SECTION TABLE OF CONTENTS

DIVISION 22 - PLUMBING

SECTION 22 15 13.16 40

HIGH-PRESSURE COMPRESSED-AIR PIPING, PIPING COMPONENTS, AND VALVES, STAINLESS

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS

PART 2 PRODUCTS

2.1 COMPONENTS
2.1.1 Air Compressors
2.1.2 Manual Valves
 2.1.2.1 Type BCS-6000A
 2.1.2.2 Type BCS-6000B
 2.1.2.3 Type BCS-2000A
 2.1.2.4 Type BCS-2000B
 2.1.2.5 Type BCS-2000C
 2.1.2.6 Type BCS-350A
 2.1.2.7 Type BCS-350B
 2.1.2.8 Type BCS-350C
 2.1.2.9 Type SS-6000A
 2.1.2.10 Type SS-6000B
 2.1.2.11 Type SS-2000A
2.1.3 Supporting Elements
 2.1.3.1 General
 2.1.3.2 Building Structure Attachments
 2.1.3.3 Horizontal Pipe Attachments
 2.1.3.4 Vertical Pipe Attachments
 2.1.3.5 Hanger Rods and Fixtures
 2.1.3.6 Supplementary Steel
2.1.4 Piping Specialties
 2.1.4.1 Pressure Gages
 2.1.4.2 Receiver Gages
 2.1.4.3 Pneumatic Transmitters
 2.1.4.4 Thermometers
2.2 MATERIALS
2.2.1 Underground Piping
 2.2.1.1 Type BCS-PS-6000
2.2.1.2 Type BCS-PS-2000
2.2.1.3 Type BCS-PS-350
2.2.1.4 Type SS-PS-6000
2.2.1.5 Type SS-PS-2000
2.2.1.6 Type SS-PS-350
2.2.2 Aboveground Piping
 2.2.2.1 Type BCS-6000
 2.2.2.2 Type BCS-2000
 2.2.2.3 Type BCS-350
 2.2.2.4 Type SS-6000
 2.2.2.5 Type SS-2000
 2.2.2.6 Type SS-350
2.2.3 Miscellaneous Materials
 2.2.3.1 Bolting
 2.2.3.2 Elastomer Caulk
 2.2.3.3 Escutcheons
 2.2.3.4 Flashing

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Underground Piping Systems
 3.1.2 Aboveground Piping Systems
 3.1.2.1 General
 3.1.2.2 Joints
 3.1.2.3 Supporting Elements Installation
 3.1.2.4 Sound Stopping
 3.1.2.5 Sleeves
 3.1.2.6 Escutcheons
 3.1.2.7 Flashings
3.2 FIELD QUALITY CONTROL
 3.2.1 General
 3.2.2 Test Gages
 3.2.3 Acceptance Pressure Testing
 3.2.4 Support Elements Testing

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for aboveground and underground piping systems and certain components with pressure ratings of 2410, 13790, and 41370 kilopascal 350, 2,000, and 6,000 pounds per square inch, gage.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: If Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS and/or Section 23 05 48.00 40 VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT and/or Section 40 17 30.00 40 WELDING GENERAL PIPING are not included in the project specification, applicable requirements from each, as required, should be inserted and the following applicable paragraph deleted.

[Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS applies to work specified in this section.
Where the Contractor proposes to deviate from specified instructions, submit the proposed deviations to the Contracting Officer for approval.

1.1 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AMERICAN WELDING SOCIETY (AWS)

ASME INTERNATIONAL (ASME)
ASME B16.10 (2009) Face-to-Face and End-to-End Dimensions of Valves
ASME B16.11 (2011) Forged Fittings, Socket-Welding and Threaded
ASME B16.34 (2013) Valves - Flanged, Threaded and Welding End

ASME B18.2.6 (2010; Supp 2011) Fasteners for Use in Structural Applications

ASME B31.3 (2014) Process Piping

ASME B36.10M (2004; R 2010) Standard for Welded and Seamless Wrought Steel Pipe

ASME B40.100 (2013) Pressure Gauges and Gauge Attachments

ASME BPVC SEC IX (2010) BPVC Section IX-Welding and Brazing Qualifications

ASME BPVC SEC VIII D1 (2010) BPVC Section VIII-Rules for Construction of Pressure Vessels Division 1

ASTM INTERNATIONAL (ASTM)

ASTM A182/A182M (2014b) Standard Specification for Forged or Rolled Alloy-Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service

SECTION 22 15 13.16 40 Page 5
and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both

ASTM A216/A216M

ASTM A234/A234M

ASTM A307
(2014) Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength

ASTM A312/A312M

ASTM A403/A403M

ASTM A563

ASTM A563M

ASTM B148

ASTM B370

ASTM B749

ASTM C553

ASTM C920

ASTM E1

COMPRESSED AIR AND GAS INSTITUTE (CAGI)

CAGI B19.1

COMPRESSED GAS ASSOCIATION (CGA)

CGA G-7.1
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

INTERNATIONAL SOCIETY OF AUTOMATION (ISA)

ISA 7.0.01 (1996) Quality Standard for Instrument Air

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-58 (1993; Reaffirmed 2010) Pipe Hangers and Supports — Materials, Design and Manufacture, Selection, Application, and Installation

MSS SP-61 (2013) Pressure Testing of Valves

PIPE FABRICATION INSTITUTE (PFI)

PFI ES 21 (2010) Internal Machining and Fit-up of GTAW Root Pass Circumferential Butt Welds

PFI ES 3 (2009) Fabricating Tolerances

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

FS WW-P-541 (Rev E; Am 1; Notice 1) Plumbing Fixtures
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

 Proposed Deviations[; G[, [___]]]

SD-02 Shop Drawings

 Detail Drawings[; G[, [___]]]

SD-03 Product Data
PART 2 PRODUCTS

Submit detail drawings for high-pressure compressed air systems consisting of fabrication and assembly drawings for all parts of work in sufficient detail to enable the Government to check conformity with the requirements of the contract documents.

2.1 COMPONENTS

2.1.1 Air Compressors

Provide an air compressor of the standard piston type complete with air tank, [air dryer,][air cooler,] and other appurtenances. Ensure compressor and installation conforms to CAGI B19.1. Select compressor of sufficient capacity to provide continuous control air when operating on a 1/3-on 2/3-off cycle. Provide compressor with an oil-level sight indicator on the compressor and a coalescing oil filter on the compressor discharge line. [Ensure air dryers are of the continuous duty [silica-gel type with]
reactivation] [mass refrigerated dryer type] and maintains the air in the system with a dew point low enough to prevent condensation in accordance with CGA G-7.1. Locate air dryer at the outlet of the tank. Ensure the control air delivered to the system conforms to ISA 7.0.01.

