SECTION TABLE OF CONTENTS

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

SECTION 28 16 00.00 20

BASIC INTRUSION DETECTION SYSTEMS (IDS)

04/06

PART 1 GENERAL

1.1 REFERENCES
1.2 STANDARD PRODUCTS
1.3 DEFINITIONS
1.4 SYSTEM DESCRIPTION
1.5 SUBMITTALS
1.6 QUALITY ASSURANCE
 1.6.1 Drawings
 1.6.1.1 IDS Components
 1.6.1.2 Overall System Schematic
 1.6.2 Experience and Qualifications
 1.6.2.1 Installer's Qualifications
 1.6.2.2 Instructor's Qualifications
 1.6.3 IDS Operational Test Plan
 1.6.4 IDS Equipment
 1.6.5 Regulatory Requirements
 1.6.5.1 Reference Standard Compliance
 1.6.5.2 Independent Testing Organization Certificate
 1.6.6 Standard Products
 1.6.6.1 Alternative Qualifications
 1.6.6.2 Material and Equipment Manufacturing Date
1.7 WARRANTY

PART 2 PRODUCTS

2.1 IDS SUBSYSTEMS
2.2 INTEGRATED SYSTEM FUNCTIONAL REQUIREMENTS
 2.2.1 Intrinsically Safe
2.3 INTEGRATED SYSTEM PERFORMANCE REQUIREMENTS
 2.3.1 Detection Coverage
 2.3.2 Detection Resolution (Sensitivity)
 2.3.3 Detection Alarm and Reporting Capacity
 2.3.4 Alarms
 2.3.4.1 Intrusion Detection
 2.3.4.2 Tamper
2.3.4.3 Fail-Safe
2.3.4.4 Line Fault
2.3.4.5 Power Loss
2.3.5 Electrical Power
2.3.5.1 Primary Power
2.3.5.2 Backup Power

2.4 SYSTEM PERFORMANCE REQUIREMENTS
2.4.1 Modularity
2.4.2 Reliability
2.4.3 Maintainability
2.4.4 Environmental Conditions
 2.4.4.1 Interior Conditions
 2.4.4.2 Exterior Conditions
 2.4.4.3 Transient voltage surge suppression
2.4.5 Electromagnetic Interference (EMI)
2.4.6 Electromagnetic Radiation (EMR)
2.4.7 Interchangeability
2.4.8 Safety
2.4.9 Human Engineering
 2.4.9.1 Visual Annunciators
 2.4.9.2 Controls
2.4.10 Test Points
2.4.11 Component Enclosures
 2.4.11.1 Metal Thickness
 2.4.11.2 Doors and Covers
 2.4.11.3 Ventilation
 2.4.11.4 Mounting
 2.4.11.5 Enclosure Locks
2.4.12 Detection Sensors
 2.4.12.1 Interior Point Sensors
 2.4.12.2 Interior Volumetric (Space) Sensors
 2.4.12.3 Duress Alarms
2.4.13 Communications
 2.4.13.1 Sensor to PCU Link Supervision
 2.4.13.2 Control Communicator Hardwire Link
 2.4.13.3 Radio Frequency Link
2.4.14 Premise Control Unit (PCU)
 2.4.14.1 Input/Output Capacity
 2.4.14.2 User/Authorization Level Capacity
 2.4.14.3 Keypad
 2.4.14.4 Zone Configuration
2.4.15 [Bell] [Siren]
2.4.16 Strobes
2.4.17 Central Station Receiver/Printer
 2.4.17.1 Printer
 2.4.17.2 Operation
2.4.18 Standalone Electronic Door Access

2.5 FIELD FABRICATED NAMEPLATES
2.5.1 Manufacturer's Nameplate

2.6 FACTORY APPLIED FINISH

PART 3 EXECUTION

3.1 EQUIPMENT INSTALLATION
3.1.1 Cable/Wire Runs
3.1.2 Soldering
3.1.3 Galvanizing
3.1.4 Tamper Switches
3.1.5 Fungus Treatment
3.1.6 Conduit
3.1.7 Underground Cable Installation

3.2 FIELD QUALITY CONTROL
3.2.1 IDS Operational Test Plan
3.2.2 System Acceptance Test
 3.2.2.1 Posted Operating Instructions

3.3 ADJUSTMENT/ALIGNMENT/SYNCHRONIZATION/CLEANING

3.4 FIELD APPLIED PAINTING

3.5 NAMEPLATE MOUNTING

-- End of Section Table of Contents --
NOTE: This specification covers basic intrusion detection systems (IDS) consisting of commercial equipment which is limited to a full range of interior point protection devices, duress sensors, volumetric (space) protection sensors, alarm signal data communications media, and alarm reporting and monitoring systems. System requirements shall conform to UFC 4-021-02, "Electronic Security Systems". For higher security IDS, CCTV, and access control systems, use Section 28 20 00.00 20 ELECTRONIC SECURITY SYSTEM (ESS), COMMERCIAL. If there are questions concerning system design, the Engineering Field Division (EFD), Naval Facilities Engineering Command, should be consulted.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: The following information shall be shown on the project drawings:

1. Floor Plans: Location of security devices, control units, alarm display equipment, and electrical power cabinets.
2. Site Plan: Exterior devices and routing of conductors and conduit into building.

3. Single line type system riser diagram. Label zones on riser diagrams. Connection of equipment should be indicated for typical system chosen for cost estimating purposes.

4. Single line type electrical riser diagram.

5. Mounting: Details for each device required for complete installation. Include device height and installation of wiring.

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D709 (2013) Laminated Thermosetting Materials

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

1.2 STANDARD PRODUCTS

Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of such products. Items of equipment shall essentially duplicate equipment that have been in satisfactory use at least 2 years prior to bid opening. Equipment shall be supported by a
1.3 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, shall be as defined in IEEE 100.

a. Active mode: That in which some type of signal is continuously sent across the link, resulting in simple link breaks being readily detected.

b. Element: Constituent part of a complex signal such as AC or DC voltage or current, AC phase, or frequency duration.

c. Fail-safe: Capability to monitor for system functions and to report an alarm when a failure is detected in a critical system function.

d. Installer: Either the Contractor or a subcontractor with whom the Contractor has a firm contractual agreement.

e. Intruder: Animate object at least 1220 mm 48 inches in height, 34 kg 75 pounds in weight and 0.113 cubic meter 4 cubic feet in volume, moving through protected zones or portals at a velocity of 30 to 3050 mm per second 0.1 to 10 feet per second.

f. Sensor zone: Geographic position for which an intrusion must be identified and displayed and may be the combination of multiple detection devices.

1.4 SYSTEM DESCRIPTION

[Provide new] [and or] [modify existing] basic intrusion detection system (IDS), including associated equipment and appurtenances. Provision of IDS shall include [supervising installation of rigid or flexible conduit for IDS during site preparation,] running system wires and cables, and system component installation, component testing, and system checkout. Each system shall be complete and ready for operation. Equipment, materials, installation, workmanship, inspection, and testing shall be as specified herein. [Existing system was manufactured by [____], and new equipment shall be compatible with and shall operate accurately and reliably with existing system.] Include materials not furnished by the manufacturer with IDS equipment as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

1.5 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in

SECTION 28 16 00.00 20 Page 7
context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Submittal items not designated with a "G" are considered as being for information only for Army projects and for Contractor Quality Control approval for Navy projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only]. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

[The [_____] will review and] [_____] Division, Naval Facilities Engineering Command will approve submittals requiring special review in this section. Drawings and descriptive data shall be approved prior to procurement, fabrication, and installation. A schedule of required submittals shall be prepared to be integrated with the overall construction management schedule to ensure adequate review and necessary corrective work before installation.

Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Wiring diagrams shall identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Drawings shall indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices. Submittals shall include the nameplate data, size, and capacity. Submittals shall also include applicable federal, military, industry, and technical society publication references.

SD-02 Shop Drawings

IDS components; G[, [_____]]
Overall system schematic; G[, [_____]]

SD-03 Product Data

Interior point sensors; G[, [_____]]
Interior volumetric (space) sensors; G[, [_____]]
Control communicators; G[, [_____]]
Duress alarms; G[, [_____]]
Keypad; G[, [_____]]
Communication cables; G[, [_____]]
[Radio frequency link communications systems; G[, [_____]]]
Communications interface devices; G[, [_____]]
[Central station receiver/printer; G[, [_____]]]
[Bell] [Siren]; G[, [_____]]
Batteries; G[, [_____]]
Tamper switches; G[, [_____]]
Strobes; G[, [_____]]

SD-06 Test Reports

IDS operational test plan; G[, [_____]]

SD-07 Certificates

IDS operational test plan; G[, [_____]]
Installer's qualifications; G[, [_____]]
Instructor's qualifications; G[, [_____]]
IDS equipment; G[, [_____]]

SD-10 Operation and Maintenance Data

IDS, Data Package 5; G[, [_____]]
Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

SD-11 Closeout Submittals

As-Built drawings for IDS; G[, [_____]]
Posted operating instructions for IDS; G[, [_____]]
1.6 QUALITY ASSURANCE

1.6.1 Drawings

1.6.1.1 IDS Components

Provide drawings that clearly and completely indicate the function of each component of the IDS. Indicate termination points of devices and indicate interconnections required for operation of the system. Indicate interconnection between modules and devices. In addition, provide a layout drawing which shows spacing of components, location, and details of mounting and positioning.

1.6.1.2 Overall System Schematic

The overall system schematic shall indicate the sequence of operation, the relationship of integrated components on one diagram, and show power source, system controls, impedance matches, plus number, size, identification, and maximum lengths of interconnecting wires. Drawings shall not be less than [420 by 297 mm] [_____] mm [11 by 17 inches] [_____] inches.

