
strobes for Fire Alarm Notification. NFPA 72
requires the strobe shall be marked "Fire" to clear
identify the function

For Army and Air Force projects, a second "amber
color" strobe shall be provided to indicate
operation of the Mass Notification system. Strobe
shall be marked "ALERT". Visual Notification
Appliances that contain strobes having lens other
than clear are to be derated unless the manufacturer
can substantiate that derating is not required.
During shop drawing review, check manufacturer data
sheets for derating factor.

For Navy Projects, involving Mass Notification, a
single "clear color" strobe shall be provided.
Strobe shall be marked "ALERT".

**
NOTE: Locate strobes wall mounted in corridors no
more than 4.5 m (15 feet) from the end of a corridor
with 30 m (100 feet) maximum distance between
strobes. Where there is an obstruction to the
viewing path in the corridors, such as a
cross-corridor door or ceiling elevation change,
consider the obstruction as defining a new
corridor. Provide wall mounted strobes in rooms
accessible to the public, such as conference rooms,
restrooms, courtrooms, cafeterias, and auditoriums
in accordance with NFPA 72. In Child Development
Centers only chimes shall be used as the pre-alert
tone prior to voice messages.

Visual notification appliances shall conform to the applicable requirements
of UL 1971 and conform to the Architectural Barriers Act (ABA). Colored
lens, such as amber, shall comply with UL 1638. The manufacturer shall
have the color lens tested to the full UL 1971 polar plotting criteria,
voltage drop, and temperature rise as stated in 1971. [Fire Alarm
Notification Appliances shall have clear high intensity optic lens, xenon
flash tubes, and be marked "Fire" in red letters.] [Fire
Alarm/Mass Notification Appliances shall have high intensity
optic lens, xenon flash tubes, and output white light and be marked "ALERT"
in red letters.] The light pattern shall be disbursed so that it is
visible above and below the strobe and from a 90 degree angle on both sides
of the strobe. Strobe flash rate shall be 1 flash per second and a minimum
of [15](actual output after derating for tinted lens)
based on the UL 1971 test. Strobe shall be mounted.
Where more than two appliances are located in the same room or corridor or
field of view, provide synchronized operation.] Devices shall use screw
 terminals for all field wiring.

2.22.3 Chimes

NOTE: Chimes are normally only used in hospitals
and child development centers to alert the staff
about a fire emergency without arousing the
patients. Sound output is low and prevents them
from being used in areas having even moderately low
noise levels.

Chimes shall be electrically operated, supervised, electronic type, with an
adjustable frequency of 800 to 1200 Hertz. Chimes shall have a minimum
sound rating of [80](actual output after derating for tinted lens)
at 3 m 10 feet. Chimes shall ring the bell
codes, as indicated.

2.23 ENVIRONMENTAL ENCLOSURES OR GUARDS

Environmental enclosures shall be provided to permit Fire Alarm or Mass
Notification components to be used in areas that exceed the environmental
limits of the listing. The enclosure shall be listed for the device or
appliance as either a manufactured part number or as a listed compatible
accessory for the UL category that the component is currently listed.
Guards required to deter mechanical damage shall be either a listed
manufactured part or a listed accessory for the category of the initiating
device or notification appliance.

2.24 INTERFACE TO THE BASE WIDE MASS NOTIFICATION NETWORK

NOTE: Provide as required for connection to a
remote Central Control/Monitoring Mass Notification
2.24.1 Fiber Optic

The fiber optic transceiver shall be fully compatible with EIA standards for RS-232, RS-422 and RS-485 at data rates from 0 (DC) to 2.1 mbps (200 kbps for RS-232) in the low speed mode or from 10 kbps to 10 mbps in the high-speed mode. The fiber optic transceiver shall be capable of simplex or full duplex asynchronous transmissions in both point-to-point systems and drop-and-repeat data networks. The fiber optic transceiver shall be user configurable for the protocol, speed and mode of operation required. The fiber optic transceiver shall be installed as a [stand-alone][card-cage] unit. The fiber optic transceiver shall operate on [Multi-mode][Single-mode] fiber optic cable. The fiber optic transceiver shall be supplied with [ST][or][FCPC] type optical connectors. Cabling: as specified in Section 27 10 00 BUILDING TELECOMMUNICATIONS CABLING SYSTEM.