2.1.2 Manual Valves

**

NOTE: Valves with "BCS" (Black Carbon Steel) prefix are for Type BCS piping systems; valves with "SS" (Stainless Steel) prefix are for Type SS piping systems. Number suffix applies to system pressure rating.

Write pressure-reducing valve specifications to suit project conditions.

Select required valves; delete all others; and supplement to suit project conditions.

**

**

NOTE: Select from the following paragraphs to suit project requirements.

**

Ensure valve markings conform to MSS SP-25 and are supplemented by securely attached identification plates which identify: manufacturer, catalog number, pressure and temperature rating, size, flow direction, and serial numbers. Also indicate body, stem, disc, seat, and hard surfacing materials.

Ensure valve face-to-face and end-to-end dimensions conform to ASME B16.10.

Ensure valve body, butt welding end configuration conforms to the following requirements:

a. For piping systems rated at 13.7 Megapascal 2,000-psi and higher, PFI ES 21 applies.

b. For piping systems rated at 2500 kilopascal 350-psi water, oil, and gas (wog) and lower, ASME B16.25 applies.

Ensure valve body socket welding end configurations conform to ASME B16.11

**

NOTE: Select if specification is rewritten for flanged valves.

**

Ensure valve body flanged end configurations and pressure temperature ratings conform to ASME B16.5.

Ensure pressure and temperature ratings for steel butt welding end valves, conform to ASME B16.5 or ASME B16.34.

Ensure valves conform to applicable provisions of ASME BPVC SEC VIII D1.

Ensure hydrostatic testing of steel valves conform to MSS SP-61.
Provide bolts and studs conforming to ASTM A193/A193M, Grade B7, and nuts conform to ASTM A194/A194M, Grade 2H.

For packing, use wire reinforced, non-asbestos fiber materials jacketed, and impregnated with 30 percent tetrafluoroethylene or a corrosion-inhibiting lubricant specifically suitable for service with the stem material provided.

**
NOTE: If body materials are changed or if larger carbon steel valves are used, review need for stress relieving per ASME BPVC SEC VIII D1.
**

Ensure the hard surfacing alloy (HSA) conforms to AWS A5.13/A5.13M, Class RNiCr-B or Class RCoCr-B, where specified.

**
NOTE: Select the following paragraph whenever cast-steel valves are specified.
**

Visually inspect cast-steel valves in accordance with MSS SP-55.

**
NOTE: Normally select one or delete both of the following paragraphs whenever cast-steel valves are specified.
**

[Ensure cast-steel valves are certified as inspected by the dry powder magnetic particle method in accordance with MSS SP-53.

][Ensure cast-steel valves are certified as inspected by radiographic methods in accordance with MSS SP-54.

]2.1.2.1 Type BCS-6000A

Type BCS-6000A valves are: Y-body globe type, rated 17 Megapascal 2,500 pounds, and 41 Megapascal 6,000 psi with seal-welded or pressure-sealed bonnet, outside screw and yoke (OS&Y), hard-surfaced body-guided loose disk, hard-surfaced integral or inserted and welded seat, hard-surfaced backseating, loose backseat, swing-eye gland bolts, and malleable iron impact type valve wheels and handles.

Body and bonnet assembly are forged carbon steel conforming to ASTM A105/A105M.

Trim conforms to ASTM A182/A182M, Grade F6.

Bronze stem bushing conforms to ASTM B148, No. C95300, heat treated, or approved equal.

**
NOTE: Select one of the following two paragraphs after checking flow coefficient.
**
Select valves that have a full port.

Select valves that have full or reduced ports.

Install valve body with butt weld ends except that valves DN40 1-1/2-inch iron pipe size (ips) and smaller may be socket weld end type.

2.1.2.2 Type BCS-6000B

Type BCS-6000B valves are: Y-body type piston check, rated 17 Megapascal 2,500 pounds and 41.37 Megapascal 6,000 psi with seal-welded or pressure-sealed bonnet, hard-surfaced spring-loaded body-guided disk, and hard-surfaced integral or inserted and welded seat.

Body and bonnet assembly is forged carbon steel conforming to ASTM A105/A105M.

Trim conforms to ASTM A182/A182M, Grade F11.

Ensure spring is corrosion-resistant steel.

Install valve body with butt weld ends, except that valves DN40 1-1/2-inch ips and smaller may be socket weld end type.

2.1.2.3 Type BCS-2000A

Type BCS-2000A valves are: globe type, rated 4100 kilopascal and 14 Megapascal 600 pounds and 2,000 psi with union, seal-welded or pressure-sealed bonnet, OS&Y, hard-surfaced loose disk, hard-surfaced seat, minimum 375 Brinell back seating, loose backseat where required for access, and malleable iron hand wheel or handle.

Body and bonnet assembly is forged carbon steel conforming to ASTM A105/A105M.

Ensure trim conforms to ASTM A182/A182M, Grade F6, or the manufacturer's standard equivalent materials for the specified service.

Install valve body with butt weld ends, except that valves DN40 1-1/2-inch ips and smaller may be socket weld end type.

2.1.2.4 Type BCS-2000B

Type BCS-2000B valves are: Y-body type, piston check, rated 4100 kilopascal and 14 Megapascal 600 pounds and 2,000 psi with bolted, seal-welded or pressure-sealed bonnet, hard-surfaced spring-loaded body-guided disk, and hard-surfaced integral or inserted and welded seat.

Body and bonnet assembly is forged carbon steel conforming to ASTM A105/A105M, Class 70, or cast carbon steel conforming to ASTM A216/A216M, Grade WCB.

Trim is manufacturer's standard for the service.

Spring is corrosion-resistant steel.

Install valve body with butt weld ends, except that forged steel valves may be socket weld end type up to DN50 2-inch ips.
2.1.2.5 Type BCS-2000C

Type BCS-2000C valves are: gate type, rated 4100 kilopascal and 14
Megapascal 600 pounds and 2,000 psi with union, bolted, seal-welded or
pressure-sealed bonnet, OS&Y, hard-surfaced solid wedge disk, hard-surfaced
seats, minimum 375 Brinell back seating, and malleable iron handwheel.

Body and bonnet assembly is forged carbon steel conforming to
ASTM A105/A105M.

Ensure trim conforms to ASTM A182/A182M, Grade F6, or the manufacturer's
standard equivalent materials for the specified service.

Install valve body with butt weld ends except that valves DN40 1-1/2-inch
ips and smaller may be socket weld end type.

2.1.2.6 Type BCS-350A

Type BCS-350A valves are: globe and angle type, rated 2070 kilopascal and
5100 kilopascal 300 pounds and 740 psi with bolted bonnet, OS&Y,
hard-surfaced plug type loose disk, hard-surfaced seat, minimum 350 Brinell
back seating, swing-eye gland bolts, and malleable iron wheel.

