SECTION TABLE OF CONTENTS

DIVISION 26 - ELECTRICAL

SECTION 26 05 19.00 10

INSULATED WIRE AND CABLE

11/08

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 DELIVERY, STORAGE, AND HANDLING
1.4 PROJECT/SITE CONDITIONS

PART 2 PRODUCTS

2.1 MATERIALS
 2.1.1 Wire Table
 2.1.2 Rated Circuit Voltages
 2.1.3 Conductors
 2.1.3.1 Material for Conductors
 2.1.3.2 Size
 2.1.3.3 Stranding
 2.1.3.4 Conductor Shielding
 2.1.3.5 Separator Tape
 2.1.4 Insulation
 2.1.4.1 Insulation Material
 2.1.4.2 Insulation Thickness
 2.1.4.3 Insulation Shielding
 2.1.5 Jackets
 2.1.5.1 Jacket Material
 2.1.5.2 Jacket Thickness
 2.1.6 Metal-Clad Cable
 2.1.6.1 General
 2.1.6.2 Jackets
 2.2 CABLE IDENTIFICATION
 2.2.1 Color-Coding
 2.2.2 Shielded Cables Rated 2,001 Volts and Above
 2.2.3 Cabling
 2.2.4 Dimensional Tolerance

PART 3 EXECUTION
3.1 INSTALLATION INSTRUCTIONS
3.2 TESTS, INSPECTIONS, AND VERIFICATIONS
 3.2.1 Cable Data
 3.2.2 Inspection and Tests
 3.2.2.1 High-Voltage Test Source
 3.2.2.2 Shielded Cables Rated 2,001 Volts or Greater
 3.2.2.3 Flame Tests
 3.2.2.4 Independent Tests
 3.2.2.5 Reports

ATTACHMENTS:

wire table

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for insulated wire and cable for use on hydraulic structures, except for wire and cable for special applications, such as low-level circuits for analog signals, data and supervisory control, communication and telemetering systems. This section was originally developed for USACE Civil Works projects.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: Procurement documents, including specifications, plans, and wire tables, should be prepared to include relevant portions of the information checklists stated below. The first list, "Characteristics of Systems on Which Cable Is To Be Used," would be applicable where insulated wire and cable are to be procured via a construction contract, particularly where the Contractor is expected to decide details such as wire size, etc. It may be used in a supply contract for those...
purchases where all the characteristics are known in advance such that they can be specified in detail. The items of the second list, "Quantities and Description of Cable," are covered in general in these guide specifications, and should be applicable when procuring insulated wire and cable via supply or construction contracts. These items should be verified or specified in the level of detail needed for each particular case.

1). Characteristics of Systems on Which Cable Is To Be Used.

a. Normal operating voltage between conductors.

b. Frequency.

c. Number of phases & conductors.

d. Cable insulation level (1003514r 133 percent).

e. Minimum and maximum temperatures at which cable is expected to be operated.

f. Description of installation.
 1. In cable trays.
 2. In ducts.
 3. Other.

g. Conditions of installation.
 1. Ambient temperature.
 2. Wet or dry location.
 3. Number of loaded cables in cable trays, duct bank, or conduit. If in conduit, give type of conduit (metallic or non-metallic), number of loaded circuits, whether conduit is enclosed or run exposed, and spacing between conduits.

 4. Load factor.

 5. Method of bonding and grounding of metallic coverings (including shields).

 6. Chemical exposure.

2). Quantities and Description of Cable.

a. Total number of meters (feet), including lengths for customer testing, and lengths if specific lengths are required.

b. Type of cable. Describe as single-conductor, two-conductor, etc.

c. Rated circuit voltage, phase to phase.

d. Type of conductors - copper or aluminum.

e. Size of conductors - AWG or circular micrometers (mils). If conditions require other than standard stranding, a complete description should be given.

f. Grade of insulation.

g. Thickness of insulation, in micrometers (mils).

h. Type of outer covering.

i. Maximum allowable overall diameter, in mm (inches). When duct space is not limited, it is not wise to restrict the overall diameter.

j. Method of conductor identification.