2.24.2 Radio

The radio transceiver shall be bi-direction and meet all the requirements of paragraph, RADIO TRANSMITTER AND INTERFACE PANELS as specified in this Specification Section. The transceiver utilized in the Mass Notification System shall be capable of the following:

a. Communication with the Central Control/Monitoring System to provide supervision of communication link and status changes are reported by automatic and manual poll/reply/acknowledge routines.

b. All monitored points/status changes are transmitted immediately and at programmed intervals until acknowledged by the Central Control/Monitoring System.

c. Each transceiver shall transmits a unique identity code as part of all messages; the code is set by the user at the transceiver.

2.24.2.1 Radio Frequency Communications

Use of radio frequency-type communications systems shall comply with National Telecommunications and Information Administration (NTIA) requirements.

2.24.2.2 Licensed Radio Frequency Systems

An approved DD Form 1494 for the system is required prior to operation.

2.24.3 Telephone

A modem shall be provide for communication with the Central Control/Monitoring System. The modem shall be 56k, compatible with data mode V.90, utilizing Hayes compatible command codes. The modem shall be capable of Auto dialing a preset number based on preprogrammed events. The
2.24.4 Secure Radio System

**
Note: Receiving a new radio frequency assignment often takes a relatively long period of time. Be sure to request the frequency assignment early in the design process.
**

2.24.4.1 Communications Network
The communications network provides two-way signals between central control units and autonomous control units (in individual building systems), and should include redundant (primary and backup) communication links. The system shall incorporate technology to prevent easy interruption of the radio traffic for MNS Alerting.

2.24.4.2 Radio Frequency Communications
Use of radio frequency-type communications systems shall comply with National Telecommunications and Information Administration (NTIA) requirements. The systems shall be designed to minimize the potential for interference, jamming, eavesdropping, and spoofing.

2.24.4.3 Licensed Radio Frequency Systems
An approved DD Form 1494 for the system is required prior to operation.

2.25 AUTOMATIC FIRE TRANSMITTERS

**
NOTE: State the make and model number of existing proprietary supervising station receiving equipment. The choice of code transmitter, or radio transmitter depends upon the type of existing fire reporting system at the activity. Determine the type of activity reporting system (i.e., positive non interfering or shunt). In most cases a local energy-tripping device will be required. The facility Fire Dept. or Engineering office should be contacted to determine the type and amount of data to be supervised (monitored), i.e. -type: separate or common transmission of alarm, supervisory, and trouble type signals; -amount: all points, all zones, or the combined premises. Verify that existing monitoring equipment has sufficient capacity to support the additional premises or that it can be expanded as necessary to accommodate the new fire alarm system. Identify existing components.
**

2.25.1 Radio Transmitter and Interface Panels
Transmitters shall be compatible with proprietary supervising station receiving equipment. Each radio alarm transmitter shall be the
manufacturer's recognized commercial product, completely assembled, wired, factory tested, and delivered ready for installation and operation. Transmitters shall be provided in accordance with applicable portions of NFPA 72, Federal Communications Commission (FCC) 47 CFR 90 and Federal Communications Commission (FCC) 47 CFR 15. Transmitter electronics module shall be contained within the physical housing as an integral, removable assembly. The proprietary supervising station receiving equipment is [_____] and the transceiver shall be fully compatible with this equipment. At the contractors option, and if UL or FM listed, the transmitter may be housed in the same panel as the fire alarm control panel. The transmitter shall be Narrowband radio, with FCC certification for narrowband operation and meets the requirements of the NTIA (National Telecommunications and Information Administration) Manual of Regulations and Procedures for Federal Frequency Management.

2.25.1.1 Operation

Operate each transmitter from 120-volt ac power. In the event of 120-volt ac power loss, the transmitter shall automatically switch to battery operation. Switchover shall be accomplished with no interruption of protective service, and shall automatically transmit a trouble message. Upon restoration of ac power, transfer back to normal ac power supply shall also be automatic.

2.25.1.2 Battery Power

Transmitter standby battery capacity shall provide sufficient power to operate the transmitter in a normal standby status for a minimum of 72 hours and be capable of transmitting alarms during that period.

2.25.1.3 Transmitter Housing

Use NEMA Type 1 for housing. The housing shall contain a lock that is keyed [identical to the fire alarm system for the building][identical to radio alarm transmitter housings on the base]. Radio alarm transmitter housing shall be factory painted with a suitable priming coat and not less than two coats of a hard, durable weatherproof enamel.