Body and bonnet assembly is cast carbon steel conforming to
ASTM A216/A216M, Grade WCB.

Ensure stem material conforms to ASTM A182/A182M, Grade F6.

**
NOTE: If valves smaller than DN25 1-inch ips are
required, use Type BCS-2000A.
**

For a valve body in sizes DN50 2 inches and larger select butt weld ends.

2.1.2.7 Type BCS-350B

Type BCS-350B valves are horizontal swing check, rated 2070 kilopascal and
5100 kilopascal 300 pounds and 740 psi with bolted bonnet.

Body and bonnet assembly is cast carbon steel conforming to ASTM A216/A216M,
Grade WCB.

Ensure seating materials conform to ASTM A182/A182M, Grade F6.

**
NOTE: If valves smaller than DN25 1-inch ips are
required, use Type BCS-2000B.
**

For valve body in sizes DN50 2 inches and larger select butt weld ends.

2.1.2.8 Type BCS-350C

Type BCS-350C valves are: gate type, rated 2070 kilopascal and 5100
kilopascal 300 pounds and 740 psi with bolted bonnet, OS&Y, hard-surfaced
solid or one-piece flexible wedge disk, hard-surfaced seats, minimum 350
Brinell back seating, swing-eye gland bolts, and malleable iron wheel.
Body and bonnet assembly is cast carbon steel conforming to ASTM A216/A216M, Grade WCB.

Ensure stem material conforms to ASTM A182/A182M, Grade F6.

**
NOTE: If valves smaller than DN25 1-inch ips are required, use Type BCS-2000C.
**

For valve body in sizes DN50 2 inches and larger select butt weld ends.

2.1.2.9 Type SS-6000A

Type SS-6000A valves are: Y-body globe type, rated 17 Megapascal and 41 Megapascal 2,500 pounds and 6,000 psi with seal-welded or pressure-sealed bonnet, OS&Y, hard-surfaced body guided disk, hard-surfaced integral or inserted and welded seat, hard-surfaced back seating, loose back seat, swing-eye gland bolts, and malleable iron impact-type valve wheels and handles.

Body and bonnet assembly is forged corrosion-resistant steel conforming to ASTM A182/A182M, Grade F 316.

Ensure trim conforms to ASTM A182/A182M, Grade F 316.

Ensure bronze stem bushing conforms to ASTM B148, No. C95300, heat treated.

**
NOTE: Select one of the following two paragraphs after checking flow coefficient.
**

[Select valves that have a full port.
][Select valves that have full or reduced ports.
]

Use valve bodies with butt weld ends, except that valves DN40 1-1/2-inch ips and smaller may be socket weld end type.

2.1.2.10 Type SS-6000B

Type SS-6000B valves are: Y-body type, piston check, rated 17 Megapascal and 41 Megapascal 2,500 pounds and 6,000 psi with seal-welded or pressure-sealed bonnet, and hard-surfaced spring-loaded body-guided disk, hard-surfaced integral or inserted and welded seat.

Body and bonnet assembly is forged corrosion-resistant steel conforming to ASTM A182/A182M, Grade F 316.

Ensure trim conforms to ASTM A182/A182M, Grade F 316.

Spring is corrosion-resistant steel.

Use valve bodies with butt weld ends, except that valves DN40 1-1/2-inch ips and smaller may be socket weld end type.
2.1.2.11 Type SS-2000A

Type SS-2000A valves are: globe type, rated 41 Megapascal and 14 Megapascal 6,000 pounds and 2,000 psi with union, seal-welded or pressure-sealed bonnet, OS&Y, hard-surfaced loose disk, hard-surfaced seat, minimum 375 Brinell back seating, loose back seat where required for access, and malleable iron hand wheel or handle.

Body and bonnet assembly is forged corrosion-resistant steel conforming to ASTM A182/A182M, Grade F 316.

Ensure trim conforms to ASTM A182/A182M, Grade F 316, or the manufacturer's standard equivalent materials for the specified service.

Use valve bodies with butt weld ends, except that valves DN40 1-1/2-inch ips and smaller may be socket weld end type.

2.1.3 Supporting Elements

**
NOTE: Completely detail on drawings: anchors, restraining guides, sway braces, and shock absorbing provisions to accommodate reaction forces encountered, as well as other piping support elements not covered by the following specifications.

Refer to Section 23 05 48.00 40 VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT if design may induce vibration considerations.

Select and supplement or rewrite the following paragraphs as required by project conditions.
**

2.1.3.1 General

Provide all necessary piping system components and miscellaneous supporting elements required, including but not limited to, building structure attachments; supplementary steel; hanger rods, stanchions, and fixtures; vertical pipe attachments; horizontal pipe attachments; anchors; guides; shock absorbers; and variable and constant supports. Ensure all supporting elements are suitable for stresses imposed by system pressures and temperatures, and natural and other external forces.

Ensure supporting elements are UL approved or listed, and conform to requirements of ASME B31.3, MSS SP-58, and MSS SP-69, or the BOCA National Plumbing Code, except as supplemented and modified by these specifications.

Code mark and submit individual supporting element details as part of the shop drawings for all piping systems.

Details include an exact bill of materials for components making up each assembly and include a dimensioned location plan for each assembly with respect to building structure or equipment.

Individually bundle and tag each coded assembly with code mark prior to delivery to the site.

[Provide constant supports, with travel stops where necessary, at vertically
drifting piping to preclude excessive stresses at terminal points.

**

NOTE: On the drawings, show reactive forces (in pounds) newton) generated by system operation which normally cannot be anticipated by device manufacturer.

**

Provide shock absorbers and sway suppressors to absorb system reactive forces where indicated.

Ensure attachments welded to pipe are of identical material to that of the pipe or of materials accepted as permissible raw materials by referenced code or standard specification. Heat treatment for attachment stress relieving is in a furnace allowing for controlled conditions and uniformity of temperature. Type devices specified herein are defined in referenced MSS Standard, unless otherwise noted.

2.1.3.2 Building Structure Attachments

Provide adjustable positions for cast-in-floor mounted-equipment anchor devices.

Provide built-in masonry anchor devices, unless otherwise approved by the Contracting Officer.

Do not use powder-actuated anchoring devices to support any mechanical system components.

Use center-loading beam clamps, Type 21, 28, 29, or 30, UL-listed, catalogued and load-rated, commercially manufactured products.

Do not use C-clamps.

Inserts, Concrete: Construct concrete inserts in accordance with the requirements of MSS SP-58 for Type 18 and MSS SP-69. When applied to piping in sizes DN50 2-inch ips and larger and where otherwise required by imposed loads, insert and wire a 300 millimeter 1-foot length of 15 millimeter 1/2-inch reinforcing rod through wing slots. Proprietary-type continuous inserts may be similarly used when approved by the Contracting Officer.