In making wiring layouts for those installations using multiple-conductor cables, care should be taken to avoid the use of assemblies not normally
stocked by manufacturers, or of small quantities which will not come within the manufacturers' minimum pricing schedules. In general, unless very large quantities are involved, lower overall cable costs can be effected by using manufacturers' standard assemblies, even though more conductors than required are provided, instead of a cable requiring a special setup. Short lengths may be eliminated by substituting cables which will have sufficient quantity to obtain the manufacturers' minimum price. Substitution may consist of a larger number of conductors than required, or a combination of assemblies of a smaller number of conductors. The most economical cable schedule for any particular installation can be obtained only by careful study of all factors involved, particularly increased conduit costs.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASSOCIATION OF EDISON ILLUMINATING COMPANIES (AEIC)

AEIC CS8 (2007) specification for Extruded Dielectric Shielded Power Cables Rated 5 Through 46 kV

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

1.2 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor’s Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Installation Instructions
1.3 DELIVERY, STORAGE, AND HANDLING

Furnish cables on reels or coils. Each cable and the outside of each reel or coil, shall be plainly marked or tagged to indicate the cable length, voltage rating, conductor size, and manufacturer's lot number and reel number. Each coil or reel of cable shall contain only one continuous cable without splices. Cables for exclusively dc applications, as specified in paragraph HIGH VOLTAGE TEST SOURCE, shall be identified as such. Shielded cables rated 2,001 volts and above shall be reeled and marked in accordance with Section I of AEIC CS8 or AEIC CS9, as applicable. Reels shall remain the property of the [Contractor] [Government].

1.4 PROJECT/SITE CONDITIONS

**

NOTE: Use this paragraph to describe unusual environments, such as temperature extremes, chemical exposure, etc.
**

[_____

PART 2 PRODUCTS

2.1 MATERIALS

**

NOTE: Variations from these specifications may be appropriate in some cases. In addition to increasing rated circuit voltage where large overvoltages could occur, material sizes and strengths should be coordinated to withstand any pulling forces which will be applied. The lower strength of EPR, even jacketed, may at times preclude the use of this material for long pulls. If variations are requested by a Contractor, they should only be approved if the safety and integrity of conservatively designed circuits are not compromised. The use of polyvinyl chloride (PVC) insulation or jacket material will not be permitted.
**

2.1.1 Wire Table

**

NOTE: An example typical wire table and a Format Template for a Wire Table are located at the end of this Section. Use this paragraph and Format Template, if itemized characteristics for each application are to be tabulated.
**

Furnish wire and cable in accordance with the requirements of the [wire table below] [wire table appended to these specifications], conforming to
the detailed requirements specified herein.

2.1.2 Rated Circuit Voltages

All wire and cable shall have minimum rated circuit voltages in accordance with NEMA WC 70.

2.1.3 Conductors

**
NOTE: All cable assemblies (multiple-conductor and single-conductor) must pass, or be capable of passing, the Institute of Electrical and Electronics Engineers (IEEE) 383 flame test, paragraph 2.5, using the ribbon gas burner. Single conductors and individual conductors of multiple-conductor cables shall also be required to pass the flame test described in NEMA WC 70. (This requirement was previously restricted to cable tray applications. It is extended to all uses for greater safety, since flame-resistant cables are now available from many manufacturers.)
**

2.1.3.1 Material for Conductors

**
NOTE: If aluminum is to be specified for any of the wire purchased, revise this paragraph accordingly.

Conductors for wire and cable rated 2,000 volts or less shall be copper. For wire and cable rated 2,001 volts and above, the specifications may be written to permit either aluminum or copper conductors where aluminum is suitable for the application and is determined to be more economical than copper.