2.25.1.4 Antenna

Antenna shall be [omnidirectional, coaxial, halfwave dipole antennas][_____] for radio alarm transmitters with a driving point impedance to match transmitter output. The antenna and antenna mounts shall be corrosion resistant and designed to withstand wind velocities of 161 km/hour 100 mph. Do not mount antennas to any portion of the building roofing system. Protect the antenna from physical damage.

2.25.2 Digital Alarm Communicator Transmitter (DACT)

Provide DACT that is compatible with the existing supervising station fire alarm system. Transmitter shall have a means to transmit alarm, supervisory, and trouble conditions via a single transmitter. Transmitter shall have a source of power for operation that conforms to NFPA 72. Transmitter shall be capable of initiating a test signal daily at any selected time. Transmitter shall be arranged to seize telephone circuits in accordance with NFPA 72.
2.25.3 Signals to Be Transmitted to the Base Receiving Station

**

NOTE: The following paragraph is applicable only to existing installations for connections to an auxiliary (public) alarm system. Edit this for the installation specific criteria.
**

The following signals shall be sent to the base receiving station:

[a. Sprinkler water flow]
[b. Manual pull stations]
[c. Smoke detectors]
[d. Duct smoke detectors]
[e. Sleeping room smoke detectors]
[f. Heat detectors]
[g. Fire Extinguishing System]
[h. Sprinkler valve supervision]
[i. Fire pump running]
[j. Fire pump supervision]
[k. Water supply level and temperature]
[l. Combustion Engine Drive Fire Pump Running
 (1) Selector Switch in position than automatic
 (2) Engine Over-speed
 (3) Low Fuel
 (4) Low Battery
 (5) Engine Trouble (Low Oil, Over temp, etc)]

2.26 WIRING

Provide wiring materials under this section as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM with the additions and modifications specified herein. NFPA 70 accepted fire alarm cables that do not require the use of raceways except as modified herein are permitted.

2.26.1 Alarm Wiring

The SLC wiring shall be [fiber optic][or][solid copper] cable in accordance with the manufacturers requirements. Copper signaling line circuits and initiating device circuit field wiring shall be No. [14][16][18][_____] AWG size twisted and shielded solid conductors at a minimum. Visual notification appliance circuit conductors, that contain
audible alarm appliances, shall be solid copper No. 14 AWG size conductors at a minimum. Speaker circuits shall be copper No. [16][_____] AWG size twisted and shielded conductors at a minimum.] Wire size shall be sufficient to prevent voltage drop problems. Circuits operating at 24 VDC shall not operate at less than the UL listed voltages for the sensors and/or appliances. Power wiring, operating at 120 VAC minimum, shall be a minimum No. 12 AWG solid copper having similar insulation. Acceptable power-limited cables are FPL, FPLR or FPLP as appropriate with red colored covering. Nonpower-limited cables shall comply with NFPA 70.

PART 3 EXECUTION

3.1 INSTALLATION OF FIRE ALARM INITIATING DEVICES AND NOTIFICATION APPLIANCES

3.1.1 FMCP

Locate the FMCP [where indicated on the drawings][____]. [Recess] [Semi-recess] [Surface mount] the enclosure with the top of the cabinet 2 m 6 feet above the finished floor or center the cabinet at [1.5][_____] m [5][_____] feet, whichever is lower. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the FMCP.

3.1.2 Manual Stations:

Locate manual stations as required by NFPA 72 and as indicated on [____]. Mount stations so that their operating handles are 1220 mm 4 feet above the finished floor. Mount stations so they are located no farther than [1.5][_____] m [5][_____] feet from the exit door they serve, measured horizontally.

3.1.3 Notification Appliance Devices

Locate notification appliance devices [as required by NFPA 72][where indicated]. Mount assemblies on walls as required by NFPA 72 and to meet the intelligibility requirements. [Ceiling mounted speakers shall conform to NFPA 72].

3.1.4 Smoke and Heat Sensors

Locate sensors [as required by NFPA 72 and their listings][as indicated] on a 100 mm 4 inch mounting box. Locate smoke and heat sensors on the ceiling. Install heat sensors not less than 100 mm 4 inches from a side wall to the near edge. Heat sensors located on the wall shall have the top of the sensor at least 100 mm 4 inches below the ceiling, but not more than 300 mm 12 inches below the ceiling. Smoke sensors are permitted to be on the wall no lower than 300 mm 12 inches from the ceiling with no minimum distance from the ceiling. In raised floor spaces, install the smoke sensors to protect 21 square meters 225 square feet per sensor. Install smoke sensors no closer than 1.5 m 5 feet from air handling supply outlets.