2.1.3.3 Horizontal Pipe Attachments

For single pipes, wherever possible, support piping by Type 2, Type 3, or Type 4 attachments. Pipe rolls are Type 41 or 49. Where clamps and rolls are not used, pipe supports are Type 1.

Provide spring supports in accordance with referenced standards.

2.1.3.4 Vertical Pipe Attachments

Vertical pipe attachments are Type 8.

Provide spring supports in accordance with referenced codes and standards.
2.1.3.5 Hanger Rods and Fixtures

Use only circular cross section rod hangers to connect building structure attachments to pipe support devices. Use pipe straps or bars of equivalent strength for hangers only where approved by the Contracting Officer.

Provide turnbuckles, swing eyes, and clevises as required by support system to accommodate pipe accessibility and for adjustment to load and pitch.

2.1.3.6 Supplementary Steel

Where it is necessary to frame structural members between existing members or where structural members are used in lieu of commercially rated supports, design and fabricate such supplementary steel in accordance with AISC 325.

2.1.4 Piping Specialties

2.1.4.1 Pressure Gages

Ensure pressure gages conform to ASME B40.100 and to requirements specified in kilopascal psi units herein. Pressure gage size is 115 millimeter 4-1/2 inches nominal diameter for systems pressures less than 2500 kilopascal and 200 millimeter 350 psi and 8 inches nominal diameter for all higher pressures. Select cast aluminum cases. Equip all gages with adjustable red marking pointer and damper screw adjustment in inlet connection. Ensure Bourdan tubes have a bleeding device to facilitate cleaning and bleeding trapped gas.

Provide gage cases with one-piece solid-front type with a safety-release back cover. Ensure windows are shatterproof glass and gage dials are white with dual seals. Ensure the outer scale has red markings graduated in SI units; the inner scale has black markings graduated in psi units.

**
NOTE: Select following for high pressure gages in control rooms and for applications in accordance with NASA LRC safety policy.
**

2.1.4.2 Receiver Gages

Install indicating gages with 150 millimeter 6-inch white background dial face and black lettering indicating transmitted air pressure and is suitable for transmitted air pressure range from 20 to 105 kilopascal 3 to 15 psi. Pointer is an adjustable micrometer type. Provide overload and underload stops. Ensure Bourdon tube and movement is AISI Type 316 and 300 series stainless steel, respectively. Connection is DN6 1/4-inch ips or tube size, depending on system makeup. Case is black finish cast aluminum for indicated mounting. Ensure accuracy is within 0.5 percent of scale range.

**
NOTE: Select following paragraph or delete and tabulate each instrument.
**

[Gage scale range is as indicated.]
2.1.4.3 Pneumatic Transmitters

Transmitter is non-suppressed, non-indicating type complete with sensitive relay, dual Bourdon tube-actuated motion balance system, zero and span adjustment, and accessories. Case is weatherproof, kept free of foreign particulate matter by purging air, and is constructed of manufacturer's standard finish steel base with safety blowout disk and aluminum cover.

**
NOTE: Select first of following two paragraphs for inlet pressures to 70 Megapascal 1,000 psi; select second of following two paragraphs for inlet pressures in excess of 70 Megapascal 1,000 psi.
**

Install phosphor bronze Bourdon tubes with brass tips and connections. Ensure unit inlets are screened.

Ensure Bourdon tubes, tips, and connections are AISI Type 316 corrosion-resistant steel. Ensure unit inlets are screened.

Ensure unit is self-compensating under varying ambient temperature conditions. Minimum speed of response is the capability to raise pressure from 20 to 105 kilopascal 3 to 15 psi through 15.25 meter of 5 millimeter 500 feet of 3/16-inch id tubing with a time constant of 4 seconds. Ensure accuracy is within 0.5 percent of scale range. Ensure sensitivity is within 0.1 percent of pressure range.

**
NOTE: Select following paragraph or delete and rewrite to agree with receiver gage tabulation or to suit other project conditions.
**

Unit range is as indicated. Output range is 20 to 105 millimeter 3 to 15 psi. Provide one pneumatic transmitter for each pressure-receiver gage, unless otherwise specified.

[Provide a pipe type pneumatic-transmitter assembly mounting.]

**
NOTE: Select following paragraph only after checking specific regulator requirements. Rewrite if necessary to suit project conditions.
**

Provide manufacturer's standard pressure rated filter-regulator assembly and 50 millimeter 2-inch dial face for both supply air and transmitted air pressure gages.

2.1.4.4 Thermometers

Ensure thermometers conform to ASTM E1 and to requirements specified herein. Thermometers are industrial pattern Type 1, Class 3. All thermometers installed 1800 millimeter 6 feet or higher above the floor require an adjustable angle body. Scale cannot be less than 180 millimeter 7 inches long. Provide a case face manufactured from manufacturer's standard polished aluminum or AISI 300 series polished corrosion-resistant steel. Thermometer range is as indicated. Ensure all thermometers have...
AISI Type 316 corrosion-resistant steel separable wells.

2.2 MATERIALS

2.2.1 Underground Piping

**
NOTE: Select type of piping to suit project requirements.

Develop drawings that show size, rating, and other details of piping requirements not covered in the specifications for specific project application.

Specified protection of underground piping is dependent upon 100-percent detection and elimination of coating faults to preclude accelerated metal loss at point failures of coating in possibly brackish ground water. Piping protection should be ensured by soil resistance surveys of proposed pipe routes and by providing cathodic protection in the form of magnesium anode piles or rectifier impressed-current and high silicon iron anode pile systems when soil resistivity indicates need. Normally, soil resistivity of 10,000 ohms or less at pipe laying depth to 1500 millimeter 5 feet below pipe laying depth indicates need for cathodic protection.

Give special consideration to situations where dielectric coupling isolation from connected systems is not practicable due to system pressures. Check typical dielectric coupling manufacturing source for pressure ratings. Where piping is not isolated, normal impressed current of 0.1 milliamp per 0.09 square meter square foot of surface protected will increase several fold. Check rectifier systems. Specify piles to be made up of 45 kilogram 100-pound anodes (a single 50 millimeter 2-inch outside diameter piece).

The following system pressures are for nonshock loading and are based on ASME B31.3, zero corrosion factor, welded joints and following materials stress values: 138 Megapascal 20,000 pounds per square inch (psi) for ASTM A 06/A106M and ASTM A312/A312M, Grade TP 316 or TP 347. Reduce system pressures if largest specified pipe size is increased, if service temperatures are increased over 38 degrees C, 100 degrees F, or if alloy specifications are changed.

Materials for piping systems with pressures to 69 Megapascal at 38 degrees C 10,000 psi at 100 degrees F may be specified in accordance with MSS SP-75 and MSS SP-65. The same specification may be used for 41 Megapascal 6,000 psi systems with pipe sizes larger than DN80 3 inches.

