SECTION TABLE OF CONTENTS

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING

SECTION 23 34 23.00 40

HVAC POWER VENTILATORS

05/14

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY ASSURANCE
 1.3.1 Predictive Testing and Inspection Technology Requirements

PART 2 PRODUCTS

2.1 DESIGN REQUIREMENTS
2.2 HOUSING STYLE(S)
2.3 FAN TYPE(S)
 2.3.1 Type C-PRV Centrifugal, Direct Drive
 2.3.2 Type CB-PRV Centrifugal, V-Belt Drive
 2.3.3 Type P-PRV Propeller, Direct Drive
 2.3.4 Type PB-PRV Propeller, V-Belt Drive
 2.3.5 Type VA-PRV Vane Axial, Direct Drive
 2.3.6 Type VAB-PRV Vane Axial, V-Belt Drive
 2.3.7 Type TA-PRV Tube Axial, Direct Drive
 2.3.8 Type TAV-PRV Tube Axial, V-Belt Drive
2.4 MATERIALS
 2.4.1 Aluminum Alloy
 2.4.2 Zinc-Coated Steel
 2.4.3 Fibrous Glass
2.5 FAN MOTOR
2.6 BASES
2.7 ROOF CURBS
2.8 BACK-DRAFT DAMPERS
2.9 SCREENS
2.10 SOUND BAFFLES

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Lubrication
3.2 FIELD QUALITY CONTROL
3.2.1 Tests
 3.2.1.1 Vibration Analyzer
3.2.2 Acceptance
3.2.3 Final Test Reports
3.3 CLOSEOUT ACTIVITIES

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for power roof ventilators designed to exhaust air from a building by means of a motor-driven fan.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: Provide drawings that indicate and schedule the following:

Unit number
Location
Cubic meter feet per minute air
Static pressure kilopascal inches of water
Fan revolutions per minute
Type of fan
Type of wheel
Housing style
Maximum tip speed
Noise level in sones
Fan motor power
Drive type
Controls
Type of damper(s)

Type of screens

**
Provide power roof ventilator[s] [system] complete with all components and accessory equipment as specified in this section.

**

NOTE: If Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS is not included in the project specification, insert applicable requirements therefrom and delete the first paragraph. If Section 26 60 13.00 40 LOW-VOLTAGE MOTORS is not included in the project specification, insert applicable requirements therefrom and delete the second paragraph.

**

[Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS applies to work specified in this section.
][Section 26 60 13.00 40 LOW-VOLTAGE MOTORS applies to this section.

]1.1 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text are automatically deleted from this section of the project specification when you choose to reconcile references in the publish print process.
The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASCE 7 (2010; Errata 2011; Supp 1 2013) Minimum Design Loads for Buildings and Other Structures

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2013) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA)

UNDERWRITERS LABORATORIES (UL)

UL 705 (2004; Reprint Dec 2013) Standard for Power Ventilators

1.2 SUBMITTALS

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, use a code of up to three characters within the submittal tags following the "G"
designation to indicate the approving authority.
Codes for Army projects using the Resident
Management System (RMS) are: "AE" for
Architect-Engineer; "DO" for District Office
(Engineering Division or other organization in the
District Office); "AO" for Area Office; "RO" for
Resident Office; and "PO" for Project Office. Codes
following the "G" typically are not used for Navy,
Air Force, and NASA projects.

An "S" following a submittal item indicates that the
submittal is required for the Sustainability
Notebook to fulfill federally mandated sustainable
requirements in accordance with Section 01 33 29
SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force
and NASA projects, or choose the second bracketed
item for Army projects.

