UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2015

SECTION TABLE OF CONTENTS

DIVISION 26 - ELECTRICAL

SECTION 26 36 00.00 10

AUTOMATIC TRANSFER SWITCH AND BY-PASS/ISOLATION SWITCH

10/07

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY ASSURANCE
 1.3.1 Detail Drawings
 1.3.2 Switching Equipment
1.4 SITE CONDITIONS

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS
2.2 NAMEPLATE
2.3 AUTOMATIC TRANSFER SWITCH (ATS)
 2.3.1 Override Time Delay
 2.3.2 Transfer Time Delay
 2.3.3 Return Time Delay
 2.3.4 Engine Shutdown Time Delay
 2.3.5 Exerciser
 2.3.6 Auxiliary Contacts
 2.3.7 Supplemental Features
 2.3.8 Operator
 2.3.9 Override Switch
 2.3.10 Green Indicating Light
 2.3.11 Red Indicating Light
2.4 BY-PASS/ISOLATION SWITCH (BP/IS)
 2.4.1 Design
 2.4.2 Switch Construction
2.5 ENCLOSURE
 2.5.1 Construction
 2.5.2 Cleaning and Painting
2.6 TESTING
 2.6.1 Factory Testing
 2.6.2 Factory Test Reports
2.7 FACTORY TESTING (MEDICAL FACILITIES)
 2.7.1 Viewing Ports
2.7.2 Operating Handles

PART 3 EXECUTION

3.1 INSTALLATION
3.2 INSTRUCTIONS
3.3 SITE TESTING
 3.3.1 Insulation Resistance
 3.3.2 Power Failure of Normal Source
 3.3.3 Power Failure of Emergency Source
 3.3.4 Low Phase-to-Ground Voltage
 3.3.5 Operation and Settings
 3.3.6 ATS and BP/IS Functions

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for low voltage applications of automatic transfer switches (ATS) and ATS with by-pass/isolation switches.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This guide specification is for use when the nature of electrical loads indicates a need for automatic transfer between two power sources. Terminology used depends on the application. "Preferred" and "alternate" should be used when this specification applies to a stand-by generator system as defined in NFPA 70. The same terminology should be used when switching between different sets of service entrance conductors or between feeders supplied by different transformers. "Normal" and "emergency" should be used for the emergency system application described in NFPA 70.

This specification covers conventional, standard,
commercially available equipment appropriate for most Department of Army/Air Force applications. Special applications may require synchronized, closed-transition transfer, or withdrawal features to facilitate rapid maintenance or repair. Manufacturers of standard ATS may be able to provide ATS for special applications. The cost must be compared with the cost of conventional synchronizing equipment and circuit breakers with withdrawal features, as applicable. The decision should be based on life-cycle costs.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Standard for Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 4 (2010) Terminal Blocks

NEMA ICS 6 (1993; R 2011) Enclosures

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2014; AMD 1 2013; Errata 1 2013; AMD 2 2013; Errata 2 2013; AMD 3 2014; Errata 3-4 2014; AMD 4-6 2014) National Electrical Code

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 3-310-04 (2013) Seismic Design for Buildings

UNDERWRITERS LABORATORIES (UL)

UL 1008 (2012; Reprint Apr 2013) Transfer Switch Equipment

UL 1066 (2012; Reprint Jul 2013) Low-Voltage AC and DC Power Circuit Breakers Used in Enclosures

1.2 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government

SECTION 26 36 00.00 10 Page 5
approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Detail Drawings
 Equipment
 Installation

SD-03 Product Data
 Equipment

SD-06 Test Reports
 Testing; G[, [_____]]

SD-07 Certificates
 Equipment
 Switching Equipment
1.3 QUALITY ASSURANCE

1.3.1 Detail Drawings

Submit interface equipment connection diagram showing conduit and wiring between ATS and related equipment. Submit schematic, external connection, one-line schematic and wiring diagram of each ATS assembly. Device, nameplate, and item numbers shown in list of equipment and material shall appear on drawings wherever that item appears. Diagrams shall show interlocking provisions and cautionary notes, if any. Operating instructions shall be shown either on one-line diagram or separately. Unless otherwise approved, one-line and elementary or schematic diagrams shall appear on same drawing.