The following materials specifications do not take into account material temperatures less than minus
29 degrees C 20 degrees F. Pipe trade regards seamless piping in sizes less than DN50 2 inches as tubing. Tubing sources are limited and tubing costs in small quantities may range from 3 to 5 times pipe costs. Project costs frequently may be reduced and deliveries improved by oversizing lines to be cataloged as piping.

Operating temperature limit of Type BCS-PS and Type SS-PS is 66 degrees C 150 degrees F, limited by polyethylene sheath and adhesive.

2.2.1.1 Type BCS-PS-6000

Pipe or tube DN15 through DN80 1/2 through 3 inches: XXS, seamless, black carbon steel sheathed with thermoplastic (polyethylene), conforming to ASTM A106/A106M, Grade B and ASME B36.10M

Fittings DN15 through DN40: 62 Megapascal 1/2 through 1-1/2 inches: 9,000-pound, forged carbon steel, socket weld, conforming to ASTM A105/A105M and ASME B16.11

Fittings DN50 through DN80 2 through 3 inches: XXS, long radius, butt weld, black carbon steel, conforming to ASTM A234/A234M, Grade WPB, and ASME B16.9

Thermoplastic sheaths for pipe and fittings: Ensure sheath joints with thermally fitted shrinking sleeves are applied with factory-approved shrinking devices. Make taped fitting protection and repairs in accordance with manufacturer's instructions. Electrical flaw detection testing at the factory requires 10,000 volts to be impressed across the sheath. Sheath breakdown voltage cannot be less than 13,000 volts.

2.2.1.2 Type BCS-PS-2000

Pipe or tube DN15 through DN80 1/2 through 3 inches: Schedule 40, seamless, black carbon steel sheathed with thermoplastic (polyethylene), conforming to ASTM A106/A106M, Grade B, and ASME B36.10M.

Fittings DN15 through DN80: 20 Megapascal 1/2 through 1-1/2 inches: 3,000-pound, forged carbon steel, socket weld, conforming to ASTM A105/A105M, and ASME B16.11.

Fittings DN50 through DN80 2 through 3 inches: Schedule 40, long radius, butt weld, black carbon steel, conforming to ASTM A234/A234M, Grade WPB, and ASME B16.9.

Thermoplastic sheaths for pipe and fittings: Ensure sheath joints with thermally fitted shrinking sleeves are applied with factory-approved shrinking devices. Make taped fitting protection and repairs in accordance with manufacturer's instructions. Electrical flaw detection testing at the factory requires 10,000 volts to be impressed across the sheath. Sheath breakdown voltage cannot be less than 13,000 volts.

2.2.1.3 Type BCS-PS-350

Pipe or tube DN15 through DN610 1/2 through 24 inches: Schedule 40, seamless, black carbon steel sheathed with thermoplastic (polyethylene),
conforming to ASTM A106/A106M, Grade B, and ASME B36.10M.

Fittings DN15 through DN80: 20 Megapascal 1/2 through 1-1/2 inches:
3,000-pound, forged carbon steel, socket weld, conforming to ASTM A105/A105M and ASME B16.11.

Fittings DN50 through DN610 2 through 24 inches: Schedule 40, long radius butt weld, black carbon steel, conforming to ASTM A234/A234M, Grade WPB, and ASME B16.9.

Thermoplastic sheaths for pipe and fittings: Ensure sheath joints with thermally fitted shrinking sleeves are applied with factory-approved shrinking devices. Make taped fitting protection and repairs in accordance with manufacturer's instructions. Electrical flaw detection testing at the factory requires 10,000 volts to be impressed across the sheath. Sheath breakdown voltage cannot be less than 13,000 volts.

2.2.1.4 Type SS-PS-6000

Pipe or tube DN15 through DN80 1/2 through 3 inches: XXS, seamless, corrosion-resistant steel sheathed with thermoplastic (polyethylene), conforming to ASTM A312/A312M, Grade TP 316, and ASME B36.19M.

Fittings DN15 through DN40: 62 Megapascal 1/2 through 1-1/2 inches: 9,000-pound, forged corrosion-resistant steel, socket weld, conforming to ASTM A182/A182M, Grade F 316, and ASME B16.11.

Fittings DN50 through DN80 2 through 3 inches: XXS, long radius, buttweld, corrosion-resistant steel conforming to ASTM A403/A403M, WP 316 and ASME B16.9.

Thermoplastic sheaths for pipe and fittings: Ensure sheath joints with thermally fitted shrinking sleeves applied with factory-approved shrinking devices. Make taped fitting protection and repairs in accordance with manufacturer's instructions. Electrical flaw detection testing at the factory requires 10,000 volts to be impressed across the sheath. Sheath breakdown voltage cannot be less than 13,000 volts. Use adhesives that do not contain free chloride ions.

2.2.1.5 Type SS-PS-2000

Pipe or tube DN15 through DN80 1/2 through 3 inches: Schedule 40S, seamless, corrosion-resistant steel sheathed with thermoplastic (polyethylene), conforming to ASTM A312/A312M, Grade TP 316.

Fittings DN15 through DN40: 20 Megapascal 1/2 through 1-1/2 inches: 3,000-pound, forged corrosion-resistant steel, socket weld, conforming to ASTM A182/A182M, Grade F 316, and ASME B16.11.

Fittings DN50 through DN80 2 through 3 inches: Schedule 40S, long radius butt weld, corrosion-resistant steel sheathed with thermoplastic (polyethylene), to ASTM A403/A403M, and WP 316, and ASME B16.9.

Thermoplastic sheaths for pipe and fittings: Ensure sheath joints with factory-approved shrinking sleeves are applied with factory-approved shrinking devices. Make taped fitting protection and repair in accordance with manufacturer's instructions. Electrical flaw detection testing at the factory requires 10,000 volts to be impressed across the sheath. Sheath breakdown voltage cannot be less than 13,000 volts. Use adhesives that do
not contain free chloride ions.

2.2.1.6 Type SS-PS-350

Pipe or tube DN15 through DN250 1/2 through 10 inches: Schedule 40, seamless, corrosion-resistant steel sheathed with thermoplastic (polyethylene), conforming to ASTM A312/A312M, Grade TP 316, and ASME B36.19M.

Fittings DN15 through DN40: 20 Megapascal 1/2 through 1-1/2 inches: 3,000-pound, forged corrosion-resistant steel, socket weld, conforming to ASTM A182/A182M, Grade F316, and ASME B16.11.

Fittings DN50 through DN610 2 through 24 inches: Schedule 40, long radius, butt weld, corrosion-resistant steel, conforming to ASTM A403/A403M, WP 316, and ASME B16.9.