**
Government approval is required for submittals with a "G" designation;
submittals not having a "G" designation are [for Contractor Quality Control
approval.][for information only. When used, a designation following the
"G" designation identifies the office that reviews the submittal for the
Government.] Submittals with an "S" are for inclusion in the
Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY
REPORTING. Submit the following in accordance with Section 01 33 00
SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Shop Drawings[; G[, [___]]]
 Installation Drawings[; G[, [___]]]

SD-03 Product Data
 Housing[; G[, [___]]]
 Fan[; G[, [___]]]
 Motor[; G[, [___]]]
 Bases[; G[, [___]]]
 Roof Curbs[; G[, [___]]]
 Dampers[; G[, [___]]]
 Screens[; G[, [___]]]
 Sound Baffles[; G[, [___]]]

SD-06 Test Reports
 Final Test Reports[; G[, [___]]]

SD-11 Closeout Submittals
1.3 QUALITY ASSURANCE

Rate and label ventilators in accordance with the applicable standards of the Air Movement Control Association, and license to bear the AMCA seal for both air and sound.

1.3.1 Predictive Testing and Inspection Technology Requirements

NOTE: The Predictive Testing and Inspection (PT&I) tests prescribed in Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS are MANDATORY for all [NASA] [_____] assets and systems identified as Critical, Configured, or Mission Essential. If the system is non-critical, non-configured, and not mission essential, use sound engineering discretion to assess the value of adding these additional test and acceptance requirements. See Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS for additional information regarding cost feasibility of PT&I.

This section contains systems and/or equipment components regulated by NASA's Reliability Centered Building and Equipment Acceptance Program. This program requires the use of Predictive Testing and Inspection (PT&I) technologies in conformance with RCBEA GUIDE to ensure building equipment and systems installed have been installed properly and contain no identifiable defects that shorten the design life of a system and/or its components. Satisfactory completion of all acceptance requirements is required to obtain Government approval and acceptance of the Contractor's work.

Perform PT&I tests and provide submittals as specified in Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS.

PART 2 PRODUCTS

2.1 DESIGN REQUIREMENTS

Submit manufacturer's catalog data, including equipment and performance data for power roof ventilator(s). As a minimum, include the following data:

NOTE: Insert the appropriate agency in items "d" and "f" below if applicable, ie. Army, Navy, etc. and delete NASA.

a. Fan Type
b. Fan Specifications, including:
 (1) Number of rotating fan blades/vanes
(2) Number of stationary fan blades/vanes

(3) Rotating Speed(s)

(4) Number of belts (if belt driven)

(5) Belt Lengths—measured at the pitch line (if belt driven)

(6) Diameter of the drive sheave at the drive pitch line (if belt driven)

(7) Diameter of the driven sheave at the drive pitch line (if belt driven)

c. Location of Installation
d. [NASA] [_____] Identification Number
e. Date of Installation (Required or Actual Acceptance Date)
f. Applicable [NASA] [_____] reference drawing number(s)

Submit detailed shop drawings for power roof ventilator systems.

Provide roof ventilators that comply with UL 705 and are furnished complete with bases, curbs, flashing flanges, noise baffles, dampers, damper controls, louvers, and screens as indicated.

Provide ventilators that are designed for windloads in accordance with ASCE 7 with the installed design not less than 210[_____] kilometer per hour 130[_____] miles per hour windload. Provide structural bracing that is properly spaced to accommodate this loading and in accordance with the design requirements of the covering material. Provide ventilators that are adequately reinforced and well braced with joints properly formed. Provide edges that are wired or beaded where necessary to ensure rigidity. Prevent galvanic action between different metals in direct contact by nonconductive separators. Make all soldering even and smooth.

**
NOTE: Retain the following paragraph only when protected metal is required.
**

Provide corrosion-resistant steel bolts, rivets, and other fastenings used in connection with protected metal.

2.2 HOUSING STYLE(S)

Provide [round mushroom style] [louvered penthouse style] [low contour style] [vertical discharge style] power roof ventilator as indicated.

2.3 FAN TYPE(S)

**
NOTE: When possible the use of sealed bearings is encouraged. One of the major causes of bearing failures is over-lubrication and lubrication contamination. Using sealed bearings helps to eliminate this failure mode.
Provide fan of the following type(s):

2.3.1 Type C-PRV Centrifugal, Direct Drive

For Type C-PRV ventilator, provide a centrifugal roof ventilator with direct drive, nonoverloading, backward-inclined wheel. Provide vibration isolated drive with elastomer. Provide drive components that are mounted in a compartment isolated from airstream.