1.3.2 Switching Equipment

Upon request, manufacturer shall provide notarized letter certifying compliance with requirements of this specification, including withstand current rating (WCR). Submit evidence that ATS withstand current rating (WCR) has been coordinated with upstream protective devices as required by UL 1008. Submit an operating manual outlining step-by-step procedures for system startup, operation, and shutdown. Manual shall include manufacturer's name, model number, service manual, parts list, and brief description of equipment and basic operating features. Manufacturer's spare parts data shall be included with supply source and current cost of recommended spare parts. Manual shall include simplified wiring and control diagrams for system as installed.

1.4 SITE CONDITIONS

**
NOTE: Provide seismic requirements, if a Government designer (Corps office or A/E) is the Engineer of Record, and show on the drawings. Delete the bracketed phrase if seismic details are not provided. Pertinent portions of UFC 3-310-04 and Sections 13 48 00, 13 48 00.00 10 and 26 05 48.00 10, properly edited, must be included with the contract documents.
**

Seismic requirements shall be as specified in UFC 3-310-04 and Sections 13 48 00 SEISMIC PROTECTION FOR MISCELLANEOUS EQUIPMENT, 13 48 00.00 10 SEISMIC PROTECTION FOR MECHANICAL EQUIPMENT and 26 05 48.00 10 SEISMIC PROTECTION FOR ELECTRICAL EQUIPMENT [as indicated]. ATS shall be suitable for prolonged performance under following service conditions:

<table>
<thead>
<tr>
<th>Altitude</th>
<th>[_____] m feet above mean sea level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Humidity</td>
<td>[_____] percent maximum, continuous</td>
</tr>
</tbody>
</table>
PART 2 PRODUCTS

NOTE: Normally, switched poles should be limited to three for three-phase, three- or four-wire systems. Switching of neutral (fourth pole) should only be considered where emergency/alternate power source is a separately derived system; where ground potential at the two voltage sources differs significantly; or where NFPA 70 requires ground fault protection for equipment.

Sizing of neutral bus, pole, contacts, and terminations should consider harmonic currents. Nonlinear loads such as switch mode power supplies, electronic ballasts, personal computers, laser printers, variable frequency motor drives, static uninterruptible power supplies, and other equipment described in IEEE 519 and 1100 will produce harmonic currents with high zero phase sequence components which are additive in neutral circuit. Neutral ampere rating may need to be higher than phase contacts (200 percent is typical for 100 percent harmonic load).

2.1 STANDARD PRODUCTS

Provide material and equipment which are standard products of a manufacturer regularly engaged in manufacturing the products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Submit list of proposed equipment and material, containing a description of each separate item, and certificates of compliance showing evidence of UL listing and conformance with applicable NEMA standards. Such certificates are not required if manufacturer's published data, submitted and approved, reflect UL listing or conformance with applicable NEMA standards. The experience use shall include applications in similar circumstances and of same design and rating as specified ATS. Equipment shall be capable of being serviced by a manufacturer-authorized and trained organization that is, in the Contracting Officer's opinion, reasonably convenient to the site.

2.2 NAMEPLATE

Nameplate showing manufacturer's name and equipment ratings shall be made of corrosion-resistant material with not less than 3 mm 1/8 inch tall characters. Nameplate shall be mounted to front of enclosure and shall comply with nameplate requirements of NEMA ICS 2.

2.3 AUTOMATIC TRANSFER SWITCH (ATS)

NOTE: Calculate short-circuit current available at
ATS supply terminals. Caution: emergency source may be capable of supplying larger amount of short-circuit current. Ampere interrupting capacity (AIC) rating of circuit protective devices on ATS supply side should equal or exceed available short-circuit current. Since ATS WCR should be equal to or greater than AIC rating of upstream circuit protective devices, care should be used in determining available AIC to avoid high costs of over-rated ATS. WCRs listed in UL 1008 should be used when fault currents are less than WCR listed. However, in no case should WCR be less than 10,000 amperes.

Where closed-transition transfer is required, coordinate system design requirements with power supplier.

Delete BP/IS requirements if not applicable. Delete reference to IEEE 602 if not applicable.