3.1.5 Annunciator

Locate the annunciator as shown on the drawings. Surface mount the panel, with the top of the panel 2 m 6 feet above the finished floor or center the panel at [1.5][_____] m [5][_____] feet, whichever is lower.
3.1.6 Water Flow Detectors and Tamper Switches

Connect to water flow detectors and tamper switches.

3.1.7 Firefighter Telephones

Locate wall mounted in each stair at each floor landing, in each elevator lobby, and in each elevator cab 1220 mm 4 feet above the finished floor.

3.1.8 Local Operating Console (LOC)

Locate the LOC as required by NFPA 72 and as indicated. Mount the console so that the top message button is no higher than 1117 mm 44 inches above the floor.

3.2 SYSTEM FIELD WIRING

3.2.1 Wiring within Cabinets, Enclosures, and Boxes

Provide wiring installed in a neat and workmanlike manner and installed parallel with or at right angles to the sides and back of any box, enclosure, or cabinet. Conductors that are terminated, spliced, or otherwise interrupted in any enclosure, cabinet, mounting, or junction box shall be connected to screw-type terminal blocks. Mark each terminal in accordance with the wiring diagrams of the system. The use of wire nuts or similar devices is prohibited. Conform wiring to NFPA 70.

Indicate the following in the wiring diagrams.

a. Point-to-point wiring diagrams showing the points of connection and terminals used for electrical field connections in the system, including interconnections between the equipment or systems that are supervised or controlled by the system. Diagrams shall show connections from field devices to the FACP and remote fire alarm control units, initiating circuits, switches, relays and terminals.

b. Complete riser diagrams indicating the wiring sequence of devices and their connections to the control equipment. Include a color code schedule for the wiring. Include floor plans showing the locations of devices and equipment.

3.2.2 Terminal Cabinets

**
NOTE: Provide terminal cabinets on each floor where the fire alarm system supply riser is located and where the fire alarm return riser is located.
**

Provide a terminal cabinet at the base of any circuit riser, on each floor at each riser, and where indicated on the drawings. Terminal size shall be appropriate for the size of the wiring to be connected. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the terminal cabinet. Minimum size is 200 mm by 200 mm 8 inches by 8 inches. Only screw-type terminals are permitted.
3.2.3 Alarm Wiring

**
NOTE: Do not penetrate SCIF perimeters with copper signal line circuits. SCIF penetrations should be either fiber optic cable or IDC. IDC circuits penetrating the SCIF shall be filtered.
**
Voltages shall not be mixed in any junction box, housing, or device, except those containing power supplies and control relays. [Provide all wiring in electrical metallic conduit. Conceal conduit in finished areas of new construction and wherever practicable in existing construction. The use of flexible conduit not exceeding a [2][_____] m [6][_____] foot length shall be permitted in initiating device or notification appliance circuits. Run conduit or tubing (rigid, IMC, EMT, FMC, etc. as permitted by NFPA 72 and NFPA 70) concealed unless specifically indicated otherwise.]

[Use of cables that do not require a raceway as stated hereinbefore are permitted; install them in accordance with NFPA 70. Protect any exposed (as defined in NFPA 70) cables against physical damage by the use of magnetic raceways which shall also be red colored. Utilize shielded wiring where recommended by the manufacturer. For shielded wiring, ground the shield at only one point, that is in or adjacent to the FMCP. Pigtail or T-tap connections to signal line circuits, initiating device circuits, supervisory alarm circuits, and notification appliance circuits are prohibited. [T-tapping using screw terminal blocks is allowed for Class "B" signaling line circuits.] Color coding is required for circuits and shall be maintained throughout the circuit. Conductors used for the same functions shall be similarly color coded. Conform wiring to NFPA 70.]

3.2.4 Conductor Terminations

Labeling of conductors at terminal blocks in terminal cabinets, FMCP, and remote FMCP and the LOC shall be provided at each conductor connection. Each conductor or cable shall have a shrink-wrap label to provide a unique and specific designation. Each terminal cabinet, FMCP, and remote FMCP shall contain a laminated drawing that indicates each conductor, its label, circuit, and terminal. The laminated drawing shall be neat, using 12 point lettering minimum size, and mounted within each cabinet, panel, or unit so that it does not interfere with the wiring or terminals. Maintain existing color code scheme where connecting to existing equipment.