2.3.2 Type CB-PRV Centrifugal, V-Belt Drive

For Type CB-PRV ventilator provide a centrifugal roof ventilator with V-belt drive, nonoverloading, backward-inclined wheel. Provide vibration isolated drive with elastomer. Provide drive components that are mounted in a compartment isolated from airstream.

2.3.3 Type P-PRV Propeller, Direct Drive

For Type P-PRV ventilator, provide a propeller roof ventilator with direct drive that is vibration isolated with elastomer. Provide drive components that are mounted in a compartment isolated from airstream.

2.3.4 Type PB-PRV Propeller, V-Belt Drive

For Type PB-PRV ventilator, provide a propeller roof ventilator with V-belt drive that is vibration isolated with elastomer. Provide drive components that are mounted in a compartment isolated from airstream.

2.3.5 Type VA-PRV Vane Axial, Direct Drive

For Type VA-PRV ventilator, provide a vane axial roof ventilator with direct drive that is vibration isolated with elastomer.

2.3.6 Type VAB-PRV Vane Axial, V-Belt Drive

For Type VAB-PRV ventilator, provide a vane axial roof ventilator with V-belt drive that is vibration isolated with elastomer.

2.3.7 Type TA-PRV Tube Axial, Direct Drive

For Type TA-PRV ventilator, provide a tube axial roof ventilator with direct drive that is vibration isolated with elastomer.

2.3.8 Type TAV-PRV Tube Axial, V-Belt Drive

For Type TAV-PRV ventilator, provide a tube axial roof ventilator with V-belt drive that is vibration isolated with elastomer.

2.4 MATERIALS

Provide manufacturers' standard materials.

**
NOTE: When more than one material is required, indicate location of various materials on the drawings.
**
2.4.1 Aluminum Alloy

Provide aluminum alloy in accordance with ASTM B209M ASTM B209 and ASTM B37.

2.4.2 Zinc-Coated Steel

Provide zinc-coated steel in accordance with ASTM A653/A653M.

2.4.3 Fibrous Glass

Provide fibrous glass ventilators that are molded from a glass-fiber reinforced polyester resin with a pigmented polyester resin gel coat in manufacturer's standard color, and that are not less than .51 or more than 1.53 millimeter .02 and .06 inch thick. Provide matrix material that is not less than 30 percent, by weight, of chopped-fiber and random-strand glass fibers, and that is thoroughly saturated and impregnated with not more than 70 percent high-solids polyester resin with not less than 5 percent antimony trioxide fire-retardant additive. Provide material that is smooth, dense, rigid and uniform in texture, color, and cross section and that is shatter-resistant. Ensure material is free from visual defects, foreign inclusions, cracks, crazing, die lines, pinholes, striations, unsaturated and resin-poor areas, and excessive-resin areas.

2.5 FAN MOTOR

**
NOTE: Modify voltage as required and select motor power based on air flow and static pressure in millimeter inches of water.
**
**
NOTE: When possible the use of sealed bearings is encouraged. One of the major causes of bearing failures is over lubrication and lubrication contamination. Using sealed bearings helps to eliminate this failure mode.
**

For belt drive motors smaller than 375 watt 1/2 horsepower, provide single-phase, 120 volts, 60 hertz with permanently lubricated ball bearings and provide split-phase type.

For motors 375 watt 1/2 horsepower and larger, provide three-phase [____], 460 [____] volts, 60 hertz.

Provide motors with local disconnects to allow for fan and motor maintenance. Provide all motors with thermal overload protection. For motors located in airstreams, use totally enclosed type.

For direct drive motors 375 watt 1/2 horsepower and smaller, use energy efficient permanent split capacitor type, single phase, 60 hertz.