Thermoplastic sheaths for pipe and fittings: Ensure sheath joints with thermally fitted shrinking sleeves are applied with factory-approved shrinking devices. Make taped fitting protection and repairs in accordance with manufacturer's instructions. Electrical flaw detection testing at the factory requires 10,000 volts to be impressed across the sheath. Sheath breakdown voltage cannot be less than 13,000 volts. Use adhesives that do not contain free chloride ions.

2.2.2 Aboveground Piping

**

NOTE: Select required systems materials and delete all others.

The following system pressures are based on ASME B31.3, zero corrosion factor, welded joints and following materials allowable stress values: 138 Megapascal 20,000 psi for ASTM A106/A106M and ASTM A312/A312M, Grade TP316 or TP347. Reduce system pressure if largest specified pipe size is increased, if service temperatures are increased (over 38 degrees C 100 degrees F or if alloy specifications are changed.

Materials for piping systems with pressures to 69 Megapascal at 38 degrees C 10,000 psi at 100 degrees F may be specified in accordance with MSS SP-75 and MSS SP-65. The same specifications may be used for 41.3 megapascal 6,000 psi systems with pipe size larger than DN80 3 inches.

Following material specifications do not take into account materials with temperatures less than minus 29 degrees C 20 degrees F.

**

2.2.2.1 Type BCS-6000

Pipe or tube DN15 through DN80 1/2 through 3 inches: XXS, seamless, black carbon steel, conforming to ASTM A106/A106M, Grade B, and ASME B36.10M.

Fittings DN15 through DN4: 62 Megapascal 1/2 through 1-1/2 inches:
9,000-pound, forged carbon steel, socket weld, conforming to ASTM A105/A105M and ASME B16.11.

Fittings DN50 through DN80 2 through 3 inches: XXS, long radius, butt weld, black carbon steel, conforming to ASTM A234/A234M, Grade WPB, and ASME B16.9.

Flanges: 17 and 41 Megapascal 2,500-pound, 6,000-pounds per square inch (psi) forged carbon steel, welding neck, with raised face and concentric serrated finish, conforming to ASTM A105/A105M and ASME B16.5.

Gaskets: Spiral wound, non-asbestos filled material, carbon steel, with centering provisions, conforming to ASME B16.5, Group 1.

Bolting: Alloy-steel bolt studs conforming to ASTM A193/A193M, Grade B7, and semifinished heavy hexnuts conforming to ASTM A194/A194M, Grade 2H.

2.2.2.2 Type BCS-2000

Pipe or tube DN6 through DN80 1/8 through 3 inches: Schedule 40, seamless, black carbon steel, conforming to ASTM A106/A106M, Grade B, and ASME B36.10M.

Fittings DN6 through DN40: 20 Megapascal 1/8 through 1-1/2 inches: 3,000-pound, forged carbon steel, socket weld, conforming to ASTM A105/A105M, and ASME B16.11.

Fittings DN50 through DN80 2 through 3 inches: Schedule 40, long radius, butt weld, black carbon steel conforming to ASTM A234/A234M, Grade WPB, and ASME B16.9.

Bolting: Alloy-steel bolt studs conforming to ASTM A193/A193M, Grade B7 and semifinished heavy hexnuts conforming to ASTM A194/A194M, Grade 2H.

2.2.2.3 Type BCS-350

Pipe or tube DN6 through DN25 1/8 through 10 inches: Schedule 40, seamless, black carbon steel, conforming to ASTM A106/A106M, Grade B, and ASME B36.10M.

Fittings DN6 through DN40: 20 Megapascal 1/8 through 1-1/2 inches: 3,000-pound, forged carbon steel, socket weld, conforming to ASTM A105/A105M, and ASME B16.11.

Fittings DN50 through DN250 2 through 10 inches: Schedule 40, long radius, butt weld, black carbon steel, conforming to ASTM A234/A234M, Grade WPB and ASME B16.9.

Flanges DN25 through DN250: 2070 kilopascal, 5000 kilopascal 1 through 10 inches: 300-pound, 720 psi, forged carbon steel welding neck, with raised face and concentric serrated finish, conforming to ASTM A181/A181M, Class 70 and ASME B16.5.

Gaskets: Spiral wound, non-asbestos filled materials, carbon steel, with centering provisions, conforming to ASME B16.5, Group 1.
Bolting: Heavy hexhead carbon steel bolts or bolt studs conforming to ISO 898-1 ASTM A307, and semifinished heavy hex-nuts conforming to ASTM A563M ASTM A563, Grade A. Square-head bolts are not acceptable.

2.2.2.4 Type SS-6000

Pipe or tube DN15 through DN80 1/2 through 3 inches: XXS, seamless, corrosion-resistant steel, conforming to ASTM A312/A312M, Grade TP 316 and ASME B36.10M.

Fittings DN15 through DN40: 62 Megapascal 1/2 through 1-1/2 inches: 9,000-pound, forged corrosion-resistant steel, socket weld, conforming to ASTM A182/A182M, Grade F 316, and ASME B16.11.

Fittings DN50 through DN80 2 through 3 inches: XXS, long radius, butt weld, corrosion-resistant steel, conforming to ASTM A403/A403M, WP 316, ASME B16.9, and ASME B36.10M.

Flanges DN25 through DN80: 17 Megapascal, 41 Megapascal 1 through 3 inches: 2,500-pound, 6,000-psi, forged corrosion-resistant steel, welding neck, with raised face and concentric serrated finish, conforming to ASTM A182/A182M, Grade F 316, and ASME B16.5.

Gaskets: Spiral wound, filled with chloride ion-free non-asbestos materials, corrosion-resistant steel, with centering provisions, conforming to ASME B16.5, Group 1.

Bolting: Alloy-steel bolt studs conforming to ASTM A193/A193M, Grade B8 and semifinished heavy hex-nuts conforming to ASTM A194/A194M, Grade 8F.

2.2.2.5 Type SS-2000

Pipe or tube: Schedule 40S seamless, corrosion-resistant steel, conforming to ASTM A312/A312M, Grade TP 316, and ASME B36.19M.

Fittings DN15 through DN40: 20 Megapascal 1/2 through 1-1/2 inches: 3,000-pound, forged corrosion-resistant steel, socket weld, conforming to ASTM A182/A182M, Grade F 316, and ASME B16.11.

Fittings DN50 through DN80 2 through 3 inches: Schedule 40S, long radius, butt weld, corrosion-resistant steel conforming to ASTM A403/A403M, WP 316 and ASME B16.9, and ASME B36.19M.

Flanges DN25 through DN80: 6200 kilopascal, 15 Megapascal 1 through 3 inches: 900-pound, 2,160-psi, forged corrosion-resistant steel, welding neck, with raised face and concentric serrated finish, conforming to ASTM A182/A182M, Grade F 316 and ASME B16.5.