1.6.2 Experience and Qualifications

1.6.2.1 Installer's Qualifications

Prior to installation, submit data for approval by the [_____] Division, Naval Facilities Engineering Command, of the installer's experience and certified qualifications. Show that the installer who will perform the work has a minimum of [3] [_____] years' experience successfully installing IDS of the same type and design as specified herein. Include names, locations, and points of contact of at least five installations of the same type and design as specified herein where the installer has installed such systems. Indicate the type of each system and certify that each system has performed satisfactorily in the manner intended for a period of not less than [1] [_____] year(s).

1.6.2.2 Instructor's Qualifications

Prior to installation, submit data of the instructor's experience and certified qualifications. Show that the instructor, who will train operating and maintenance personnel, has received a minimum of 24 hours of IDS training from a technical organization such as the National Burglar and Fire Alarm Association, and has 2 years' experience installing IDS of the type specified.

1.6.3 IDS Operational Test Plan

Submit for approval at least 30 days prior to commencement of formal operational testing. Include detailed procedures for operational testing of each IDS component and subsystem, and for performance of an integrated system test.

1.6.4 IDS Equipment

Submit manufacturer's certification of UL listing.
1.6.5 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.6.5.1 Reference Standard Compliance

Where equipment or materials are specified to conform to industry and technical society reference standards of the organizations such as American National Standards Institute (ANSI), American Society for Testing and Materials (ASTM), National Electrical Manufacturers Association (NEMA), Underwriters Laboratories (UL), and Association of Edison Illuminating Companies (AEIC), submit proof of such compliance. The label or listing by the specified organization will be acceptable evidence of compliance.

1.6.5.2 Independent Testing Organization Certificate

In lieu of the label or listing, submit a certificate from an independent testing organization, competent to perform testing, and approved by the Contracting Officer. The certificate shall state that the item has been tested in accordance with the specified organization's test methods and that the item complies with the specified organization's reference standard. Provide only UL listed ESS equipment for both exterior and interior ESS sensors, access control, and closed-circuit television (CCTV) components.

1.6.6 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.6.6.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.6.6.2 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site shall not be used, unless specified otherwise.
1.7 WARRANTY

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

PART 2 PRODUCTS

2.1 IDS SUBSYSTEMS

Provide a complete integrated IDS consisting of the following major subsystems:

a. Detection
b. Arm/disarm multiple function keypad
c. Communications
d. Assessment
e. Alarm reporting
f. Power

2.2 INTEGRATED SYSTEM FUNCTIONAL REQUIREMENTS

Ensure that the IDS is fully integrated with the physical security and other elements of the overall facility security system. Except for multiple function keypads, other subsystems may be housed in a single enclosure. Specific subsystem functional requirements are as follows:

a. Detection subsystem: Subsystem shall consist of sensors to detect intrusion attempts [and provide means to indicate a duress condition].

b. Arm/disarm multiple function keypad: Subsystem shall consist of electronic digital keypads to monitor and control personnel movement through normal access routes in and out of the facility [and between protected areas within the facility].

c. Communications subsystem: Subsystem shall consist of elements required to ensure that pertinent data is transferred from the point of origin to the point where appropriate actions can be taken.

d. Assessment subsystem: Subsystem shall consist of electronic devices required to visually and audibly verify the validity of IDS alarms [at two separate locations].

e. Alarm reporting subsystem: Subsystem shall consist of electronic devices to control, process, integrate, and annunciate IDS data [at two] [_____] separate locations.

f. Power subsystem: Subsystem shall consist of components required to ensure continuous operation of the entire IDS.

[2.2.1 Intrinsically Safe]
NOTE: Do not locate control communicator within a hazardous area. If point sensors and volumetric sensors are required in hazardous areas, clearly identify their location on the plans. Delete this paragraph if no hazardous areas exist in this project.

System components located in areas where fire or explosion hazards may exist due to flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers or flyings shall be rated and installed according to Chapter 5 of NFPA 70. Classification of area and corresponding equipment ratings and installation procedures shall be as defined and specified in Chapter 5 of NFPA 70.

2.3 INTEGRATED SYSTEM PERFORMANCE REQUIREMENTS

The installed and operating IDS shall be integrated into the overall facility to detect intrusion and shall perform as an entity, as specified below.

2.3.1 Detection Coverage

Provide and adjust sensors so that coverage is [overlapping and] maximized without mutual interference. [IDS coverage shall include [the facility perimeter] [and] critical spaces within the facility.]

2.3.2 Detection Resolution (Sensitivity)

Sensitivity shall be capable of the following:

a. Locating intrusions at individually protected assets or at an individual portal;

b. Locating intrusions within volume/areas to within the coverage on any single volumetric sensor; and

c. Locating failures or tampering at individual sensors.

2.3.3 Detection Alarm and Reporting Capacity

NOTE: Select system capacity parameters based on specific facility design requirements. Include a 25 percent expansion factor to accommodate changes in design caused by reconfiguration of equipment within interior spaces or renovation.

The IDS shall have the capacity to collect, communicate, and display a minimum of [8] [_____] programmable sensor zone alarms [and to enable control of one or more response devices in each of the sensor zones]. [When a sensor zone includes a combination of multiple detection devices, the system shall maintain the capability to identify individual detection devices in an alarm state.] A single alarm shall be annunciated within approximately 2 seconds after sensor transducer or other detection device activation.
2.3.4 Alarms

**
NOTE: For a wireless transmission system delete "d. Line Fault."
**

Alarm shall include, but not be limited to, the following:

a. Intrusion detection
b. Tamper
c. Fail-safe
d. Line fault
e. AC power loss
f. Low battery in control communicator.

2.3.4.1 Intrusion Detection

Sense and respond with visible and audible signals the activation of detection sensors.

2.3.4.2 Tamper

**
NOTE: Each tamper loop requires a dedicated sensor zone in the control communicator. Do not use one tamper loop for an entire building since it would be difficult to trace the violated device or box. Instead, zone tamper loops by areas to more conveniently locate a violated device or box.
**

Tamper protection can be physical protection, line supervision, encryption, and tamper alarming of enclosures and components. All intrusion detection, access control, assessment systems and their associated data transmission media must be protected commensurate with the classification of asset being protected. All intrusion detection sensors and access control readers must have tamper resistant enclosures and integral tamper protection switches. All enclosures, cabinets, housings, and boxes, having hinged doors or removable covers that contain processors or connections must have tamper protection switches. All tamper alarm signals must be monitored continuously whether the system is in the access or secure mode of operation. Tamper alarms shall be annunciated to be clearly distinguishable from intrusion detection alarms. Tamper switches on doors which must be opened to make normal maintenance adjustments to the system and to service the power supplies shall be of the push/pull-set, automatic-reset type. Tamper switches shall have the following features:

a. Inaccessibility until the switch is activated;
b. Under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating;
c. Spring-loaded and held in the closed position by the door or cover
protected; and

d. Wired to break the circuit when the door or cover is disturbed.

2.3.4.3 Fail-Safe

Provide a fail-safe capability in critical elements of the IDS, including, but not be limited to, the capability to monitor communication link integrity and to provide self-test. When diminished functional capabilities are detected, the system shall provide annunciation of the fault. Fail-safe alarms shall be annunciated to be clearly distinguishable from other types of alarms.

2.3.4.4 Line Fault

As a minimum, fault isolation at the systems level shall have the same geographic resolution as provided for intrusion detection. Communication links of the IDS shall have an active mode for line fault detection. The system shall be either a static system or a dynamic system. In a static system, the "no-alarm" condition shall always be represented by the same signal, which shall be different than the signal originally transmitted. The dynamic system shall represent "no-alarm" with a signal which continually changes with time.

2.3.4.5 Power Loss

Provide the capability to detect when a critical component of the system experiences temporary or permanent loss of power and to declare an alarm. The alarm shall be annunciated to clearly identify the component experiencing power loss.

2.3.5 Electrical Power

Electrical power shall be obtained by the normal commercial or base electrical distribution system. Power shall be continuously monitored and, if interrupted, automatic switching from primary to emergency backup sources shall be accomplished without interruption or degradation of critical system function. Intrusion alarms shall not be generated by power switching; however, an indication of power switching and on-line source shall be provided at the alarm monitor. Upon restoration of prime power, the system shall automatically switch back to the primary source. Low voltage condition of an on-line battery and battery charger circuit failure shall be detected and reported as a fault condition.

2.3.5.1 Primary Power

Furnish \([120] [_____]\) volt AC service, transformed through a two-winding isolation transformer and rectified to low-voltage DC for system operation. Obtain primary power [from the line side of incoming facility power] [at the location indicated]. [Provide a separate, lockable, circuit breaker [adjacent to the power distribution panel [at the location indicated].] [Provide a circuit dedicated to power IDS from a panelboard at the location indicated. Label the circuit breaker in that panelboard: "Alarm System Do Not Turn Off."]

2.3.5.2 Backup Power

Provide backup power to the primary power by dedicated batteries in remotely located system elements such as individual sensors and in control
communicators. [When radio frequency (RF) operation is required, batteries shall be an integral part of dispersed system elements.] Batteries shall be capable of operation in any position and shall be protected against venting caustic chemicals or fumes within an equipment cabinet. Batteries shall also be capable of continuous operation for up to [8] [_____] hours without recharge or replacement. If the sensors power requirements exceed the allowable UL rated capacity of the control communicator battery, provide the number of separate power supplies required to power the sensors. Provide each power supply with its own rechargeable battery and charger.