2.6 BASES

For bases provided with the ventilators, use factory formed, of the type indicated, of the same material as the hoods, and the thickness necessary to meet the design requirement for connection to the roof. Provide bases
that are suitable for raised curb mounting where indicated. Form curb flanges of the base as cap flashing, extending at least 50 millimeter 2 inches over roofing base. Where indicated or required, extend shafts of ventilators a sufficient distance through the supporting construction to permit attachment of vent ducts.

2.7 **ROOF CURBS**

Provide factory-formed metal ventilator curbs of the type and design required for the ventilator and suitable for roof configuration and flashing.

Provide job-built curbs that conform to the recommendations of the ventilator manufacturer, sized correctly for the ventilator, and suitable for type of supporting roof construction.

2.8 **BACK-DRAFT DAMPERS**

Provide gravity operated back-draft dampers with adjustable counterweight of the same material as fan housing.

[Provide motor operated back-draft dampers of the same material as fan housing.

][Interlock damper actuating motor with fan motor.

2.9 **SCREENS**

Provide [bird screens] [insert screens] with frames of the same material as that used in the ventilators and securely attach in a manner that permits easy removal for access and cleaning.

2.10 **SOUND BAFFLES**

Provide permanent construction sound baffles that are impervious to moisture. Provide removable baffles.

PART 3 EXECUTION

3.1 **INSTALLATION**

Install power roof ventilators in accordance with manufacturer's installation instructions. Properly coordinate installation of ventilators with other work. Coordinate anchors, attachments, and other items to be built, for installation as the work progresses. Rigidly install ventilators in a weathertight and watertight manner free from vibration. Refer to Section 23 05 48.00 40 VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT for vibration isolation considerations.

Submit installation drawings for power roof ventilators.

[3.1.1 **Lubrication**

Provide movable parts of dampers and related operating hardware that are lubricated in accordance with manufacturer's printed instructions and that operate smoothly and quietly without binding.
3.2 FIELD QUALITY CONTROL

3.2.1 Tests

NOTE: If the specified system is identified as critical, configured, or mission essential, use Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS to establish predictive and acceptance testing criteria. Include the first paragraph, delete the second paragraph and paragraphs entitled, Vibration Analyzer, Acceptance, Lubrication, and Final Test Reports, of this section.

Perform PT&I tests and provide submittals as specified in Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS.

After installation, test each power roof ventilator to demonstrate proper operation at indicated and specified performance requirements including running, balance, noise, and proper direction of fan rotation.

3.2.1.1 Vibration Analyzer

Use an FFT analyzer to measure vibration levels. The following characteristics are required: A dynamic range greater than 70 dB; a minimum of 400 line resolution; a frequency response range of 5 Hz-10 KHz(300-600000 cpm); the capacity to perform ensemble averaging, the capability to use a Hanning window; auto-ranging frequency amplitude; a minimum amplitude accuracy over the selected frequency range of plus or minus 20 percent or plus or minus 1.5 dB.

Use either stud-mounted accelerometer or mount using a rare earth, low mass magnet and sound disk (or finished surface) with the FFT analyzer to collect data. Provide accelerometer with mass and mounting that minimally influence the frequency response of the system over the selected measurement range.

3.2.2 Acceptance

Prior to final acceptance, use precision alignment devices to demonstrate that fan and motor are aligned as specified.

Prior to final acceptance, verify conformance to specifications with vibration analysis. Provide vibration levels that are not more than .075 in/sec at 1 times run speed and at fan/blade frequency, and .04 in/sec at other multiples of run speed.

3.2.3 Final Test Reports

Provide final test reports to the Contracting Officer. Provide reports with a cover letter/sheet clearly marked with the System name, Date, and the words "Final Test Reports - Forward to the Systems Engineer/Condition Monitoring Office/Predictive Testing Group for inclusion in the Maintenance Database."

3.3 CLOSEOUT ACTIVITIES

Submit detailed record drawings upon completion of the installation.