Gaskets: Spiral wound, filled with chloride ion-free non-asbestos materials, corrosion-resistant steel, with centering provisions, conforming to ASME B16.5, Group 1.

Bolting: Corrosion-resistant steel bolt studs conforming to ASTM A193/A193M, Grade B8 and semifinished heavy hex-nuts conforming to ASTM A194/A194M, Grade 8A.
2.2.2.6 Type SS-350

Pipe or tube DN15 through DN250 1/2 through 10 inches: Schedule 40S, seamless, corrosion-resistant steel, conforming to ASTM A312/A312M, Grade TP 316, and ASME B36.19M.

Fittings DN15 through DN25: 20 Megapascal 1/2 through 1 inch: 3,000-pound, forged corrosion-resistant steel, socket weld, conforming to ASTM A182/A182M, Grade F 316, and ASME B16.11.

Fittings DN25 through DN250 1 through 10 inches: Schedule 40, long radius, butt weld, corrosion-resistant steel, conforming to ASTM A403/A403M, WP 316 and ASME B16.9.

Flanges DN25 through DN250: 2070 kilopascal, 5000 kilopascal 1 through 10 inches: 300-pound, 720-psi, forged corrosion-resistant steel, welding neck, with raised face and concentric serrated finish, conforming to ASTM A182/A182M, Grade F 316, and ASME B16.5.

Gaskets: Spiral wound, filled with chloride ion-free non-asbestos materials, corrosion-resistant steel, with centering provisions, conforming to ASME B16.5, Group 1.

Bolting: Heavy hex-head corrosion-resistant steel bolts or bolt studs conforming to ASTM A193/A193M, Grade B8, and semifinished heavy hex nuts conforming to ASTM A194/A194M, Grade 8A. Square-head bolts are not acceptable.

2.2.3 Miscellaneous Materials

2.2.3.1 Bolting

For general purpose bolting use hex-head and conforming to ISO 898-1 ASTM A307. Ensure heavy hex-nuts conform to ASME B18.2.6 ASME B18.2.2. Square-head bolts and nuts are not acceptable.

2.2.3.2 Elastomer Caulk

Use a two-component polysulfide or polyurethane base elastomer caulking material conforming to ASTM C920.

2.2.3.3 Escutcheons

Manufacture chrome plated escutcheons from nonferrous metals except when AISI 300 series corrosion-resistant steel is provided. Ensure metals and finish conform to FS WW-P-541.

Use one-piece or split-pattern type escutcheons. Ensure all escutcheons have provisions consisting of internal spring-tension devices or setscrews to maintain a fixed position against a surface.

2.2.3.4 Flashing

Lead: Sheet lead conforming to ASTM B749, Grade B, C, or D and weigh not less than 20 kilogram per square meter 4 pounds per square foot.

Copper: Sheet copper conforming to ASTM B370 and weigh not less than 4.8 kilogram per square meter 16 ounces per square foot.
PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Underground Piping Systems

Perform installation of compressed air systems in accordance with the applicable requirements specified under "Aboveground Piping Systems Installation" in this section, the requirements specified herein, and in the presence of the Contracting Officer. Notify the Contracting Officer 48 hours in advance of start of the work.

Ensure all excavations are dry and clear of extraneous materials when pipe is being laid.

Blocking and wedging is not permitted.

**
NOTE: Indicate on drawings the underground piping requiring support from slabs.
**

All underground piping below supported or suspended slabs is supported from the slab with a minimum of two supports per length of pipe. Protect supports with a coating of bitumen.

**
NOTE: Coordinate following two paragraphs with drawings.
**

Pipes passing through walls below grade and ground floor slab requires passing through pipe sleeves as indicated.

Where pipe penetrates earth or concrete grade, expose to view not less than 300 millimeter 12 inches of polyethylene-coated Type BCS-PS pipe. Provide additional piping protection for concrete penetration points as indicated.

Install Type BCS-PS materials in accordance with the applicable requirements specified herein for underground piping and aboveground piping. Palletize pipe in padded pallets at the factory and handle from pallet to final position with padded gear. Protect surfaces from the sun with black polyethylene sheeting. Prior to being lowered into a trench, check sheeting for continuity with 10,000 volts applied by a continuity detector with an audible alarm. In the trench, after joints and fittings are made, check previously untested surfaces for continuity. Where discontinuities in thermoplastic sheeting are found, remove and replace not less than 300 millimeter 12 inches of material upstream and downstream of the fault.

Distinctly mark and promptly remove defective materials found from the site.

3.1.2 Aboveground Piping Systems

3.1.2.1 General

**
NOTE: Check for pertinent item inclusion, NASA Langley Research Center standard procedures for
**
radiographic testing, and other requirements for systems operating at pressures in excess of 125-psi 860 kilopascal wsp.

Fabricate and install piping systems in accordance with the requirements of the following codes and standards except as supplemented and modified by these specifications:

a. ASME B31.3
b. MSS SP-69
c. ASME BPVC SEC II-C, for applicable materials and procedures not specified herein
d. AWS WHB-2.9, for applicable materials and procedures not specified herein

Provisions of referenced codes and standards constitute minimum requirements for system materials, installation, and workmanship. Strict compliance therewith is required for all systems work except where the drawings and specification require better materials and methods of installation than the minimum requirements set forth in the code or standard. In all cases, the drawings and specifications supersede code and standards requirements.

Ensure installation of piping systems materials conform to the published or written instructions of the manufacturer for the project application except as otherwise specified herein.

When proposing to deviate from specified instructions, submit the proposed deviation to the Contracting Officer for approval.

Conduct work in the presence of the Contracting Officer. Notify the Contracting Officer 48 hours in advance of start of the work.

Ensure permanent identification of piping conforms to PFI ES 11. Locate identification at points designated by the Contracting Officer and marked legibly and conspicuously with yellow fluorescent aerosol paint.

Coordinate exact location of piping among trades so that there is no interference with lighting fixtures, piping, ducts, or other construction.

Fabricate pipe to measurements established on the job and carefully work into place without springing or forcing. Make adequate provision for absorbing all expansion and contraction without undue stress in any part of the system.

NOTE: If the following paragraph does not provide for cleanliness required by project conditions, and if pickling of pipe and temporary line strainers are required, refer to Ingersoll-Rand Form 3219B for suitable specification and strainer-design criteria and rewrite the following paragraph. Do not oil pipe bore; use phosphoric acid rust-preventive treatment.
Ensure pipe, tubing, fittings, valves, equipment, and accessories are clean and free of all foreign material before installed in their respective systems. Clean pipe by hammering, shaking, or swabbing, or by a combination of those methods. Purge lines with dry, oil-free compressed air after erection, but do not rely on purging for removing all foreign matter. Purge the lines at a velocity in excess of maximum normal-flow velocity and as approved by the Contracting Officer. During the progress of construction, properly protect open ends of pipe, fittings, and valves at all times to prevent the admission of foreign matter. Place plugs and caps in the ends of installed work at all times, except when connections are being made. Provide commercially manufactured plugs and caps, unless otherwise approved by the Contracting Officer.