2.4 SYSTEM PERFORMANCE REQUIREMENTS

Provide commercial of the shelf (COTS) system components to operate as described herein within the context of the integrated system performance previously described. Where inconsistencies occur between the following component performance requirements and integrated system level performance descriptions, integrated system performance descriptions shall take precedence.

2.4.1 Modularity

Provide system components to facilitate modular subassembly and part replacement. Electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Circuity shall not be so densely placed as to impede maintenance. Power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and current-carrying capacity. Light duty relays and similar switching devices shall be solid-state or hermetically sealed electromechanical type.

2.4.2 Reliability

Provide only components in current manufacturing production. Components shall be manufactured to meet requirements specified herein and shall be free from characteristics and defects which affect appearance or serviceability or which render equipment unsuitable for the intended purpose. Provide components designed for continuous operation at specified conditions.

2.4.3 Maintainability

Components shall be capable of being maintained using commercially available standard tools and equipment. Components shall be arranged and assembled to be readily accessible to maintenance personnel without compromising the defeat resistance of the IDS.

2.4.4 Environmental Conditions

2.4.4.1 Interior Conditions

Equipment installed in environmentally protected interior areas shall meet performance requirements specified by UL for the specific equipment or device.

2.4.4.2 Exterior Conditions

Components mounted in locations exposed to weather shall be housed in corrosion-resistant enclosures with appropriate environmental protection.
Component performance shall not degrade because of improper housing design. Components in enclosures shall meet performance requirements when exposed to ambient conditions specified by UL for the specific equipment or device.

2.4.4.3 Transient voltage surge suppression

Intrusion detection and communication circuits shall be protected at both ends against transient voltage surges. Transient voltage surge suppressors (TVSS) or surge protection devices (SPD) are required for the protection, within specified limits, of AC electrical circuits and electronic equipment from the effects of lightning induced voltages, external switching transients and internally generated switching transients. Individual suppressors shall be installed where shown on the drawings.

**
NOTE: Line Items a thru e should be part of building construction UFGS specifications.
**

a. Main service and distribution equipment suppressors: The AC voltage SPD's shall be a high speed, high current device designed to protect electrical systems and electronic equipment from transient over-voltage. The SPD shall provide continuous bi-polar, bi-directional, non-interrupting protection and be capable of instant reset with no degradation in protection. Gas tubes are not acceptable. The SPD shall utilize SAD or MOV technology. It shall start to suppress at a minimum of 115 percent of the peak voltage of the sine wave. At maximum surge current dissipation, the device shall not exceed the maximum voltage protection level. The SPD shall be installed in parallel with the service main disconnect, distribution or branch panel main lugs as shown on drawings. The SPD shall be installed where shown on drawings. Connect SPD to over current protection sized as shown with an AIC rating equal to panel rating. The suppressor shall have status indicator lights, dry contacts with remote alarm capabilities and an audible alarm. Suppressors shall be assembled as modular units to permit quick, easy replacement of failed components.

(1) Electrical Service

(a) Voltage shall be as indicated on drawings.
(b) Frequency -- 50/60 Hz
(c) Phases -- 3 phase
(d) Wiring configuration -- as indicated

(2) IEEE 62.41 Categories unless otherwise indicated on drawings:
Service entrance sizes
<600A B3/C1
1.2KA C3
Distribution or sub-panels B2

(3) Electrical Performance
Response time < 5 nanoseconds
MCOV 115 percent minimum
Shortwave test- surge current
(6kv, 1.2/50usec; 3ka 8/20µsec) 5000 surges
Minimum surge current:
(a) Service Entrance 410,000 Amps/Phase
(b) Distribution and Sub-panels 210,000 Amps/Phase

(5) Power on indicators and failure detection: A lighted panel on the cover shall provide indication that the suppressor is properly activated and shall also indicate mode failure. If the suppressor fails, an isolated contact shall close. In addition, an audible alarm shall be provided with manual reset.

(6) Failure mode - SPD's shall be designed to fail shorted. Any fuses in series with the SPD's shall not open during a surge event.

b. Disconnect: Main service suppressors shall be provided with an integral fused disconnect switch or dedicated circuit breaker as shown or required by UL. Breakers and suppressors shall have an AIC fault withstand rating equal or greater than the AIC rating of the equipment to which it is connected. The length of wiring from the tap at the service conductors to the suppressor being protected, however, shall not exceed the maximum length permitted by manufacturer, to maintain the maximum voltage protection level. Suppressors may be installed within switchgear or panel boards where UL label or listing is not affected, suppressors are completely and easily accessible, indicator lights are visible and audible alarm can be easily heard.

c. Enclosures: Enclosures for main service suppressors shall be as follows;

Minimum, 14 gauge painted steel or suitable enclosure to meet the NEMA selected requirements as listed.

(1) Visual System
 (a) Protection: Suppressor Working - Green LED's
 (b) Warning/Fault: Suppressor Failure - Red LED's
 (c) LED's shall be field replaceable
 (d) Other visual indicators where approved.

(2) Remote Signaling
 Relay with Auxiliary for C contacts: Two sets at 2 ampere, 120 volts each. 1 Set N.O. and 1 set N.C. to operate upon failure of suppression module, blown fuse or tripped circuit breaker in suppressor module or in disconnect switch for alarm connection to remote location.

(3) Audible
 The audible alarm shall activate upon a fault condition within the suppressor. An alarm silence/reset switch and push-to-test switch shall be provided.

e. Bonding and Grounding Conductors and Materials for Main Service Suppressors:

(1) Size: Conductors utilized for surge suppressor connections to service conductors shall be a minimum of #6 AWG stranded insulated copper unless otherwise specified.

(2) Bus: Ground bus or strip material where used shall be copper, a minimum of 1/4 inch thickness and two inches wide unless otherwise specified. Bus materials shall be secured to surfaces with
appropriate insulators and mechanical fasteners. Bus connections shall be bolted and reinforced as necessary to provide a permanent and secure connection.

(3) Connections Compliance: Connectors, splices, and other fitting used to interconnect grounding conductors, bonding to equipment or ground bars, shall comply with requirements of the National Electric Code and be accepted by Underwriters' Laboratories for the purpose.

(4) Connectors: Connectors and fitting for grounding and bonding conductors shall be of the compression type in above grade locations. Connections below grade shall be exothermically welded.

(5) Dissimilar Materials: Bonding connections between electrically dissimilar metals shall be made using exothermic welds or using bi-metal connectors designed to prevent galvanic corrosion.

f. Communication Lines: The following standard for separately mounted telephone and signal line suppressors shall apply. All protectors shall be securely mounted at protected equipment location. All suppressors shall provide common (L-G) mode protection on all lines. Suppressors shall be tested in accordance with IEEE C62.36-1994 as a minimum. Protective interfacing with the telephone wire pairs shall be listed to UL 497A.

g. Data Line Protection: Solid state, silicon avalanche diode or metal oxide varistor circuitry for protection from over voltages on long cable runs employing standard RS-232, RS422, or RS485. Appropriate connectors shall be utilized to interface a remote station with a host CPU.

h. Signal Line Protection: Solid state, silicon avalanche diode and metal oxide varistor hybrid circuitry for protection from over voltages on 2 or 4 wire signal lines such as balanced pair telephone, metallic pair telephone, buried and overhead field cable, remote radio equipment, and control systems. Unit shall have an LED diagnostic lamp that lights if unit needs replacement. Unit shall be listed UL 497B.

i. Modular, Twisted Pair Protection: Solid state, silicon avalanche diode or metal oxide varistor circuitry for protection from over voltages on twisted pair data or audio lines. Protectors shall clip mount on 66 punch down blocks furnished with grounding bar or studs and shall be totally enclosed. Units shall be securely mounted at terminal locations where shown and shall be grounded to the main building ground with a minimum No.12 stranded copper green insulated ground conductor kept as short as possible. Ground terminals shall be screw insertion lug type. No crimp, fork or ring type permitted. Unit shall have a multi-function diagnostic LED that shows continuity, ground present, unit function and line status.

j. Coaxial Cable Protectors: Solid state, silicon avalanche diode, metal oxide varistor and/or gas tube circuitry for non-interrupting over voltage protection of coaxial cable. Unit shall be provided with one female input connector and one female output connector. Securely mount adjacent to protection equipment and ground to equipment or local building ground if an equipment ground is not available.
2.4.5 Electromagnetic Interference (EMI)

IDS components employing electromagnetic radiation shall be designed and constructed to provide maximum practical invulnerability to electronic countermeasures.

2.4.6 Electromagnetic Radiation (EMR)

**
NOTE: National Post Telephone and Telegraph are normally the approving authority for EMR components overseas.
**

Provide only IDS components which are [FCC] [_____] licensed and approved. Provide system components which are electromagnetically compatible.

2.4.7 Interchangeability

Like components shall be physically and functionally interchangeable as complete items, without modification of either the original items or of other components with which the items are used.

2.4.8 Safety

IDS components shall conform to application rules and requirements of NFPA 70 and applicable Underwriters Laboratories publications.

2.4.9 Human Engineering

Aural considerations shall include location of annunciators, tone pitch, quality, and intensity. The number of different audible signals shall not exceed four. Component design shall provide for ease of accessibility for maintenance.

2.4.9.1 Visual Annunciators

Annunciators shall be either liquid crystal displays (LCDs) or light emitting diodes (LEDs). Annunciators shall be so connected in the circuit that failure of the annunciator, socket, or protective circuitry shall not result in an improper or indeterminate signal. LCDs and LEDs shall be compatible with standby power supplies. LEDs shall be brightly lit and visible from a distance of 9150 mm 30 feet in an area illuminated at 807 lx 75 footcandles. LEDs shall be used in outdoor applications or in the presence of sunlight.