3.3 DISCONNECTION AND REMOVAL OF EXISTING SYSTEM

**
NOTE: Contact the Contracting Officer, Base Fire Prevention Office, and/or Base Maintenance Personnel to determine what action is appropriate for the salvaging of existing fire alarm equipment.
**
Maintain existing fire alarm equipment fully operational until the new equipment has been tested and accepted by the Contracting Officer. As new equipment is installed, label it "NOT IN SERVICE" until the new equipment is accepted. Once the new system is completed, tested, and accepted by the Government, it shall be placed in service and connected to the station fire alarm system. Remove tags from new equipment and tag the existing equipment "NOT IN SERVICE" until removed from the building.
a. After acceptance of the new system by the Contracting Officer, remove existing equipment not connected to the new system, remove unused exposed conduit, and restore damaged surfaces. Remove the material from the site and dispose.

b. Disconnect and remove the existing fire alarm and smoke detection systems where indicated and elsewhere in the specification.

c. Control panels and fire alarm devices and appliances disconnected and removed shall be turned over to the Contracting Officer.

d. Properly dispose of fire alarm outlet and junction boxes, wiring, conduit, supports, and other such items.

3.4 CONNECTION OF NEW SYSTEM

The following new system connections shall be made during the last phase of construction, at the beginning of the preliminary tests. New system connections shall include:

a. Connection of new control modules to existing magnetically held smoke door (hold-open) devices.

b. Connection of new elevator recall smoke sensors to existing wiring and conduit.

c. Connection of new system transmitter to existing base fire reporting system.

Once these connections are made, system shall be left energized and new audio/visual devices deactivated. Report immediately to the Contracting Officer, coordination and field problems resulting from the connection of the above components.

3.5 FIRESTOPPING

Provide firestopping for holes at conduit penetrations through floor slabs, fire rated walls, partitions with fire rated doors, corridor walls, and vertical service shafts in accordance with Section 07 84 00 FIRESTOPPING.

3.6 PAINTING

Paint exposed electrical, fire alarm conduit, and surface metal raceway to match adjacent finishes in exposed areas. Paint junction boxes red in unfinished areas and conduits and surface metal raceways shall be painted with a 25 mm 1-inch wide red band every 3 m 10 feet in unfinished areas. Painting shall comply with Section 09 90 00 PAINTS AND COATINGS.

3.7 FIELD QUALITY CONTROL

NOTE: Listed tests are minimum required. Coordinate with the local Authority Having Jurisdiction (AHJ) for minimum requirements in excess of the NFPA 72 minimums or those recommend below. If additional tests are required, such tests must be added to the list.

3.7.1 Testing Procedures

Submit detailed test procedures, prepared and signed by a Registered Professional Engineer or a NICET Level [3][4] Fire Alarm Technician, and signed by representative of the installing company, for the fire detection and alarm system [60][_____] days prior to performing system tests. Detailed test procedures shall list all components of the installed system such as initiating devices and circuits, notification appliances and circuits, signaling line devices and circuits, control devices/equipment, batteries, transmitting and receiving equipment, power sources/supply, annunciators, special hazard equipment, emergency communication equipment, interface equipment, Guard's Tour equipment, and transient (surge) suppressors. Test procedures shall include sequence of testing, time estimate for each test, and sample test data forms. The test data forms shall be in a check-off format (pass/fail with space to add applicable test data; similar to the form in NFPA 72) and shall be used for the preliminary testing and the acceptance testing. The test data forms shall record the test results and shall:

a. Identify the NFPA Class of all Initiating Device Circuits (IDC), Notification Appliance Circuits (NAC), Voice Notification System Circuits (NAC Audio), and Signaling Line Circuits (SLC).

b. Identify each test required by NFPA 72 Test Methods and required test herein to be performed on each component, and describe how this test shall be performed.

c. Identify each component and circuit as to type, location within the facility, and unique identity within the installed system. Provide necessary floor plan sheets showing each component location, test location, and alphanumeric identity.

d. Identify all test equipment and personnel required to perform each test (including equipment necessary for testing smoke detectors using real smoke).

e. Provide space to identify the date and time of each test. Provide space to identify the names and signatures of the individuals conducting and witnessing each test.