ATS shall be electrically operated and mechanically held in both operating positions. ATS shall be suitable for use in [emergency systems] [standby systems] described in NFPA 70. ATS shall be UL listed. ATS shall be manufactured and tested in accordance with applicable requirements of IEEE C37.90.1, IEEE C37.13, IEEE C62.41.1, IEEE C62.41.2, IEEE 602, NEMA ICS 1, NEMA ICS 2, NEMA ICS 10 Part 2, UL 1008 and UL 1066. ATS shall conform to NFPA 110. To facilitate maintenance, manufacturer's instruction manual shall provide typical maximum contact voltage drop readings under specified conditions for use during periodic maintenance. Manufacturer shall provide instructions for determination of contact integrity. ATS shall be rated for continuous duty at specified continuous current rating. ATS shall be fully compatible and approved for use with BP/IS specified. BP/IS shall be considered part of ATS system. ATS shall have following characteristics:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>[_____] volts [dc] [ac]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Phases</td>
<td>[One] [Two] [Three]</td>
</tr>
<tr>
<td>Number of Wires</td>
<td>[Two] [Three] [Four]</td>
</tr>
<tr>
<td>Frequency</td>
<td>[25] [50] [60] [400] Hz</td>
</tr>
<tr>
<td>Poles</td>
<td>[Two switched] [Three switched] [and solid neutral] [and switched neutral] [_____]</td>
</tr>
<tr>
<td>ATS WCR</td>
<td>Rated to withstand short-circuit current of [_____] amperes, RMS symmetrical.</td>
</tr>
<tr>
<td>Nonwelding Contacts</td>
<td>Rated for nonwelding of contacts when used with upstream feeder overcurrent devices shown and with available fault current specified.</td>
</tr>
</tbody>
</table>
Contacts shall have silver alloy composition. [Neutral contacts shall have same continuous current rating as main or phase contacts] [Neutral contact continuous current rating shall be not less than twice the rating of main or phase contacts].

2.3.1 Override Time Delay

**
NOTE: Consult ATS manufacturers' literature for feature availability, timing interval range, and pickup and dropout settings. Insert proper values. Recommended values for normal applications are shown in brackets but may be changed for other design conditions. Where values are not shown or different settings are required, specify values and settings.

ATS operation should not be initiated during low voltage conditions attributed to a fault or to momentary dips or excursions (transients) in normal or preferred power source. Time delay before monitored source override should exceed associated circuit breaker tripping time and normal system voltage instability periods. Minimum of 1 second is recommended. Where utility type power source is used and application is standard, monitoring devices should drop out at 85 percent of nominal value and pick up at 90 percent. Where precise power is monitored, protection should be specified with monitoring devices set to pick up at 95 and drop out at 90 percent of nominal. In applications requiring closer regulation, solid state or microprocessor arrangement may be used with pickup and dropout response adjusted as close as 2 percent differential. However, for these applications a redundant uninterruptible power supply should be considered.

Delete generator reference if not required.
**
Provide adjustable time delay to override monitored source deviation from [0.5] [_____] to [6] [_____] seconds and factory set at [1] [_____] second[s]. ATS shall monitor phase conductors to detect and respond to sustained voltage drop of [25] [15] [_____] percent of nominal between any two [normal] [preferred] source conductors and initiate transfer action to [alternate] [emergency] source and start engine driven generator after set time period. Pickup voltage shall be adjustable from [85] [_____] to 100 percent of nominal and factory set at [90] [_____] percent. Dropout voltage shall be adjustable from [75] [_____] to [98] [_____] percent of pickup value and factory set at [85] [_____] percent of nominal.

2.3.2 Transfer Time Delay

**
NOTE: Use nonzero setting where multiple ATS require staggered application of load steps to alternate or emergency source.

Time delay before transfer to [alternate] [emergency] power source shall be adjustable from [0] [_____] to [5] [_____] minutes and factory set at [0] [_____] minutes. ATS shall monitor frequency and voltage of [alternate] [emergency] power source and transfer when frequency and voltage are stabilized. Pickup voltage shall be adjustable from [85] [_____] to 100 percent of nominal and factory set at [90] [_____] percent. Pickup frequency shall be adjustable from [90] [_____] to 100 percent of nominal and factory set at [90] [_____] percent.

2.3.3 Return Time Delay

Time delay before return transfer to [normal] [preferred] power source shall be adjustable from [0] [_____] to [30] [_____] minutes and factory set at [30] [_____] minutes. Time delay shall be automatically defeated upon loss or sustained undervoltage of [alternate] [emergency] power source, provided that [normal] [preferred] supply has been restored.