2.4.9.2 Controls

Provide to ensure ease of operation of specified characteristics. Where applicable, clockwise rotation of controls shall result in an increasing function. Controls, switches, visual signals, and indicating devices, input and output connectors, terminals, and test points shall be clearly marked or labeled on hardware to permit quick identification, intended use, and location. Terminal markings and labels shall be of a permanent and legible type and located to be visible when the associated system wiring is in place. Identification markings shall be associated with each adjustment device or item requiring periodic maintenance. Safety warning or cautions shall be marked in conspicuous red letters. Control and indicator identifications that are exposed outside enclosures shall be permanent,
machine-engraved letters, and painted to contrast with the background color. Controls not required for operation of the system shall be inaccessible to the system operator.

2.4.10 Test Points

Test points, controls, and other adjustments inside enclosures shall be readily visible and accessible with minimum disassembly of equipment. Test points and other maintenance controls shall not be readily accessible to operator personnel.

2.4.11 Component Enclosures

Annunciator housings, power supply enclosures, sensor control and terminal cabinets, control communicators, wiring gutters, and other component housings, collectively referred to as enclosures, shall be formed and assembled to be sturdy and rigid.

2.4.11.1 Metal Thickness

Thicknesses of metal in cast and sheet metal enclosures of all types shall not be less than those in Tables 8.1, 8.2, and 8.3 of UL 1610 for alarm components, and NEMA ICS 2 and NEMA ICS 6 for other enclosures.

2.4.11.2 Doors and Covers

Doors and covers shall be flanged. Where doors are mounted on hinges with exposed pins, hinges shall be of the tight-pin type, or ends of hinge pins shall be tack welded to prevent ready removal. Provide doors having a latch edge length of less than 610 mm 24 inches with a single lock. Where the latch edge of a hinged door is 610 mm 24 inches or more in length, provide the door with a three-point latching device with lock; or alternatively with two locks, one located near each end. Covers of junction boxes provided to facilitate initial installation of the system shall be held in place by tack welding, brazing, or one-way screws.

2.4.11.3 Ventilation

Ventilation openings in enclosures and cabinets shall conform to the requirements of UL 1610.

2.4.11.4 Mounting

Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with top hole slotted. Mounting holes shall be in positions which remain accessible when major operating components are in place and the door is open, but shall be inaccessible when the door is closed.

2.4.11.5 Enclosure Locks

Locks and key-lock-operated switches required to be installed on component enclosures shall be UL listed, round-key type with three dual, one mushroom, and three plain pin tumblers, or shall have a pick resistance equal to a lock having a combination of five cylinder pin and five-point three-position side bar in the same lock. Keys shall be stamped "U.S. GOVT. DO NOT DUP." Key-lock-operated switches shall be keyed differently and shall be two-position, with the key retractable from either position. Furnish two keys for each switch. Maintenance locks shall be of the one-way key-pull type arranged so that the key can be withdrawn only when
the lock is in the locked position. Locks on components for maintenance access shall be keyed alike; furnish only two keys for such locks. Deliver keys, tagged with metal tags, accompanied by a manufacturer's certificate which records the number of each key made.

2.4.12 Detection Sensors

Sensors shall detect penetration of the facility perimeter and protected zones by unauthorized personnel or intruders, and shall conform to UL 634 or UL 639, as applicable. Unless otherwise specified, required sensor power shall be plus 12 volts DC.

2.4.12.1 Interior Point Sensors

NOTE: If a high level of security is required such as DCID, specify balanced magnetic switches (BMS) in Section 28 20 00.00 20 ELECTRONIC SECURITY SYSTEM (ESS), COMMERCIAL

a. Door and window open detection

(1) Magnetic Switches: Magnetic switches shall be [surface mounted] [recessed] [______]. Magnetic switches shall have a magnetic field with a high probability of alarm if an external magnet is introduced in defeat attempts. Provide each magnetic switch with an overcurrent protective device, rated to limit current to 80 percent of switch capacity. The magnetic switch housing shall be protected from unauthorized access by encapsulating reed switches in a polyurethane potting compound. The magnetic switch shall have a tamper resistant enclosure and integral tamper switch. Magnetic switch shall be rated for a minimum lifetime of one million operations. House magnetic switch components in enclosures made of nonferrous materials.

[(2) Surface mounted magnetic switches: House components used in outdoor applications in weatherproof enclosures. The switch mechanism shall have a minimum gap of [10] [19] mm [3/8] [3/4] inch and a maximum gap of [31.75] [63.5] mm [1 1/4] [2 1/2] inches without internal adjustment. The housing for surface mounted magnetic switches, if made of cast aluminum, shall be secured by stainless steel screws. The magnetic switch shall have a tamper resistant enclosure and integral tamper switch. Conductors running from the door to alarm circuits shall be jumpered within a flexible armored cord constructed from corrosion-resistant metal. Each end of the armored cord shall terminate in a junction box or other enclosure. Armored cord ends shall be mechanically secured to junction boxes by clamps or bushings. Conductors within the armored cord shall be provided with lug terminals at each end. Jumpered conductors and the armored cord shall experience no mechanical strain as the door is removed from fully open to closed. The switch circuit shall initiate an alarm if a short circuit is applied to the door cord.

][(3) Recessed magnetic switches: The recessed magnetic switches shall have a gap up to 12.7 mm (9.5 mm in steel) (1/2 inch (3/8 inch in steel). Field adjustments in the fixed space between magnet and switch housing shall not be possible. [Ball bearing door trips
shall be mounted within vault door headers such that when the locking mechanism is secured, the door bolt engages an actuator, mechanically closing the switch. The door bolt locking mechanism shall be completely engaged before the ball bearing door trip is activated. The magnetic switch shall have a tamper resistant enclosure and integral tamper switch. Provide circuit jumpers from the door.]

} b. Glass breakage detection

(1) Glass breakage sensors: Sensors shall detect window breakage by responding to sonic or vibration frequencies that accompany breaking glass. Sensors shall selectively filter input to detect only frequency of breaking glass and to minimize false alarms from sources such as jangling keys, ringing phones, and slamming doors. Glass breakage sensors shall initiate alarm when the glass they protect is cracked or broken. Sensors shall provide positive detection of breakage of plate, safety, laminated, and tempered glass. Sensor shall have a sensitivity adjustment controlling the output voltage from the detecting element which triggers a solid-state latching device. Provide the sensor with an LED for adjusting the sensitivity. [Sensor shall be contained in a fire-resistant ABS plastic housing and shall be mounted in contact with the window. Supply the sensor with a two-sided polyurethane tape with acrylic adhesive. Provide the sensor with an exterior label to protect the tape from direct sunlight.] [Sensor shall be contained in a fire-resistant ABS plastic housing and shall be ceiling or wall mounted, as indicated. Sensor shall provide coverage of large glass areas up to 10 675 mm 35 feet wide. Sensor housing shall be tamper resistant and designed for screw mounting.] Sensor shall not initiate alarm in response to seismic vibrations or other ambient stimuli. The sensor shall have a tamper resistant enclosure and integral tamper switch.

(2) Dual technology glassbreak sensor: Sensor shall detect window breakage by responding to acoustic frequencies that accompany breaking glass. The sensor shall be combined with a passive infrared motion detector (PIR) for the purpose of eliminating occupant-generated false alarms. It will extend coverage to occupied areas, allowing the sensors to be armed while people are present. The sensor shall have a tamper resistant enclosure and integral tamper switch.

(3) Recessed glassbreak sensor: A recessed glassbreak sensor is to be used when appearance is a consideration. Recessed models can be mounted directly to the wall or ceiling or can be installed on a single gang box. The sensor shall employ pattern recognition technology that listens for the actual pattern of breaking glass. The sensor shall be able to detect the difference from breaking glass and normal room sounds by listening across the glassbreak frequency spectrum. The sensor shall provide a 7.6 meters 25 feet 360 degree coverage of the area to be protected. The sensor shall have a tamper resistant enclosure and integral tamper switch.

(4) Screening: Construct security screens from a maximum of 26 AWG insulated hard-drawn copper. Connect screens to an alarm circuitry by means of flexible armored cords. Security screen circuitry shall provide end-of-line resistors in series or equivalent methods ensuring alarm activation if short-circuiting
of the screen is attempted. [If screen corners are not installed as a breakwire sensor (wire traps), provide tamper switches. Provide tamper switches in frames as required with not less than one switch on each side if dimensions are 610 mm 2 feet square or less, and two switches if dimensions exceed 610 mm 2 feet square. Tamper switches shall be corrosion resistant, spring operated, and shall initiate an alarm with a movement of 50 mm 2 inches or less and before access to the switch is possible. Electrical characteristics of the switch shall match alarm system requirements.] The sensor shall have a tamper resistant enclosure and integral tamper switch.

c. Object protection

(1) Capacitance proximity sensor: Capacitance proximity sensor shall detect changes in the established capacitance to ground of a protected object. When the protected object is touched and a ± 20 pF - (variable) change in the capacitance is detected an alarm shall be generated. Circuits measure the ratio between the charging current and the resultant rate of change of voltage with time. Sensor shall protect objects up to a [50,000] [_____] picofarad capacitive load. The system shall provide means of indicating an alarm condition at the protected objects during installation and calibration. Provide the indicator with a disabling device within a tamperproof enclosure. The number of objects protected by a single capacitance detector shall not exceed the unit's maximum capacitance at the desired sensitivity. Protected objects shall be insulated from ground by insulating pads which shall have a dielectric constant such as glass or thermoplastic materials. [If screen grids or radiators are employed as antennas, insulate from ground. Wires used for grids shall be larger than No. 14 AWG, 30 percent copper-clad steel covered with a minimum of 0.397 mm 1/32 inch vinyl coating. Space grid elements at 150 mm 6 inches maximum, and construct in a symmetrical manner.] Provide sensor with sensitivity controls inaccessible to operating personnel. Sensor shall be insensitive to human body movements in excess of 915 mm 36 inches from the antenna circuit. Sensor sensitivity to alarm-producing stimuli shall be readily adjustable from contact to 915 mm 36 inches with a heavily gloved hand. Sensor shall not initiate nuisance alarms in response to normal ambient conditions. [Provide sensors with tamper switches. Interconnecting lines and tamper switches shall remain under constant supervision, even when the system is set for authorized access.] Sensor shall not reset upon restoration of SECURE mode if the antennas were altered during authorized entry to disable detection capability.