Aluminum conductors should be permitted only where cost comparisons show an overall savings and after a careful evaluation of the corrosion problems associated with their use. They should only be allowed where installers are qualified to make reliable connections with them. Costs should be compared between all pertinent items such as installation, conduit, tray, tunnel and duct banks, lifetime costs of energy losses if significant, and differences in ventilation needs if losses are evaluated. Conductors should have the required current carrying capacities, the required short circuit capacities, and should be satisfactory with respect to voltage drop. Aluminum conductors should be sized to have equal or less resistance than the alternate copper conductors unless the total cost comparison, including losses, shows a net advantage otherwise. In such cases where the engineering costs to properly compare the use of the two materials will exceed any possible savings to be achieved by aluminum, the arbitrary choice of copper...
may be the best policy.

Conductors shall conform to all the applicable requirements of NEMA WC 70, as applicable, and shall be annealed copper. Copper conductors may be bare, or tin- or lead-alloy-coated, if required by the type of insulation used.

2.1.3.2 Size

Minimum wire size shall be No. 12 AWG for power and lighting circuits; No. 10 AWG for current transformer secondary circuits; No. 14 AWG for potential transformer, relaying, and control circuits; No. 16 AWG for annunciator circuits; and No. 19 AWG for alarm circuits. Minimum wire sizes for rated circuit voltages of 2,001 volts and above shall not be less than those listed for the applicable voltage in NEMA WC 70, as applicable.

2.1.3.3 Stranding

Conductor stranding classes cited herein shall be as defined in NEMA WC 70, as applicable. Lighting conductors No. 10 AWG and smaller shall be solid or have Class B stranding. Any conductors used between stationary and moving devices, such as hinged doors or panels, shall have Class H or K stranding. All other conductors shall have Class B or C stranding, except that conductors shown on the drawings, or in the schedule, as No. 12 AWG may be 19 strands of No. 25 AWG, and conductors shown as No. 10 AWG may be 19 strands of No. 22 AWG.

2.1.3.4 Conductor Shielding

Use conductor shielding conforming to NEMA WC 70, as applicable, on power cables having a rated circuit voltage above 2,000 volts. In addition, conductor shielding for shielded cables shall also comply with Section C of AEIC CS8 or AEIC CS8. Strict precautions shall be taken after application of the conductor shielding to prevent the inclusion of voids or contamination between the conductor shielding and the subsequently applied insulation.

2.1.3.5 Separator Tape

Where conductor shielding, strand filling, or other special conductor treatment is not required, a separator tape between conductor and insulation is permitted.

2.1.4 Insulation

2.1.4.1 Insulation Material

NOTE: The insulation compounds specified herein are of the thermosetting type. Two options are included: cross-linked thermosetting polyethylene (XLPE), in accordance with the National Electrical Manufacturers Association (NEMA) publication WC 7 (Insulated Cable Engineers Association (ICEA) publication S-66-524), or ethylene-propylene rubber (EPR), in accordance with NEMA WC 70 (ICEA S-68-516). These two materials alone are widely available and can be satisfactorily compounded to
meet the requirements of a conservative cable design for long and reliable service. The grades permitted are all suitable for service in wet or dry locations at 90 C. This specification does not allow the use of "tray cable" meeting only the minimum requirements of the National Electrical Code or Underwriters Laboratories, which permit a 75 C wet rating. Jackets are also thermosetting, except certain thermoplastic compounds are permitted for use below 601 volts, as defined in paragraph JACKET MATERIAL, subparagraph ACCESSIBLE USE ONLY, 2,000 VOLTS OR LESS, in cases where access for cable installation and removal would not be a problem.