3.7.2 Tests Stages

3.7.2.1 Preliminary Testing

Conduct preliminary tests to ensure that devices and circuits are functioning properly. Tests shall meet the requirements of paragraph entitled "Minimum System Tests." After preliminary testing is complete, provide a letter certifying that the installation is complete and fully operable. The letter shall state that each initiating and indicating device was tested in place and functioned properly. The letter shall also state that panel functions were tested and operated properly. The letter shall include the names and titles of the witnesses to the preliminary tests. The Contractor and an authorized representative from each supplier of equipment shall be in attendance at the preliminary testing to make necessary adjustments.
3.7.2.2 Request for Formal Inspection and Tests

When tests have been completed and corrections made, submit a signed, dated certificate with a request for formal inspection and tests to the [Naval Facilities Engineering Command, [____], Fire Protection Engineer][Contracting Offices Designated Representative (COR)].

3.7.2.3 Final Testing

Notify the Contracting Officer in writing when the system is ready for final acceptance testing. Submit request for test at least 15 calendar days prior to the test date. The tests shall be performed in accordance with the approved test procedures in the presence of the Contracting Officer. Furnish instruments and personnel required for the tests. A final acceptance test will not be scheduled until the following are provided at the job site:

a. The systems manufacturer's technical representative
b. Marked-up red line drawings of the system as actually installed
c. Megger test results
d. Loop resistance test results
e. Complete program printout including input/output addresses

The final tests will be witnessed by the [Naval Facilities Engineering Command, [____], Fire Protection Engineer][Contracting Offices Designated Representative (COR)]. At this time, any and all required tests shall be repeated at their discretion.

3.7.2.4 System Acceptance

Following acceptance of the system, as-built drawings and O&M manuals shall be delivered to the Contracting Officer for review and acceptance. Submit six sets of detailed as-built drawings. The drawings shall show the system as installed, including deviations from both the project drawings and the approved shop drawings. These drawings shall be submitted within two weeks after the final acceptance test of the system. At least one set of as-built (marked-up) drawings shall be provided at the time of, or prior to the final acceptance test.

a. [Furnish one set of full size paper as-built drawings and schematics. The drawings shall be prepared on uniform sized mylar sheets not less than ISO A0 30 by 42 inches with 200 by 100 mm 8 by 4 inch title block similar to contract drawings.] [Furnish one set of CD or DVD discs containing software back-up and CAD based drawings in latest version of [MicroStation] [AutoCAD] and DXF format of as-built drawings and schematics.]
b. Include complete wiring diagrams showing connections between devices and equipment, both factory and field wired.
c. Include a riser diagram and drawings showing the as-built location of devices and equipment.

[In existing buildings, the transfer of devices from the existing system to the new system and the permission to begin demolition of the old fire alarm]
3.7.3 Minimum System Tests

Test the system in accordance with the procedures outlined in NFPA 72, ISO 7240-16, IEC 60268-16. The required tests are as follows:

a. Megger Tests: After wiring has been installed, and prior to making any connections to panels or devices, wiring shall be megger tested for insulation resistance, grounds, and/or shorts. Conductors with 300 volt rated insulation shall be tested at a minimum of 250 VDC. Conductors with 600 volt rated insulation shall be tested at a minimum of 500 VDC. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

b. Loop Resistance Tests: Measure and record the resistance of each circuit with each pair of conductors in the circuit short-circuited at the farthest point from the circuit origin. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

c. Verify the absence of unwanted voltages between circuit conductors and ground. The tests shall be accomplished at the preliminary test with results available at the final system test.

d. Verify that the control unit is in the normal condition as detailed in the manufacturer's O&M manual.

e. Test each initiating device and notification appliance and circuit for proper operation and response at the control unit. Smoke sensors shall be tested in accordance with manufacturer's recommended calibrated test method. Use of magnets is prohibited. Testing of duct smoke detectors shall comply with the requirements of NFPA 72 except that, for item 12(e) (Supervision) in Table 14.4.2.2, disconnect at least 20 percent of devices. If there is a failure at these devices, then supervision shall be tested at each device.

f. Test the system for specified functions in accordance with the contract drawings and specifications and the manufacturer's O&M manual.

g. Test both primary power and secondary power. Verify, by test, the secondary power system is capable of operating the system for the time period and in the manner specified.

h. Determine that the system is operable under trouble conditions as specified.

i. Visually inspect wiring.

j. Test the battery charger and batteries.

k. Verify that software control and data files have been entered or programmed into the FACP. Hard copy records of the software shall be provided to the Contracting Officer.

l. Verify that red-line drawings are accurate.

m. Measure the current in circuits to ensure there is the calculated
n. Measure voltage readings for circuits to ensure that voltage drop is not excessive.

o. Disconnect the verification feature for smoke sensors during tests to minimize the amount of smoke needed to activate the sensor. Testing of smoke sensors shall be conducted using real smoke or the use of canned smoke which is permitted.

p. Measure the voltage drop at the most remote appliance (based on wire length) on each notification appliance circuit.