(2) Vibration vault sensor: Sensor shall sense short duration, large amplitude signals like those produced in attacks from explosions, hammering or chiseling. It shall also detect long duration, small amplitude signals like those produced in attacks from torches, thermic lances, drills, grinders or cutting discs. The sensor enclosure base shall be constructed of die-cast aluminum with a stamped 22 gauge steel cover. The sensor shall have a tamper resistant enclosure and integral tamper switch.

d. Floor, wall, and ceiling protection

(1) Vibration sensors: Sensors shall sense and selectively amplify
signals generated by forced penetration of a protective structure. Sensors shall initiate alarms upon detecting drilling, cutting, or blasting through walls, or other methods of forced entry through a structure. Mount vibration sensors directly contacting the surface to be protected. Sensors shall be designed to give peak response to structurally conveyed vibrations associated with forcible attack on the protected surface. Provide at least one sensor on each monolithic slab or wall section, even though spacing closer than that required for midrange sensitivity may result. House sensors in protective mountings and fasten to the surface with concealed mounting screws or an epoxy. [Provide sensors with tamper switches.] Removal of a sensor from the surface shall initiate an alarm. An adjustable alarm discriminator shall function to prevent incidental vibrations which may occur from triggering the alarm circuit. Adjust the discriminator on the job to the precise needs of the application. Connect sensors to an electronic control unit by means of wiring or fiber optics cable run in [rigid steel conduit] [EMT]. Sensor sensitivity shall be individually adjustable unless sensor is designed to accommodate vibration ranges of the specific surface type on which it will be mounted. Sensitivity adjustments shall not be accessible without removing the cover on the sensor. Sensor shall not be responsive to airborne sound.

NOTE: Utility inlet openings are protected in a variety of methods, the correct one being dependent on two variables: the nature of the intrusion threat (e.g., physical penetration, electrical, electro-optical) and the characteristics of the utility inlet opening (e.g., discharge water from a nuclear plant, office air duct, electric conduit). Subsequent to such analysis, almost any of the intrusion detection sensors described herein could provide the necessary protection. Normally a breakwire trap sensor is used for this application.

(2) Protection of utility inlet openings: Provide protection by a sensor of the [breakwire] [wire trap] type consisting of up to 26 AWG hard-drawn copper wire with a tensile strength of 17.8 N 4 pounds maximum interlaced throughout the opening such that no opening between wires shall be larger than 100 mm 4 inches on center. Terminate sensor so that attempts to cut the wire or otherwise enlarge openings between wires shall cause an alarm. Sensor termination shall be [concealed] [tamper protected].

2.4.12.2 Interior Volumetric (Space) Sensors

NOTE: Include a schedule of sensors on the plans when the size of areas and pattern coverage is different from one sensor to another.

a. Passive infrared (PIR) sensors: Sensors shall detect intruder presence by monitoring the level of infrared energy emitted by objects within a protected zone. Sensor shall initiate an alarm upon observing increased or fluctuating infrared energy caused by the presence and
motion of an intruder whose temperature is as little as 1.6 degrees C (3 degrees F) different from the background temperature. Sensor shall be passive in nature; no transmitted energy shall be required for detection. Sensor shall be sensitive to infrared energy emitted at wavelengths corresponding to the human body and other objects at ambient temperatures. Detection pattern for wall-mounted sensors shall be 15 m by 15 m (50 ft by 50 ft), unless otherwise indicated, and shall be housed in a tamper-alarmed enclosure. Detection pattern for ceiling-mounted sensors shall be 6.28 rad (360 degrees), unless otherwise indicated, and have a tamper resistant enclosure and integral tamper switch. Sensor shall provide some means of indicating an alarm condition during installation and calibration. A means of disabling the indication shall be provided within the sensor enclosure. Sensor shall alarm if an intruder moves within the area of protection more than 1525 mm (5 feet) at a velocity of 30 mm per second (0.1 foot per second), and one step per second, assuming 150 mm (6 inches) per step. Detection sensitivity shall be irrespective of the direction of motion. Sensor shall also alarm at velocities faster than 30 mm per second (0.1 foot per second), up to 3050 mm per second (10 feet per second). Sensor optimum detection range shall be [a minimum of 10675 mm (35 feet)] [as indicated]. Sensor shall not alarm in response to general area thermal variations. Sensor shall have RFI and white light immunity.

b. Dual technology sensors: Provide sensor combining passive infrared and microwave sensors designed and manufactured specifically to be mounted in a single enclosure.

(1) Passive infrared (PIR) sensor section: Sensor shall detect intruder presence by monitoring the level of infrared energy emitted by objects within a protected zone. Sensor shall initiate an alarm upon observing increased or fluctuating infrared energy caused by the presence and motion of an intruder whose temperature is as little as 1.6 degrees C (3 degrees F) different from the background temperature. Sensor shall be passive in nature; no transmitting energy shall be required for detection. Sensor shall be sensitive to infrared energy emitted at wavelengths corresponding to the human body or other objects at ambient temperatures. Sensor detection pattern shall be 15 m by 15 m (50 ft by 50 ft), unless otherwise indicated. Sensor shall come with clip-on mirror inserts that allow the choice of different coverage patterns: [full] [90 degrees], [45 degrees left], [45 degrees right] [center curtain] [____]. Sensor shall have RFI and white light immunity. The sensor shall have a tamper resistant enclosure and integral tamper switch.

(2) Microwave sensor section: Sensor shall detect intruder presence by transmitting electromagnetic energy into a protected zone, receiving direct and reflected energy, and monitoring frequency shift between transmitted and received signals. If more than one device is used in an area, devices shall operate on different frequencies. Provide for selective filtering by sensor to minimize nuisance alarms due to moving metal objects such as fan blades and venetian blinds, interference from radar, or other sources of electronic interference. Transceivers shall consist of a combined transmit/receive antenna and an adjustable-gain preamplifier in a single housing. Provide transceivers with sensitivity adjustments. Transceiver controls shall permit adjustment of transmission range and alarm signal threshold. Sensitivity controls shall be inaccessible to operating...
personnel. Sensitivity requirements shall be met with sensitivity controls set approximately at midrange. The sensor shall have a tamper resistant enclosure and integral tamper switch.

(3) Additional dual technology sensor requirements: The enclosure containing two sensor sections shall be tamper alarmed. Both microwave and PIR sections shall activate simultaneously to generate an alarm. Only an intrusion characterized by volumetric motion and radiant body heat shall be detected. Sensor shall provide some means of indicating an alarm condition during installation and calibration. A means of disabling the indicator shall be provided within the sensor enclosure. Sensor shall alarm if an intruder moves within the area of protection more than 1525 mm 5 feet at a velocity of 30 mm per second 0.1 foot per second, and one step per second, assuming 150 mm 6 inches per step. Detection sensitivity shall be irrespective of the direction of motion. Sensor shall also alarm at velocities faster than 30 mm per second 0.1 foot per second, up to 3050 mm per second 10 feet per second. Sensor shall not alarm in response to general area thermal variations. Mount sensors [near the ceiling on vibration-free surfaces] [as indicated]. Electronic circuitry shall be solid state and mounted on printed circuit boards. Sensor elements shall contain circuitry for transmitter drive, signal processing, tamper circuitry, and power supplies. Circuitry shall provide an alarm relay with Form C contacts capable of carrying 2 amperes at 100 volts DC minimum. The sensor shall have a tamper resistant enclosure and integral tamper switch.

c. Audio sensors: Sensors shall consist of microphones which detect audio information and transmit signals to an audio amplifier in a central control unit. Multiple units may be connected to a central control unit. Audio sensors shall be designed to be especially sensitive to generic audio intrusion signature of [breaking glass] [splintering wood] [fracturing of cement block] [normal voice conversation]. Sensors shall have sensitivity adjustments which shall be inaccessible to operating personnel. Sensitivity adjustment shall permit operating ranges up to a maximum of [465] [_____] square meters [5000] [_____] square feet. Sensors shall have a detection sensitivity of [unidirectional design] [omnidirectional design]. [Audio assessment capability shall be provided.] Sensors shall be capable of installation in a concealed configuration and shall be inherently self-protecting.

d. Photoelectric sensors: Sensors shall detect intruder presence by establishing a series of infrared beams and detecting beam disruptions. Transmitters shall be dual beam type and shall be designed to emit [no perceptible] light. The beam may be reflected by one or more mirrors before being received and amplified. Disruption of the beam by an opaque body shall initiate an alarm. The transmitted beam shall be uniquely modulated to prohibit an intruder from shining another light source into the receiver to escape detection. Provide some means of local alarm indication on the sensor for use at the protected zone during installation and calibration. Provide with an indicator disabling device within the sensor enclosure. Sensor shall consist of modulating transmitter, focusing lenses, mirrors, demodulating receiver, power supply, and interconnecting lines. House elements in tamper-alarmed enclosure. The receiver unit shall provide an alarm relay with contacts capable of carrying 2 amperes at 120 volts AC minimum. The protective beam shall be focused in a straight line.
The installed beam distance from transmitter to receiver shall not exceed 80 percent of the manufacturer's maximum recommended rating. Mirrors may be used to extend the beam or to establish a network of beams. Each mirror used shall derate the maximum system range by no more than 50 percent. Mirrors and photoelectric sources used in outdoor applications shall have self-heating capability to eliminate condensation and shall be housed in weatherproof enclosures. The system shall utilize automatic gain control or be provided with sensitivity adjustments to allow for various beam enclosures. Controls shall be inaccessible to operating personnel. With controls set at approximately midrange, the system shall initiate an alarm whenever the beam is interrupted. Test the system by walking through the beam. Systems that use multiple beams to establish a fence shall be tested by attempting to crawl under and jump through and over the beams. Systems shall provide cutoffs of at least [90] percent to handle a high percentage of light cutoff prior to initiating an alarm. Sensor shall have RFI immunity.