Provide insulation which is a cross-linked thermosetting polyethylene (XLPE) type, meeting the requirements of NEMA WC 70, as applicable, or an ethylene-propylene rubber (EPR) type meeting the requirements of NEMA WC 70. For shielded cables of rated circuit voltages above 2,000 volts, the following provisions shall also apply:

a. XLPE, if used, shall be tree-retardant.

b. Insulation shall be chemically bonded to conductor shielding.

c. The insulation material and its manufacturing, handling, extrusion and vulcanizing processes, shall all be subject to strict procedures to prevent the inclusion of voids, contamination, or other irregularities on or in the insulation. Insulation material shall be inspected for voids and contaminants. Inspection methods, and maximum allowable void and contaminant content shall be in accordance with Section B of AEIC CS8 or AEIC CS8, as applicable.

d. Cables with repaired insulation defects discovered during factory testing, or with splices or insulation joints, are not acceptable [unless specifically approved].

2.1.4.2 Insulation Thickness

NOTE: The rated circuit voltage of the insulation should be specified to be 600 volts for all circuits operating below 601 volts. Higher rated circuit voltages may be required by some applications within this range, such as control circuits containing large dc solenoids used in older circuit breakers. Specifications should then be revised to require 1,000- or 2,000-volt insulation in such cases for multiple- or single-conductor cables, respectively. Below 48 volts, 600-volt insulation can be used, but these are special applications that are best considered in light of the particular circumstances. For example, many proprietary detection systems and programmable controller applications typically use 24-volt, low-power circuits, for which lower rated circuit voltages may be appropriate. These specifications also cover rated circuit voltages for systems operating above 600 volts.
The following insulation thickness options from Table 3-1 of NEMA Standards WC 7 and WC 8 for single-conductor cables rated 2,000 volts and below have been specified: (1) Column A thickness, which does not require a jacket, may be used only for XLPE insulated cable. NEMA WC 70 allows Type II EPR to be used with Column A thickness without a jacket; however, this application should not be permitted because the Type II EPR insulation is significantly short of meeting jacket physical requirements. (2) Column B thickness may be used for either XLPE or EPR Type I or II insulated cable, but only with a jacket. For multiple-conductor cables, NEMA WC 70 may be followed.

The insulation thickness for each conductor shall be based on its rated circuit voltage.

a. Power Cables/Single-Conductor Control Cables, 2,000 Volts and Below - The insulation thickness for single-conductor cables rated 2,000 volts and below shall be as required by NEMA WC 70, as applicable. Some thicknesses of NEMA WC 70 will be permitted only for single-conductor cross-linked thermosetting polyethylene insulated cables without a jacket. NEMA WC 70 ethylene-propylene rubber-insulated conductors shall have a jacket.

b. Power Cables, Rated 2,001 Volts and Above - Thickness of insulation for power cables rated 2,001 volts and above shall be in accordance with the following:

(1) Non-shielded cables, 2,001 to 5,000 volts, shall comply with NEMA WC 70, as applicable.

(2) Shielded cables rated 2,001 volts and above shall comply with Column B of Table B1, of AEIC CS8 or AEIC CS8, as applicable.

c. Multiple-Conductor Control Cables - The insulation thickness of multiple-conductor cables used for control and related purposes shall be as required by NEMA WC 70, as applicable.

2.1.4.3 Insulation Shielding

Unless otherwise specified, provide insulation shielding for conductors having rated circuit voltages of 2,001 volts and above. The voltage limits above which insulation shielding is required, and the material requirements, are given in NEMA WC 70, as applicable. The material, if thermosetting, shall meet the wafer boil test requirements as described in Section D of AEIC CS8 or AEIC CS8, as applicable. The method of shielding shall be in accordance with the current practice of the industry; however, the application process shall include strict precautions to prevent voids or contamination between the insulation and the nonmetallic component. Voids, protrusions, and indentations of the shield shall not exceed the maximum allowances specified in Section C of AEIC CS8 or AEIC CS8, as applicable. The cable shall be capable of operating without damage or excessive temperature when the shield is grounded at both ends of each conductor. All components of the shielding system shall remain tightly applied to the components they enclose after handling and installation in
accordance with the manufacturer's recommendations. Shielding systems which require heat to remove will not be permitted unless specifically approved.