2.3.4 Engine Shutdown Time Delay

NOTE: Omit this paragraph if there is no generator in transfer scheme. Consult ATS manufacturers' literature for feature availability, timing interval range, and pickup and dropout settings. Insert proper values. Recommended values for normal applications are shown in brackets but may be changed for other design conditions. Where values are not shown or different settings are required, specify values and settings.

Time delay shall be adjustable from [0] [_____] to [30] [_____] minutes and shall be factory set at 10 [_____] minutes.

2.3.5 Exerciser

NOTE: Use this paragraph when automatic system exercising is required by nature of loads and desired reliability. Automatic system exerciser is recommended when diesel engine driven generator set is used, but only if automatic feature is manually initiated and can be manually overridden during exercise period to return ATS to normal or preferred source. Omit this paragraph if there is no generator in transfer scheme.

Consult ATS manufacturers' literature for feature availability, timing interval range, and pickup and dropout settings. Insert proper values for application.

Provide a generator exerciser timer. Run times shall be user...
programmable. The generator exerciser shall be selectable between load transfer and engine run only, and shall have a fail-safe feature that will retransfer the ATS to [normal] [preferred] during the exercise period.

2.3.6 Auxiliary Contacts

[Two] [_____] normally open and [two] [_____] normally closed auxiliary contacts rated at [10][15][_____] amperes at [120][480][_____] volts shall operate when ATS is connected to [normal] [preferred] power source, and [two] [_____] normally open and [two] [_____] normally closed contacts shall operate when ATS is connected to [alternate] [emergency] source.

2.3.7 Supplemental Features

**
NOTE: Delete features when not required. Delete in-phase monitor unless required to eliminate or reduce transients during switching of large inductive loads while limiting time delays associated with ATS transfer in both directions.
**

ATS shall be furnished with the following:

a. Engine start contact.

b. [Alternate] [Emergency] source monitor.

c. Test switch to simulate normal power outage.

d. Voltage sensing. Pickup voltage adjustable from 85 to 100 percent of nominal; dropout adjustable from 75 to 98 percent of pickup.

e. Time delay bypass switch to override return time delay to normal.

g. Means shall be provided in the ATS to insure that motor/transformer load inrush currents do not exceed normal starting currents. This shall be accomplished with either in-phase monitoring, time-delay transition, or load voltage decay sensing methods. If manufacturer supplies an in-phase monitoring system, the manufacturer shall indicate under what conditions a transfer cannot be accomplished. If the manufacturer supplies a time-delay transition system, the manufacturer shall supply recommendations for establishing time delay. If load voltage decay sensing is supplied, the load voltage setting shall be user programmable.

2.3.8 Operator

Manual operator conforming to UL 1008 shall be provided, and shall incorporate features to prevent operation by unauthorized personnel. ATS shall be designed for safe manual operation under full load conditions. If manual operation is accomplished by opening the door, then a dead-front shall be supplied for operator safety.

2.3.9 Override Switch

**
NOTE: Override switch allows operator to switch load from primary source to alternate or emergency source and keep it connected to that source. It is useful for users who prefer alternate or emergency source under certain operating conditions, such as lightning storms or during maintenance on primary source. Override switch will be specified only when nature of mission and operators' expertise make it desirable to control power source. User must ensure that adequate administrative and operational controls exist to prevent load from being inadvertently left in alternate or emergency mode. This paragraph should be omitted for ordinary applications since override switch significantly alters ATS function.

Override switch shall bypass automatic transfer controls so ATS will transfer and remain connected to [alternate] [emergency] power source, regardless of condition of [normal] [preferred] source. [If [alternate] [emergency] source fails and [normal] [preferred] source is available, ATS shall automatically retransfer to [normal] [preferred] source.]

2.3.10 Green Indicating Light

A green indicating light shall supervise/provide [normal] [preferred] power source switch position indication and shall have a nameplate engraved [NORMAL] [PREFERRED].

2.3.11 Red Indicating Light

A red indicating light shall supervise/provide [alternate] [emergency] power source switch position indication and shall have a nameplate engraved [ALTERNATE] [EMERGENCY].

2.4 BY-PASS/ISOLATION SWITCH (BP/IS)

NOTE: Omit this section if no by-pass/isolation switch is required. Delete reference to generator starting where a generator is not used as alternate source.