2.4.12.3 Duress Alarms

UL 639.

a. Hardwire duress alarms: Install at points within the protected area as indicated. Alarms shall be capable of being secretly activated by the foot or hand of an average adult in both standing and seated positions. Alarms shall not be visible or audible from the sensor. The alarm signal shall lock-in upon activation until manually reset with a key or similar device and shall be readily identifiable by the IDS. Sensors shall be easy to operate and designed to minimize the possibility of accidental activation. Hardwire duress alarms shall be rated for a minimum lifetime of 50,000 operations. Securely mount sensors in rugged, corrosion-resistant housing. Duress alarms shall be [annunciated to be clearly distinguishable from other intrusion detection alarms at the control communicator] [silent at the reporting location and clearly distinguishable from intrusion detection alarms at the central monitoring station].

b. Radio frequency duress alarms: Duress alarms shall consist of a compact and lightweight transmitter enclosed in a case that can be easily worn at the waist on a belt. Transmitter shall have a unique identification code. Transmitter shall be capable of transmitting 2 watts of RF power. Transmitter shall transmit up to [500] times on the power provided by internal batteries. A small, flexible PVC-encased antenna shall be mounted 12.7 mm 1/2 inch away from the transmitter to ensure reliable propagation of the alarm signal and rotation of 6.28 rad 360 degrees without damage to the sensor. Provide transmitter in a corrosion-resistant case. Transmitter shall be available in both VHF and UHF radio bands. Transmitter shall be FM modulated to ensure reception and decoding of the alarm signal. The signal transmitted shall readily interface with the IDS communications subsystem as specified in paragraph entitled "Radio Frequency Link." Activation of the sensor shall be by hand-operated switch protected from accidental activation, yet easily activated by hand when worn at the waist on a belt. [Sensor activation shall be automatic when mounted on a belt and when the wearer is in a horizontal position for an adjustable time interval of longer than [1] minutes. Adjustment of time interval activation shall not be accessible to operations personnel.]
c. Keypad activated duress alarms: Duress alarms shall consist of programmable keypad activated push buttons [and] [or] a keypad activated Duress code, a user code programmed as a Duress code. Dedicated keys on the keypad shall be individually enabled via programming to initiate an alarm signal. Each programmed key shall also have the capability to initiate an auxiliary output for additional alarm signaling.

2.4.13 Communications

Communications shall link together the subsystems of the IDS. IDS communications links shall be via hardwire (cable)[, or radio frequency]. Communications links shall be supervised. Common communications interface devices shall be provided throughout the IDS. Sensor to Premise Control Unit (PCU) interface shall be by dry relay contact normally open or normally closed, except as specified otherwise. PCU to central alarm reporting Digital Receiver shall be digital, asynchronous or multiplexed data. The system shall be capable of communication using the IBM Synchronous Data Link Control format, and at least two other standard industry formats. The system shall be capable of supporting Network communication with digital dialer backup, existing Ethernet or token ring data networks, satellite communication, fiber optic networks, local area networks, wide area networks, cellular communication, and retail data networks. The PCU shall be capable of asynchronous network communication with a retry time between 3 and 15 seconds for a total of one (1) minute. If communication is unsuccessful the PCU shall be capable of attempting backup communication through any of the available communication methods to the same receiver or a backup receiver. Network communication between the PCU and the receiver shall be in a proprietary communication format. The PCU shall be capable of supporting Dynamic Host Communication Protocol (DHCP) Internet Protocol (IP) addressing. Underwriters Laboratories (UL) shall list network communication by the PCU for Grade AA High-Line Security. The PCU shall be capable of two-way network communication using standard Ethernet 10BaseT in a LAN, WAN, or Internet configuration. The PCU shall be capable of communication by means of a 128bit AES Rijndael Encryption process certified by NIST (National Institute of Standards and Technology) to a Digital receiver with a built-in Encryption Alarm Router. The PCU shall be capable of meeting DCID 6/9 and UL 2050 standards. The PCU shall be capable of having communication set to Network operation. When a trap is set in Remote Link, the software shall be capable of sending a panel trap message with the panel account number to the Digital receiver. The digital receiver shall store the trap and monitor the PCU for the next message. When the PCU sends its next message, the receiver shall then send a message to the PCU to contact Remote Link at the IP address contained in the original trap message. The trap message shall be stored in the digital receiver for up to four hours. If the trap message is not sent to the PCU within the four-hour window, the PCU trap message shall be discarded and a new trap message must be sent from Remote Link.

2.4.13.1 Sensor to PCU Link Supervision

Provide hardwire direct current line supervision for sensor to PCU links which are within the IDS protected area. Circuit shall be supervised by monitoring changes in the current that flows through the detection circuit and a terminating resistor of at least [1.0] [_____] kohm. Supervision circuitry shall initiate an alarm in response to opening, closing, shorting, or grounding of the conductors by employing Class C, Standard Line Security. Class C circuit supervisor units shall provide an alarm response in the annunciator in not more than one second as a result of the
following changes in normal transmission line current:

a. Five percent or more in normal line signal when it consists of direct current from 0.5 milliamperes through 30 milliamperes.

b. Ten percent or more in normal line signal when it consists of direct current from 10 microamperes to 0.5 milliamperes.

c. Five percent or more of any element or elements of a complex signal upon which security integrity of the system is dependent. This tolerance will be applied for frequencies up to 100 Hz.

d. Fifteen percent or more of any element or elements of a complex signal upon which security integrity of the system is dependent. This tolerance will be applicable for frequencies above 100 Hz.

2.4.13.2 Control Communicator Hardwire Link

The control communicator to central alarm reporting processor communications link shall operate over a maximum of [2] [4] [_____] standard voice grade telephone leased or proprietary lines. Digital communicator shall conform to UL 1635. The link shall be capable of operating half duplex over a Type 3002 data transmission pair and shall be capable of modular expansion. Telephone lines will be provided by the Government. Coordinate and check out system operation. General characteristics and telephone line service shall be as follows:

a. Connections: Two- or four-wire

b. Impedance at 1000 Hz: 600 ohms

c. Transmitting level: 0 to 12 dBm

d. Transmitting level adjustment: 3 dB increments

e. Type: Data

f. Direction: Two-way alternate (half duplex)

g. Maximum speed: [1.2] [5.12] [10.24] [_____] kilobaud

h. Maximum loss at 1000 Hz: 33 dB.

2.4.13.3 Radio Frequency Link

**
NOTE: Radio frequency links may not be allowed on some Government facilities. Recommended usage for RF links is as backup to hardwire links or at a remote location lacking telephone lines. OPNAV Instruction 2400.20E requires that funds shall not be obligated for procurement of radio equipment until frequency allocation authority has been obtained. As soon as possible, but no later than schematic design, the designer shall contact the area radio frequency coordinator (usually the base radio officer) to determine the availability of radio frequencies and to ensure that the using activity submits a DD Form 1494, Application for
Frequency Allocation, for a Stage 1 ("Conceptual Development") allocation (see DD Form 1494 Preparation Guide). Stage 1 allocation authority (i.e., approval) must be obtained prior to advertisement of the contract.

The 138 to 150.8 MHz band is the preferred range since specific frequencies in this range are reserved for DOD use. Frequencies in the 162 to 174 MHz and 450 to 470 MHz bands are shared with other users on a first-come, first-serve basis. To avoid potential contract delays, the frequency assignment should be included in the specification when possible. For additional information, contact the base radio officer or the Naval Electromagnetic Spectrum Center at (202) 433-0689. OPNAVINST 2400.20E is issued by OPNAV Code N60 (previous Code OP941), telephone (703) 695-7284.

The system shall be a full duplex, supervised RF polling specifically designed for alarm data communications with components manufactured by one manufacturer. The system shall operate in the very high frequency (VHF), [134 to 154] MHz band. The system shall interface directly with the IDS hardwire data link from control communicator to the central alarm reporting location. The system shall also translate (reduce) the data rate for RF transmission, modulate and demodulate the data signal, and transmit and receive IDS data. Provide a factory-tested complete RF link which both automatically and upon operator command transmits a signal with a unique identification from the central alarm monitoring location to control communicator locations. Message receipt at control communicator location shall be ignored by other control communicators except the addressee. The communicator with the correct address shall decode the interrogation signal and respond to interrogation with status of reporting sensors. If the addressee fails to respond, reinterrogate. Failure to respond a second time shall cause a line supervision alarm. Remote units in the RF system shall be individually polled in turn. Polling response time and transmission data rate, data error rate, and equipment reliability shall ensure that overall IDS alarm annunciation time reliability is not degraded. Provide RF transmitters, receivers, or transceivers in sufficient quantities to meet specified requirements. RF link transmissions shall be on one or more of the frequencies within the specified band as required to meet the specified requirements and shall neither interfere with other IDS components nor facility electronic components. Provide transmitters which are in accordance with applicable requirements of 47 CFR 15. Message types and content shall be identical to those transmitted by other portions of the IDS data communications subsystem. IDS alarms sent by RF link shall not fail to be transmitted by RF link due to events occurring in "off air" periods. The RF link shall provide message transmission priority in the following order:

a. Intrusion alarms
b. Tamper alarms
c. Access denial alarms
d. Other alarms on a first-in, first-out basis including loss of communication signal, fail-safe, low battery, and power loss.
Provide omnidirectional, coaxial, half-wave dipole antennas for alarm transmitters and transceivers with a driving point impedance to match transmission output. Antennas and antenna mounts shall be corrosion resistant and designed to withstand wind velocities of [161] km/h [100] mph and physical damage caused by vandalism. Antennas shall not be mounted to any portion of the facility fence or roofing system. Antennas shall be furnished from the same manufacturer as the rest of the RF link. Provide coaxial cable in lengths as required. Cable shall use PL-type fittings or connectors, properly protected against moisture. Cables shall match the output impedance of the transmitters.