3.7.3.1 Intelligibility Tests

**

NOTE: Occasionally, large DOD buildings are designed to provide cavernous-type open areas to meet unique operational requirements. Such areas are typically designed with hard wall and ceiling surfaces (such as metal or concrete) without acoustical treatments, and this has been found to cause excessive sound reflections that prevent obtaining the normal, minimum required CIS value. In such facilities, the cavernous-type open area is permitted to have locations with a CIS value lower than the normal, minimum required CIS value when the following conditions are met:

The requirement for a deviation from the normal, minimum CIS criteria identified in the design phase.

Justification for the deviation from the normal, minimum CIS criteria is provided to the approving authority (i.e., the AHJ for the Navy and Marine Corps; the DOD installation in conjunction with the contracting officer for the Army and Air Force). The justification shall address all factors relevant to the request for deviation from normal, minimum CIS criteria, including, but not limited to: the operational requirements that restrict the installation of acoustical wall and ceiling treatments; the potential use of special speaker technologies such as directional speakers or stacked speaker systems; and, the availability of physically larger or higher-fidelity speakers even though such speakers might not be listed for fire alarm use.

Note: Deviation from normal, minimum CIS criteria should not be requested for the design of normal, large, open areas that are typically found in permanent DOD buildings, such as dining halls, theaters, and gymnasiums. The potential for deviation from normal criteria is intended to address the rare exception to normal criteria that is sometimes needed for DOD buildings with unique operational requirements.

Building occupants located in the large, cavernous...
area can adequately understand the message content in the voice signal being broadcast. Whether the voice message is adequately understood shall be determined by the approving authority (i.e., the AHJ for the Navy and Marine Corps; the DOD installation in conjunction with the contracting officer for the Army and Air Force).

The CIS value is not less than 0.6 at any location within the large, cavernous area.

The building occupants in the large, cavernous area must walk no more than 30 m (98 ft) to find another location within the large, cavernous area having at least the normal, minimum required CIS value. Note: An STI score of 0.5 is considered equivalent to a CIS score of 0.7. An STI value of 0.7 is considered equivalent to a CIS value of 0.8.

All readings for Sound Pressure Level (SPL) and Intelligibility score shall be recorded on the installation drawings next to the speaker symbol. The readings shall then be added as properties to each ADS on the "as-Built" drawings to be submitted at the conclusion of the Final Acceptance test.

Intelligibility testing of the System shall be accomplished in accordance with NFPA 72 for Voice Evacuation Systems, IEC 60268-16, and ASA S3.2. Following are the specific requirements for intelligibility tests:

a. Intelligibility Requirements: Verify intelligibility by measurement after installation.

b. Ensure that a CIS value greater than the required minimum value is provided in each area where building occupants typically could be found. The minimum required value for CIS is [0.7] [0.8].

c. Areas of the building provided with hard wall and ceiling surfaces (such as metal or concrete) that are found to cause excessive sound reflections may be permitted to have a CIS score less than the minimum required value if approved by the DOD installation, and if building occupants in these areas can determine that a voice signal is being broadcast and they must walk no more than 10 m 33 feet to find a location with at least the minimum required CIS value within the same area.
NOTE: The following paragraph shall be edited as required for each specific project.

d. Areas of the building where occupants are not expected to be normally present are permitted to have a CIS score less than the minimum required value if personnel can determine that a voice signal is being broadcast and they must walk no more than 15 m 50 feet to a location with at least the minimum required CIS value within the same area.

e. Take measurements near the head level applicable for most personnel in the space under normal conditions (e.g., standing, sitting, sleeping, as appropriate).

f. The distance the occupant must walk to the location meeting the minimum required CIS value shall be measured on the floor or other walking surface as follows:

(1) Along the centerline of the natural path of travel, starting from any point subject to occupancy with less than the minimum required CIS value.

(2) Curving around any corners or obstructions, with a 300 mm 12 inches clearance there from.

(3) Terminating directly below the location where the minimum required CIS value has been obtained.