2.4.1 Design

Bypass/isolation switch (BP/IS) shall permit load by-pass to either [normal] [preferred] or [alternate] [emergency] power source and complete isolation of associated ATS, independent of ATS operating position. BP/IS and associated ATS shall be products of same manufacturer and shall be completely interconnected and tested at factory and at project site as specified. BP/IS shall be manufactured, listed, and tested in accordance with paragraph AUTOMATIC TRANSFER SWITCH (ATS) and shall have electrical ratings that exceed or equal comparable ratings specified for ATS. Operating handles shall be externally operated and arranged so that one person can perform the bypass and isolation functions through the operation of a maximum of two handles within 5 seconds. The ATS shall have provisions for locking in the isolation position. Handle for manual operation shall be permanently attached to operating mechanism. BP/IS
operation shall be accomplished without disconnecting switch load terminal conductors. Isolation handle positions shall be marked with engraved plates or other approved means to indicate position or operating condition of associated ATS, as follows:

a. Indication shall be provided to show that ATS section is providing power to the load.

b. Indication shall be provided of ATS isolation. The ATS controls shall remain functional with the ATS isolated or in bypass mode to permit monitoring of the normal power source [and automatic starting of the generator in the event of a loss of the normal power source]. In the isolated mode, the bypass section shall be capable of functioning as a manual transfer switch to transfer the load to either power source. The ATS shall be capable of undergoing functional operation testing without service interruption. The ATS may also be completely removed from the enclosure, if required for maintenance or repair, while the bypass section continues to power the load.

2.4.2 Switch Construction

Bypass/isolation switch shall be constructed for convenient removal of parts from front of switch enclosure without removal of other parts or disconnection of external power conductors. Contacts shall be as specified for associated ATS, including provisions for inspection of contacts without disassembly of BP/IS or removal of entire contact enclosure. To facilitate maintenance, manufacturer shall provide instructions for determination of contact integrity. BP/IS and associated ATS shall be interconnected with suitably sized copper bus bars silver-plated at each connection point, and braced to withstand magnetic and thermal forces created at WCR specified for associated ATS.

2.5 ENCLOSURE

**
NOTE: Designer must provide normal power source to ATS when specifying enclosure heater.

If ATS assembly is provided, equipment should be installed in free-standing, floor-mounted enclosure as specified, except when manufacturer incorporates switch specified in wall-mounted enclosure as standard construction. However, in some applications it is advisable to specify that ATS or BP/IS components be mounted in separate switchboard, switchgear, motor control center, or other enclosure. Designer shall investigate conditions and options and specify accordingly.
**

ATS and accessories shall be installed in [wall-mounted] [free-standing, floor-mounted], [ventilated] [unventilated] NEMA ICS 6, Type [1] [3R] [4] [12], smooth sheet metal enclosure constructed in accordance with applicable requirements of UL 1066 and/or UL 1008. [Intake vent shall be screened and filtered. Exhaust vent shall be screened.] [Door shall have suitable hinges, locking handle latch, and gasketed jamb.] [Thermostatically controlled heater shall be provided within enclosure to prevent condensation over temperature range stipulated in paragraph SERVICE CONDITIONS.] Metal gauge shall be not less than No. 14. Enclosure shall
be equipped with at least two approved grounding lugs for grounding enclosure to facility ground system using No. [4] [_____] AWG copper conductors. Factory wiring within enclosure and field wiring terminating within enclosure shall comply with NFPA 70. If wiring is not color coded, wire shall be permanently tagged or marked near terminal at each end with wire number shown on approved detail drawing. Terminal block shall conform to NEMA ICS 4. Terminals shall be arranged for entrance of external conductors from [top] [bottom] [top and bottom] of enclosure as shown. Main switch terminals, including neutral terminal if used, shall be pressure type suitable for termination of external [copper] [aluminum] conductors shown.

2.5.1 Construction

Enclosure shall be constructed for ease of removal and replacement of ATS components and control devices from front without disconnection of external power conductors or removal or disassembly of major components. Enclosure of ATS with BP/IS shall be constructed to protect personnel from energized BP/IS components during ATS maintenance.

2.5.2 Cleaning and Painting

Both the inside and outside surfaces of an enclosure, including means for fastening, shall be protected against corrosion by enameling, galvanizing, plating, powder coating, or other equivalent means. Protection is not required for metal parts that are inherently resistant to corrosion, bearings, sliding surfaces of hinges, or other parts where such protection is impractical. Finish shall be manufacturer's standard material, process, and color and shall be free from runs, sags, peeling, or other defects. An enclosure marked Type 1, 3R, 4 or 12 shall be acceptable if there is no visible rust at the conclusion of a salt spray (fog) test using the test method in ASTM B117, employing a 5 percent by weight, salt solution for 24 hours. Type 4X enclosures are acceptable following performance of the above test with an exposure time of 200 hours.