2.4.14 Premise Control Unit (PCU)

**
NOTE: Locate in secure, indoor, dry location. To determine the number of zones required for a specific project, consider the following as a minimum: one zone for entry/exit doors, one zone for window switches and doors that are not entry/exit type, one zone for motion sensors, one zone for glass break sensors, one or more zones for tamper, and one zone for duress alarm (if used). Increase the number of zones as the size of the building/area increases.
**

PCU shall include a command processor installed in an attack and tamper resistant enclosure. The PCU shall be packaged and include a power transformer, battery(s), network connection cable, keypad(s), keypad connection cable(s) and additional components as required. All system electronic components shall be solid-state type, mounted on printed circuit boards. Light duty relays and similar switching devices shall be solid-state type or electromechanical. The PCU shall have an over current notification LED that lights when devices connected to the Keypad Bus or communication Bus(es) draw more current than the PCU is rated for. When the over current LED lights, the communications Bus(es) and Keypad bus are to shut down. The PCU shall provide at a minimum but not limited to, the following capabilities;

a. The PCU areas and zones shall be programmable, and the system shall store, log, display, and transmit specific custom designations for system areas, zones, and user names.

b. The PCU, user interfaces, zone input devices, relay output devices, and the signal receiving equipment shall be engineered, manufactured, assembled, and must be distributed from a location within the United States of America.

c. The system shall support user interaction by way of a keypad, web browser, system software, key switch, or radio frequency wireless control, using integrated or auxiliary devices provided by the system manufacturer.

d. The PCU shall support zone input connections, system keypads, system zone expansion modules, and wireless zone input modules, and must support zone input connections by way of at least two competitive products. The system shall offer a seamless integrated compatibility with hard-wire and/ or wireless zone expansion equipment for at least 20...
e. The PCU shall be capable of offering at least [5] [_____] zone expansion buses, each of which can support the connection of up to [15,000] [_____] feet of four-wire cable. Zone expansion and keypad data buses that exceed [2,500] [_____] feet of cable must include splitter/repeater modules to boost data voltage and maintain data integrity.

f. The PCU shall provide a seamless capability to provide a minimum of [500] [_____] addressable relays, which can be located at any connection location upon a zone expansion bus.

g. PCU relay outputs shall have the capability of being triggered as a result of a command from the user interface, changes in system status, changes in zone status, or by a programmable schedule.

h. PCU relay output states shall be programmable for momentary, maintained, pulsed, or must follow the state of an associated zone input.

i. The PCU shall be completely programmable either locally from a keypad or remotely through a standard dial-up, and network connections by way of a LAN, WAN, and/or by way of the Internet. Remote configuration or control is not permissible for installation that must conform to DCID 6/9 requirements.

j. The PCU shall be completely programmable remotely using remote annunciators, and/or using upload/download software that communicates using SDLC 300 baud, 2400 baud, or IP Addressed data network. On-site programming from a personal computer shall also be permitted. Remote configuration or control is not permissible for installation that must conform to DCID 6/9 requirements.

k. The PCU shall be equipped with an anti-reversing circuit breaker to prevent damage due to accidental reversal of battery leads.

2.4.14.1 Input/Output Capacity

a. The PCU shall be capable of monitoring a maximum of 574 individual zones and controlling a maximum of 502 output relays.

b. The PCU shall have, as an integral part of the assembly, 2 SPDT Form C relays rated at 1 Amp at 30 VDC and four open collector 12 VDC outputs rated at 50mA each. It shall also have the capacity of a maximum of 125 output expander modules with 500 switched ground, open collector outputs, 50mA maximum and 502 auxiliary relays (Form C rated at 1.0 Amp at 30 VDC).

c. The PCU shall also provide 100 programmable output schedules, and include an integral bell alarm circuit providing at least 1.5 Amps of steady, pulsed, or temporal bell output. Output type shall be programmable by zone type. Relays and voltage outputs shall be capable of being independently programmed to turn on and/or off at selected times each day.
2.4.14.2 User/Authorization Level Capacity

The system shall be capable of operation by [10,000] unique Personal Identification Number (PIN) codes with each code having one of ninety-nine custom user profiles. This allows for limitation of certain functions to authorized users. The operation of all keypads shall be limited to authorized users.

2.4.14.3 Keypad

a. The PCU shall support a maximum of sixteen keypads with alphanumeric display. Each keypad shall be capable of arming and disarming any system area based on a pass code or Proximity key authorization. The keypad alphanumeric display shall provide complete prompt messages during all stages of operation and system programming and display all relevant operating and test data.

b. Communication between the PCU and all keypads and zone expanders shall be multiplexed over a non-shielded multi-conductor cable, as recommended by the manufacturer. This cable shall also provide the power to all keypads, zone expanders, output expanders, and other power consuming detection devices.

c. If at any time a keypad does not detect polling, the alphanumeric display shall indicate "SYSTEM TROUBLE". If at any time two devices are programmed for the same address, the alphanumeric keypad shall display "4 WIRE BUS TROUBLE". If at any time a keypad detects polling but not for its particular address, the alphanumeric display shall indicate "NON POLLED ADDR". The system shall display all system troubles at selected keypads with distinct alphanumeric messages.

d. The keypad shall include self-test diagnostics enabling the installer to test all keypad functions: display test, key test, zone test, LED test, relay test, tone test, and address test.

e. The keypad shall provide an easy-to-read English text display. The text shall exactly match the text seen in all software reports, keypad displays, and central station reports.

f. The keypad user interface shall be a simple-to-use, menu-driven help system that is completely user friendly.

g. The PCU shall support sub-control keypads with four built-in zones and capable of functioning in the following modes:

(1) Monitors all four keypad zones independently with a maximum of keypads attached to the PCU.

(2) PCU assigns one zone to each keypad and monitors all keypad zones as a single zone with a maximum of keypads attached to the PCU.

(3) Stand-alone mode allowing keypad to operate as a self-contained security system independent of the PCU.

2.4.14.4 Zone Configuration

a. A minimum of Class B ungrounded zones shall be available at each keypad or zone expander on the system. The system shall have the
capacity for a maximum of sixteen [16] keypads and a maximum of [125] four (4) zone expanders or [500] single zone expanders. It shall also have the capacity of a maximum of [125] supervised relay output expanders. All Class B zones shall be 2-wire, 22 AWG minimum, supervised by an end-of-line (EOL) device and shall be able to detect open and short conditions in excess of 500ms duration.

b. Each zone shall function in any of the following configurations: Night, Day, Exit, Fire, Supervisory, Emergency, Panic, Auxiliary 1, Auxiliary 2, Fire Verification, Cross Zone, Priority, and Key Switch Arming.

c. The digital SLCs and the annunciator/keypad bus shall be able to operate at a maximum wiring distance of [2500] feet from the control panel on unshielded, non-twisted cable. This distance may be extended to a total of [15,000] feet when bus repeater modules are installed.

d. The PCU shall have the capability to incorporate up to [200] zone expander points.

2.4.15 [Bell] [Siren]

**
NOTE: Choose one of the following options.
**

[a. Bell: Provide UL listed 255 mm 10 inch bell rated for 6 to 12 volts DC and having a sound output of [84], dB minimum. Bell shall conform to UL 464 and UL 609, as applicable. Provide bell in steel enclosed, weather-resistant box having tamper switches on front cover and on back of box.

][b. Siren: Provide 30 watt, 8 ohm speaker and siren driver rated for 6 to 12 volts DC and having two distinct sound outputs. Siren shall produce a sound level output of [103 to 106], dB at 3050 mm 10 feet. Siren shall conform to UL 464 and UL 609, as applicable. Provide siren in metal enclosed, weather-resistant box having tamper switches on front cover and on back of box.

] c. Chime: Provide for keypad audible indication of a device activation. Audible chime shall sound when select devices activate in order to alert personnel of access into an area during normal access times. The audible chime may be activated when a magnetic switch is activated at a main entrance leading into a un-secured area during working hours.

2.4.16 Strobes

Provide for visual indication of alarm activation. Strobe shall flash simultaneously with [siren] [bell] and shall be 75 candela minimum with flash rate of 60 per minute. Strobe shall be designed to operate on 12 volts DC and shall conform to UL 1638.

2.4.17 Central Station Receiver/Printer

Provide a microprocessor based digital alarm receiver conforming to UL 1610 to receive and display information transmitted by alarm control panels/communicators over the standard telephone network. Receiver shall be capable of handling Ademco low or high speed, Sescoa, Radionics, and
BFSK formats with either three- or four-digit subscriber identification and four plus two formats on the same line card. [Receiver shall also interface to derived channel telephone company networks.] Receiver shall have built-in battery backup and shall be able to monitor a minimum of 999 accounts. Telephone connection shall be RJ31X jack. AC input shall have built-in MOV surge protection.