2.1.5 Jackets

All cables shall have jackets meeting the requirements of NEMA WC 70, as applicable, and as specified herein. Individual conductors of multiple-conductor cables shall be required to have jackets only if they are necessary for the conductor to meet other specifications herein. Jackets of single-conductor cables and of individual conductors of multiple-conductor cables, except for shielded cables, shall be in direct contact and adhere or be vulcanized to the conductor insulation. Multiple-conductor cables and shielded single-conductor cables shall be provided with a common overall jacket, which shall be tightly and concentrically formed around the core. Repaired jacket defects found and corrected during manufacturing are permitted if the cable, including jacket, afterward fully meets these specifications and the requirements of the applicable standards.

2.1.5.1 Jacket Material

The jacket shall be one of the materials listed below. [Polyvinyl chloride compounds will not be permitted.] [Variations from the materials required below will be permitted only if approved for each specific use, upon submittal of sufficient data to prove that they exceed all specified requirements for the particular application.]

a. General Use

 (1) Heavy-duty black neoprene (NEMA WC 70).
 (2) Heavy-duty chlorosulfonated polyethylene (NEMA WC 70).
 (3) Heavy-duty cross-linked (thermoset) chlorinated polyethylene (NEMA WC 70).

b. Accessible Use Only, 2,000 Volts or Less - Cables installed where they are entirely accessible, such as cable trays and raceways with removable covers, or where they pass through less than 3 meters 10 feet of exposed conduit only, shall have jackets of one of the materials specified in above paragraph GENERAL USE, or the jackets may be of one of the following:

 (1) General-purpose neoprene (NEMA WC 70).
 (2) Black polyethylene (NEMA WC 70).
 (3) Thermoplastic chlorinated polyethylene (NEMA WC 70).
2.1.5.2 Jacket Thickness

The minimum thickness of the jackets at any point shall be not less than 80 percent of the respective nominal thicknesses specified below.

a. Multiple-Conductor Cables - Thickness of the jackets of the individual conductors of multiple-conductor cables shall be as required by NEMA WC 70, and shall be in addition to the conductor insulation thickness required by Column B of Table 3-1 of the applicable NEMA publication for the insulation used. Thickness of the outer jackets or sheaths of the assembled multiple-conductor cables shall be as required by NEMA WC 70.

b. Single-Conductor Cables - Single-conductor cables, if nonshielded, shall have a jacket thickness as specified in NEMA WC 70. If shielded, the jacket thickness shall be in accordance with the requirements of NEMA WC 70.

2.1.6 Metal-Clad Cable

2.1.6.1 General

The metallic covering shall be [interlocked steel tape] [corrugated metal], conforming to the applicable requirements of NEMA WC 70. If the covering is of ferrous metal, it shall be galvanized. Copper grounding conductor(s) conforming to NEMA WC 70 shall be furnished for each multiple-conductor metal-clad cable. Assembly and cabling shall be as specified in paragraph CABLELING. The metallic covering shall be applied over an inner jacket or filler tape. The cable shall be assembled so that the metallic covering will be tightly bound over a firm core.

2.1.6.2 Jackets

Metal-clad cables may have a jacket under the armor, and shall have a jacket over the armor. Jackets shall comply with the requirements of NEMA WC 70. The outer jacket for the metal-clad cable may be of polyvinyl chloride only if specifically approved.

2.2 CABLE IDENTIFICATION

2.2.1 Color-Coding

**
NOTE: The Control Cable Color Code specified, although widely used by the Corps of Engineers, does not agree with National Electrical Code requirements for neutral and grounding conductor identification.
If this is required, use the coding in NEMA WC 70.
**

Insulation of individual conductors of multiple-conductor cables shall be color-coded in accordance with NEMA WC 70, except that colored braids will not be permitted. Only one color-code method shall be used for each cable construction type. Control cable color-coding shall be [in accordance with NEMA WC 70] [as shown on the drawings] [as follows: – [_____]]. Power cable color-coding shall be black for Phase A, red for Phase B, blue for Phase C, white for grounded neutral, and green for an insulated grounding conductor, if included. [Other individual conductors shall be color-coded as indicated on the contract drawings but such color-coding may be...
accomplished by applying colored plastic tapes or sleeving at terminations.]