Use commercially available test instrumentation to measure intelligibility as specified by ISO 7240-19 and ISO 7240-16 as applicable. Use the mean value of at least three readings to compute the intelligibility score at each test location.

3.8 INSTRUCTION OF GOVERNMENT EMPLOYEES

3.8.1 Instructor

Include in the project the services of an instructor, who has received specific training from the manufacturer for the training of other persons regarding the inspection, testing, and maintenance of the system provided. The instructor shall train the Government employees designated by the Contracting Officer, in the care, adjustment, maintenance, and operation of the fire alarm [and fire detection] system. Each instructor shall be thoroughly familiar with all parts of this installation. The instructor shall be trained in operating theory as well as in practical O&M work. Submit the instructors information and qualifications including the training history.

3.8.2 Required Instruction Time

Provide [8][16][_____] hours of instruction after final acceptance of the system. The instruction shall be given during regular working hours on such dates and times as are selected by the Contracting Officer. The instruction may be divided into two or more periods at the discretion of the Contracting Officer. The training shall allow for rescheduling for unforeseen maintenance and/or fire department responses.
3.8.2.1 Technical Training

Equipment manufacturer or a factory representative shall provide [1][3][_____] days of on site [and 5 days of technical training to the Government at the manufacturing facility.] Training shall allow for classroom instruction as well as individual hands on programming, troubleshooting and diagnostics exercises. [Factory] training shall occur within [6][12][_____] months of system acceptance.

3.9 Technical Data and Computer Software

Provide, in manual format, lesson plans, operating instructions, maintenance procedures, and training data for the training courses. The operations training shall familiarize designated government personnel with proper operation of the installed system. The maintenance training course shall provide the designated government personnel adequate knowledge required to diagnose, repair, maintain, and expand functions inherent to the system.

3.10 OPERATION AND MAINTENANCE (O&M) INSTRUCTIONS

Submit [6][_____] copies of the Operation and Maintenance Instructions, indexed and in booklet form. The Operation and Maintenance Instructions shall be a single volume or in separate volumes, and may be submitted as a Technical Data Package. Manuals shall be approved prior to training. The Interior Fire Alarm And Mass Notification System Operation and Maintenance Instructions shall include:

a. "Manufacturer Data Package [5][_____]" as specified in Section 01 78 23 OPERATION AND MAINTENANCE DATA.

b. Operating manual outlining step-by-step procedures required for system startup, operation, and shutdown. The manual shall include the manufacturer's name, model number, service manual, parts list, and complete description of equipment and their basic operating features.

c. Maintenance manual listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guide. The manuals shall include conduit layout, equipment layout and simplified wiring, and control diagrams of the system as installed.

d. The manuals shall include complete procedures for system revision and expansion, detailing both equipment and software requirements.

e. Software delivered for this project shall be provided, on each type of CD/DVD media utilized.

f. Printouts of configuration settings for all devices.

g. Routine maintenance checklist. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all installed devices, the second column shall state the maintenance activity or state no maintenance required, the third column shall state the frequency of the maintenance activity, and the fourth column for additional comments or reference. All data (devices, testing frequencies, etc.) shall comply with UFC 3-601-02.
3.11 EXTRA MATERIALS

3.11.1 Repair Service/Replacement Parts

Repair services and replacement parts for the system shall be available for a period of 10 years after the date of final acceptance of this work by the Contracting Officer. During guarantee period, the service technician shall be on-site within 24 hours after notification. All repairs shall be completed within 24 hours of arrival on-site.

3.11.2 Interchangeable Parts

Spare parts furnished shall be directly interchangeable with the corresponding components of the installed system. Spare parts shall be suitably packaged and identified by nameplate, tagging, or stamping. Spare parts shall be delivered to the Contracting Officer at the time of the final acceptance testing.

3.11.3 Spare Parts

**
NOTE: Adjust the requirements as required to meet the Facility's needs.
**

Furnish the following spare parts and accessories:

a. [Four][_____] fuses for each fused circuit

b. [Two][_____] of each type of notification appliance in the system (e.g. speaker, FA strobe, MNS strobe, etc.)

c. [Two][_____] of each type of initiating device included in the system (e.g. smoke detector, thermal detector, manual station, etc.)

3.11.4 Special Tools

Software, connecting cables and proprietary equipment, necessary for the maintenance, testing, and reprogramming of the equipment shall be furnished to the Contracting Officer.

-- End of Section --