2.4.17.1 Printer

Printer shall conform to UL 1610 and shall provide a hard copy record of incoming information including time, date, account number, and code number. Printer shall have built-in battery backup and built-in MOV surge protection on AC input. Clock shall be 24-hour real time. Calendar shall be 100 year with leap years built in.

2.4.17.2 Operation

When the receiver receives a transmission over standard telephone network lines from a remote communicator, the receiver shall immediately answer the incoming call and acknowledge the call by returning a tone signal (handshake) to the communicator. Upon receipt of the handshake, the communicator shall transmit one or two rounds of coded pulses which are the account and code numbers. When a valid statement of data is received from the communicator, the receiver's internal audible signal shall sound to alert the monitoring person that a valid round of data is on line. The receiver shall also alert the printer and shall display on the receiver's front panel the account number and code number of the communicator. When the receiver has received the communicator's data, the receiver shall send a signal to the communicator causing the communicator to hang up (kiss off). The receiver shall then automatically shut itself down within 10 seconds.

**
NOTE: Standalone Electronic Door Access shall be an integral function of the PCU. Access assignment shall be configured at the PCU via the PCU keypad or direct PC workstation communications.
**

2.4.18 Standalone Electronic Door Access

The PCU shall be capable of integrating area access control capability where specified into the same PCU with the ability to have up to [10,000] [_____] user credentials. User access is limited to custom profiles and/or schedules. Anti-passback shall be available. Networked version shall support a Two-Man Rule feature. The system shall support up to sixteen [16] [_____] access doors, connected to the system using a manufacturer-approved interface module. Access Control equipment shall communicate to the system by way of the PCU keypad bus.

2.5 FIELD FABRICATED NAMEPLATES

ASTM D709. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 3 mm (0.125 inch) 0.125 inch thick, white with [black] [_____] center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be
25 by 65 mm (one by 2.5 inches) one by 2.5 inches. Lettering shall be a minimum of 6.35 mm (0.25 inch) 0.25 inch high normal block style.

2.5.1 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.6 FACTORY APPLIED FINISH

Electrical equipment shall have factory-applied painting systems which shall, as a minimum, meet the requirements of NEMA 250 corrosion-resistance test.

PART 3 EXECUTION

3.1 EQUIPMENT INSTALLATION

UL 609, UL 639, UL 681 UL 1076 and UL 1610, and the appropriate installation manual for each equipment type. Components within the system shall be configured with appropriate "service points" to pinpoint system trouble in less than 20 minutes.

3.1.1 Cable/Wire Runs

NFPA 70; Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM, and as specified herein.

3.1.2 Soldering

ASTM B32. For soldering electrical connections, use composition Sn60, for general purposes; use composition Sn62 or Sn63, for special purposes. Flux shall conform to ASTM B32.

3.1.3 Galvanizing

Ferrous metal shall be hot-dip galvanized in accordance with ASTM A123/A123M. Screws, bolts, nuts, and other fastenings and supports shall be corrosion resistant.

3.1.4 Tamper Switches

Tamper switches shall be an integral part of all intrusion sensor devices. An initiation of an alarm signal will occur when the door or cover is moved as little as 6.35 mm 1/4 inch from the normally closed position. Tamper switches shall also be located within enclosures, cabinets, housings, boxes, raceways, and fittings to prevent direct line of sight to any internal components and to prevent tampering with switch or circuitry. Conceal tamper switch mounting hardware so that the location of the switch within the enclosure cannot be determined from the exterior.

3.1.5 Fungus Treatment

Completely treat system components for fungus resistance. Treating materials containing mercury-bearing fungicide shall not be used. Treating materials shall not increase the flammability of the material or surface being treated nor cause skin irritation or other personnel injury during
fabrication, transportation, operation, or maintenance of the equipment, or during use of the finished items when used for the purpose intended.

3.1.6 Conduit

Install in accordance with NFPA 70 and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

3.1.7 Underground Cable Installation

Underground conductors connecting protected structures and objects to the central alarm updating and display unit shall be run direct burial or in conduit as specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION. Coaxial cable shall not be spliced. If permitted, cables connecting protected structures and objects to the security control console shall be sized such that initially only approximately 60 percent of the circuit pairs will be used. Cable pairs not used shall be reserved for future use of additional detection circuits.

3.2 FIELD QUALITY CONTROL

3.2.1 IDS Operational Test Plan

Test shall ensure that the requisite degree of intrusion detection is provided. Initially, test each sensor and subsystem component individually. [Test glass breakage sensors by using test units supplied by the manufacturer which simulate glass breakage.] When the function of each component within a particular subsystem, such as each sensor within a particular zone, is verified, certify that subsystem of the entire IDS has satisfactorily met the specifications. Test each subsystem similarly until each detection zone has been certified. When subsystem certification is complete, test the entire integrated system to ensure that subsystem elements are compatible and function as a complete system. The integrated system test shall be accomplished in linear fashion, end-to-end, and shall verify that each simulated intrusion performed within each detection zone produces an appropriate alarm or signal, and that alarm is correctly annunciated at the keypad [and central station receiver]. Provide for approval, not later than 30 days prior to formal inspection and test, a detailed operational test plan of how each component, subsystem, and entire IDS will be tested. When tests are complete and corrections made, submit a signed and dated certificate with a request for formal inspection and tests.

3.2.2 System Acceptance Test

3.2.2.1 Posted Operating Instructions

System Acceptance testing shall be performed as follows;

a. The NAVFAC and NAVFAC Engineer will conduct final acceptance testing of the system.

b. Prior to the final acceptance test, security contractor shall conduct a complete test of the entire IDS system and provide the NAVFAC and NAVFAC Engineer with a written report.

c. Following completion of the initial testing and correction of any noted deficiencies, conduct a five-day burn-in test, intent of the burn-in test shall be to prove the IDS by placing it in near real operating conditions. During this period the IDS shall be fully functional and
programmed such that all points, interfaces, controls, reports, messages, prompts, etc. can be exercised and validated. Record and correct any system anomaly, deficiency, or failure noted during this period. Scheduling of the final acceptance test shall be based on a review of the results of this burn-in test.

d. Deliver a report describing the results of the functional tests, burn-in tests, diagnostics, calibrations, corrections, and repairs including written certification to the NAVFAC and NAVFAC Engineer that the installed complete IDS has been calibrated, tested, and is fully functional as specified herein.

e. Prior to the final acceptance test, complete all clean-up and patch work requirements. Security equipment closets and similar areas shall be free of accumulation of waste materials or rubbish caused by operations under the Contract. At completion of the Work, remove all waste materials, rubbish, contractor tools, construction equipment, machinery and all surplus materials.

f. Upon written notification from the Contractor that the IDS is completely installed, integrated and operational, and the burn-in testing completed, the NAVFAC and NAVFAC Engineer will conduct a final acceptance test of the entire system at a mutually acceptable time.

g. During the final acceptance test, no adjustments, repairs or modifications to the system shall be conducted without the permission of the NAVFAC.

h. During the course of the final acceptance test by the NAVFAC and NAVFAC Engineer, the Contractor shall be responsible for demonstrating that, without exception, the completed and integrated IDS complies with the contract requirements. Physical and functional requirements of the project shall be demonstrated and shown. This demonstration will begin by comparing as-built drawings conditions of the IDS to requirements outlined in this Section, item by item. Following the Section compliance review, IDS and SCCd equipment will be evaluated.

i. The functionality of the various interfaces between systems will be tested.

j. The installation of all field devices will be inspected. This field inspection will weigh heavily on the general neatness and quality of installation, complete functionality of each device, and compliance with mounting, back box and conduit requirements.

k. All equipment shall be on and fully operational during any and all testing procedures. Provide personnel, equipment, and supplies necessary to perform all site testing. Provide a minimum of two Contractor employees familiar with the IDS for the final acceptance test. One contractor employee shall be responsible for monitoring and verifying alarms while the other will be required to demonstrate the function of each device. Supply at least two radios or portable telephones for use during the test.

l. The NAVFAC and NAVFAC Engineer retain the right to suspend, terminate or reschedule testing at any time when the IDS is found to be incomplete or fails to perform as specified. In the event that it becomes necessary to suspend, terminate or reschedule the test, all of the NAVFAC and NAVFAC Engineers fees and expenses related to the test.
shall be deducted from the Contractor's retainage. In the event it
becomes necessary to suspend, terminate or reschedule the test, the
Contractor shall work diligently to complete and/or repair all
outstanding items as required by the Contract Documents. The Contractor
shall supply the NAVFAC and NAVFAC Engineer with a detailed punch list
completion schedule outlining task-by-task completion dates and a
tentative date for a subsequent retest. During the final acceptance
test, no adjustments, repairs or modifications to the system shall be
conducted without the permission of the NAVFAC Engineer and NAVFAC.

3.3 ADJUSTMENT/ALIGNMENT/SYNCHRONIZATION/CLEANING

Subsequent to installation, clean each system component of dust, dirt,
grease, or oil incurred during installation or accrued subsequent to
installation from other project activities. Prepare for system activation
by following manufacturer's recommended procedures for adjustment,
alignment, or synchronization. Prepare each component in accordance with
appropriate provisions of the component's installation, operations, and
maintenance manuals.

3.4 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces
or to meet the indicated or specified safety criteria. Painting shall be
as specified in Section 09 90 00 PAINTS AND COATINGS

3.5 NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as
indicated. Fasten nameplates to the device with a minimum of two
sheet-metal screws or two rivets.

-- End of Section --