2.2.2 Shielded Cables Rated 2,001 Volts and Above

Marking shall be in accordance with Section H of AEIC CS8 or AEIC CS8, as applicable.

2.2.3 Cabling

Individual conductors of multiple-conductor cables shall be assembled with flame-and moisture-resistant fillers, binders, and a lay conforming to NEMA WC 70, except that flat twin cables will not be permitted. Fillers shall be used in the interstices of multiple-conductor round cables with a common covering where necessary to give the completed cable a substantially circular cross section. Fillers shall be non-hygrosopic material, compatible with the cable insulation, jacket, and other components of the cable. The rubber-filled or other approved type of binding tape shall consist of a material that is compatible with the other components of the cable and shall be lapped at least 10 percent of its width.

2.2.4 Dimensional Tolerance

The outside diameters of single-conductor cables and of multiple-conductor cables shall not vary more than 5 percent and 10 percent, respectively, from the manufacturer's published catalog data.

PART 3 EXECUTION

3.1 INSTALLATION INSTRUCTIONS

Submit cable manufacturing data [as requested]. The following information shall be provided by the cable manufacturer for each size, conductor quantity, and type of cable furnished:

a. Minimum bending radius, in inches - For multiple-conductor cables, this information shall be provided for both the individual conductors and the multiple-conductor cable.

b. Pulling tension and sidewall pressure limits, in newtons pounds.

c. Instructions for stripping semiconducting insulation shields, if furnished, with minimum effort without damaging the insulation.

d. Upon request, compatibility of cable materials and construction with specific materials and hardware manufactured by others shall be stated. Also, if requested, recommendations shall be provided for various cable operations, including installing, splicing, terminating, etc.

3.2 TESTS, INSPECTIONS, AND VERIFICATIONS

**
NOTE: Contract schedules should allow sufficient time for an orderly and timely sequence of data submission, manufacturing of equipment and materials, and delivery in accordance with the specifications. However, there may be occasions when wire and cable must be obtained in such a short time that compliance with the requirements of this
paragraph and subparagraphs CABLE DATA and INSPECTIONS AND TESTS, is not practical. In those cases, wire and cable from suppliers' stock may be considered for approval, provided a manufacturer's certificate is submitted, which establishes to the satisfaction of the Contracting Officer that the proposed wire and cable, identified by lot number and reel or coil number, meet the applicable standards and specifications. When the wire and cable must meet IEEE 383, the reports required in this paragraph and subparagraph FLAME TESTS, should always be submitted. Such deviations should be limited to those cases in which a contract change or incorrect estimate requires the procurement of cable which, if done following the specified approval procedure, would result in unacceptable contract completion dates.

**

3.2.1 Cable Data

Manufacture of the wire and cable shall not be started until all materials to be used in the fabrication of the finished wire or cable have been approved by the Contracting Officer. Cable data shall be submitted for approval including dimensioned sketches showing cable construction, and sufficient additional data to show that these specifications will be satisfied.

3.2.2 Inspection and Tests

Inspection and tests of wire and cable furnished under these specifications shall be made by and at the plant of the manufacturer, and shall be witnessed by the Contracting Officer or his authorized representative, unless waived in writing. The Government may perform further tests before or after installation. Testing in general shall comply with NEMA WC 70. Specific tests required for particular materials, components, and completed cables shall be as specified in the sections of the above standards applicable to those materials, components, and cable types. Tests shall also be performed in accordance with the additional requirements specified below. Submit [_____] certified copies of test reports.