2.6 TESTING

Submit a description of proposed field test procedures, including proposed date and steps describing each test, its duration and expected results, not less than [_____] weeks prior to test date. Submit certified factory and field test reports, within 14 days following completion of tests. Reports shall be certified and dated and shall demonstrate that tests were successfully completed prior to shipment of equipment.

2.6.1 Factory Testing

A prototype of specified ATS shall be factory tested in accordance with UL 1008. In addition, factory tests shall be performed on each ATS as follows:

a. Insulation resistance test to ensure integrity and continuity of entire system.

b. Main switch contact resistance test.

c. Visual inspection to verify that each ATS is as specified.

d. Mechanical test to verify that ATS sections are free of mechanical hindrances.
e. Electrical tests to verify complete system electrical operation and to set up time delays and voltage sensing settings.

2.6.2 Factory Test Reports

Manufacturer shall provide three certified copies of factory test reports.

2.7 FACTORY TESTING (MEDICAL FACILITIES)

**
NOTE: The factory tests sequence listed below is required for Medical Facilities only.
**

The factory tests for ATS and By-Pass/Isolation switches used in medical facilities shall be conducted in the following sequence:

- General
- Normal
- Overvoltage
- Undervoltage
- Overload
- Endurance
- Temperature Rise
- Dielectric Voltage-Withstand
- Contact Opening
- Dielectric Voltage-Withstand (Repeated)
- Withstand
- Instrumentation and Calibration of High Capacity
- Closing
- Dielectric Voltage-Withstand (Repeated)
- Strength of Insulating Base and Support

2.7.1 Viewing Ports

ATS and BP/IS switches shall be of draw-out construction. Viewing ports to inspect the contacts without requiring disassembly shall be provided.

2.7.2 Operating Handles

The operating handles shall be externally operated, and designed and constructed not to stop in an intermediate or neutral position during operation, but shall permit load by-pass and transfer switch isolation in no more than two manual operations which can be performed by one person in 5 seconds or less. The transfer speed will be independent of the operational speed of the switch handle or handles.

PART 3 EXECUTION

3.1 INSTALLATION

ATS shall be installed as shown and in accordance with approved manufacturer's instructions. Submit dimensioned plans, sections and elevations showing minimum clearances, weights, and conduit entry provisions for each ATS.
3.2 INSTRUCTIONS

Manufacturer's approved operating instructions shall be permanently secured to cabinet where operator can see them. One-line and elementary or schematic diagram shall be permanently secured to inside of front enclosure door. Submit [6] [_____] copies of operating and [6] [_____] copies of maintenance manuals listing routine maintenance, possible breakdowns, repairs, and troubleshooting guide.

3.3 SITE TESTING

**
NOTE: Design should incorporate ATS testing in overall test of complete emergency system under load, including ATS and generators. Delete BP/IS reference if not required.
**

Following completion of ATS installation and after making proper adjustments and settings, site tests shall be performed in accordance with manufacturer's written instructions to demonstrate that each ATS functions satisfactorily and as specified. Advise Contracting Officer not less than 5 working days prior to scheduled date for site testing, and provide certified field test reports within 2 calendar weeks following successful completion of site tests. Test reports shall describe adjustments and settings made and site tests performed. Minimum operational tests shall include the following:

3.3.1 Insulation Resistance

Insulation resistance shall be tested, both phase-to-phase and phase-to-ground.

3.3.2 Power Failure of Normal Source

Power failure of normal source shall be simulated by opening upstream protective device. This test shall be performed a minimum of five times.

3.3.3 Power Failure of Emergency Source

Power failure of emergency source with normal source available shall be simulated by opening upstream protective device for emergency source. This test shall be performed a minimum of five times.

3.3.4 Low Phase-to-Ground Voltage

Simulate low phase-to-ground voltage for each phase of normal source.

3.3.5 Operation and Settings

Verify operation and settings for specified ATS features, such as override time delay, transfer time delay, return time delay, engine shutdown time delay, exerciser, auxiliary contacts, and supplemental features.

3.3.6 ATS and BP/IS Functions

Verify manual and automatic ATS and BP/IS functions.

-- End of Section --