3.2.2.1 High-Voltage Test Source

Where the applicable standards allow a choice, high-voltage tests for cables to be used exclusively on dc circuits shall be made with dc test voltages. Cables to be used exclusively on ac circuits shall be tested with ac test voltages. If both ac and dc will be present, on either the same or separate conductors of the cable, ac test voltages shall be used.

3.2.2.2 Shielded Cables Rated 2,001 Volts or Greater

The following tests shall be performed in addition to those specified above. Section or paragraph references are to AEIC CS8 or AEIC CS8 as applicable, unless otherwise stated.

a. High potential test voltages shall be as required by Table B1 of AEIC CS8 or AEIC CS8 as applicable, rather than by NEMA WC 70.

b. If high potential testing is done with an ac test voltage as specified
in paragraph HIGH-VOLTAGE TEST SOURCE, an additional test shall be made using a dc test voltage rated at 75 percent of the specified full dc test voltage, for 5 consecutive minutes.

c. Production sampling tests shall be performed in accordance with Section D. Sampling frequency and failure contingencies shall be in accordance with paragraph G.3. Unless otherwise approved, samples shall not be taken from the middle of extruder runs of insulation or shielding made only for one continuous shipping length of cable, if such sampling will result in the need to repair the sampled area.

d. Partial discharge tests shall be performed in accordance with Section E, paragraph E.2, and Section F.

3.2.2.3 Flame Tests

All [multiple-conductor and single-conductor] cable assemblies shall pass IEEE 383 flame tests, paragraph 2.5, using the ribbon gas burner. Single-conductor cables and individual conductors of multiple-conductor cables shall pass the flame test of NEMA WC 70. If such tests, however, have previously been made on identical cables, these tests need not be repeated. Instead, certified reports of the original qualifying tests shall be submitted. In this case the reports furnished under paragraph REPORTS, shall verify that all of each cable's materials, construction, and dimensions are the same as those in the qualifying tests.

3.2.2.4 Independent Tests

The Government may at any time make visual inspections, continuity or resistance checks, insulation resistance readings, power factor tests, or dc high-potential tests at field test values. A cable's failure to pass these tests and inspections, or failure to produce readings consistent with acceptable values for the application, will be grounds for rejection of the cable.

3.2.2.5 Reports

Furnish results of tests made. No wire or cable shall be shipped until authorized. Lot number and reel or coil number of wire and cable tested shall be indicated on the test reports.

**
Example Typical Wire Table:

| WIRE TABLE |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Item No. | Size, AWG or kcmil | No. of Conds. | Rated Circuit Voltage | Stranding | Comments | Quantity, m (lin ft) |
| 1 | 12 | 1 | 600 | B or C | general use | 3260 |
| 2 | 12 | 1 | 600 | * Solid | lighting | 960 |
| 3 | 10 | 4 | 1000 | B or C | transformers | 120 |
WIRE TABLE

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Size, AWG or kcmil</th>
<th>No. of Conds.</th>
<th>Rated Circuit Voltage</th>
<th>Stranding</th>
<th>Comments</th>
<th>Quantity, m (lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>shield, armor, 3</td>
<td>15 kV</td>
<td>B or C</td>
<td>jacket</td>
<td>275</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>9</td>
<td>1000</td>
<td>B or C</td>
<td>control annunciation</td>
<td>670</td>
</tr>
</tbody>
</table>

Class [_____] stranding may be substituted for [_____] where indicated by **"**.

NOTE: Cable quantities for construction contracts should only be listed when certain, unless payment is to be per m foot, or if they are stated to be approximate, subject to Contractor verification.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Size, AWG or kcmil</th>
<th>No. of Conds.</th>
<th>Rated Circuit Voltage</th>
<th>Stranding</th>
<th>Comments</th>
<th>Quantity, m lin ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class [_____] stranding may be substituted for [_____] where indicated by "*".

-- End of Section --