NOTE: Prior to selection of the following paragraph, review design routing, reaction forces, and support provisions.

Install piping straight and true with approved offsets around obstructions, expansion bends or fitting offsets essential to a satisfactory installation, and as may be necessary to increase headroom or to avoid interference with the building construction, electric conduit, or facilities equipment.

Use standard long-sweep pipe fittings for changes in direction. No mitered joints or unapproved pipe bends are permitted.

Shop-make pipe bends by the sand-filled hot-bending process provided:

a. Bend radius is not less than 6 times the nominal pipe diameter.

b. Fabrication tolerances are in accordance with PFI ES 3 for the applicable wall thickness.

c. Preheat and postheat treatment procedures, where applicable, are in accordance with referenced standards.

d. After bending operations, piping is cleaned with a turbine cutter assembly followed by shot or sand blasting

e. All operations are performed to preclude detrimental wall thickness reduction.

f. The fabricating shop is a member of the Pipe Fabricating Institute and is approved by the Contracting Officer.

NOTE: Prior to selection of following paragraph, review requirements of project application.

Make branch connections with either welding tees or forged branch outlet fittings, within limitations of referenced codes and standards. Branch outlet fittings, where used, are forged, flared for improved flow where attached to the run, reinforced against external strains, and designed to withstand full pipe-bursting strength requirements.
Provide horizontal piping with a grade of 25 millimeter per 30.5 meter 1 inch per 100 feet.

Use eccentric reducers where required to permit proper drainage of pipe lines. Bushings are not permitted for this purpose. Provide drain valves where indicated.

Install piping in a manner that prevents stresses and strains from being imposed upon connected equipment.

Expansion bend configurations are as indicated. Construct expansion U-bends that are cold sprung and welded into the line which are anchored before removing the spreader from the expansion U-bend. Amount of cold spring is as indicated.

3.1.2.2 Joints

**
NOTE: Review following requirements for inadequacy, conflict, and redundancy.
**

Ensure field-welded joints conform to the requirements of the AWS WHB-2.9 and ASME B31.3.

[Piping systems rated 14 Megapascal 2,000 psi and higher require butt weld joints made with consumable insert rings, utilizing inert-gas tungsten-arc root pass welding together with inert gas purging of id of pipe. Ensure consumable insert ring materials are compatible with all materials being joined. Ensure joint configuration conforms to PFI ES 21. Provide root pass joint preheat treatment at temperatures necessary to avoid cracking.

][Piping systems rated 2400 kilopascal 350 psi and lower requires butt weld joints made with backing rings. Ensure backing ring materials are compatible with materials being joined. Ensure joint configuration conforms to ASME B16.25.

]**
NOTE: Prior to selection of one of the following two paragraphs, review requirements of ASME B31.3, and ASME BPVC SEC IX to avoid conflict and redundancy.
**

[Perform preheat and postheat treatment of welds in accordance with ASME BPVC SEC IX.

][Perform preheat and postheat treatment of welds in accordance with ASME B31.3.

] Assemble flanged joints with appropriate flanges, gaskets, and bolting. Create sufficient clearance between flange faces to ensure that the connections can be gasketed and bolted tight without imposing undue strain on the piping system. Ensure flange faces are parallel and the bores concentric; center gaskets on the flange faces without projecting into the bore. Lubricate bolting with oil and graphite before assembly to ensure uniform bolt stressing. Draw up and tighten flange bolts in staggered sequence in order to prevent unequal gasket compression and deformation of the flanges. After testing the piping system, retighten bolting to provide
required gasket stress.

3.1.2.3 Supporting Elements Installation

Provide supporting elements in accordance with the requirements of referenced codes and standards, except as supplemented or modified herein.

Hang piping from building construction. Hang no piping from roof deck or from other pipe.

Attachment to building construction concrete is by approved cast-in concrete inserts or by built-in anchors. Where attachment by either of above methods is not practical, specified masonry anchor devices may be used upon receipt of written approval from the Contracting Officer.

Embed fish plates in the concrete to transmit hanger loads to the reinforcing steel where hanger rods exceed 22 millimeter 7/8 inch in diameter.

Construct masonry anchors selected for overhead applications of ferrous materials only.

Pneumatic tools are not allowed. Select percussive action, electric hammers, and combination rotary-electric hammers used for the installation of self-drilling anchors in accordance with the following guide:

a. Anchor-devices, nominal sizes M6 through M14 1/4 through 1/2 inch, may be hammer type only or combination rotary-hammer type and rated at load to draw not more than 5.0 to 5.5 amperes when operating on 120-volt, 60-hertz power.

b. Anchor devices, nominal sizes M6 5/8 inch and larger, hammer-type only, rated at load to draw not more than 8.0 amperes when operating on 120-volt, 60-hertz power. Ensure combination rotary-hammer tools on the same power supply have a full load current rating not to exceed 10 amperes.

**
NOTE: Typical sources of electric hammer (h) and combination rotary-hammer (r-h) and blows per minute (bpm):

<table>
<thead>
<tr>
<th>Name and Model</th>
<th>Type</th>
<th>bpm</th>
<th>amps 120/60</th>
<th>bpm/amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>B & D 103-1</td>
<td>h</td>
<td>2,300</td>
<td>3.3</td>
<td>695</td>
</tr>
<tr>
<td>B & D 104-1</td>
<td>h</td>
<td>2,200</td>
<td>7.0</td>
<td>314</td>
</tr>
<tr>
<td>B & D 718</td>
<td>r-h</td>
<td>3,350</td>
<td>7.5</td>
<td>448</td>
</tr>
<tr>
<td>B & D 719</td>
<td>r-h</td>
<td>3,600</td>
<td>10.0</td>
<td>360</td>
</tr>
<tr>
<td>I-R HS650U</td>
<td>h</td>
<td>3,000</td>
<td>8.0</td>
<td>375</td>
</tr>
<tr>
<td>MIL 5350</td>
<td>r-h</td>
<td>2,500</td>
<td>5.0</td>
<td>500</td>
</tr>
<tr>
<td>B & D 104-1</td>
<td>h</td>
<td>2,200</td>
<td>7.0</td>
<td>314</td>
</tr>
<tr>
<td>B & D 718</td>
<td>r-h</td>
<td>3,360</td>
<td>7.5</td>
<td>448</td>
</tr>
</tbody>
</table>

SECTION 22 15 13.16 40 Page 30
Size inserts and anchors for the total stress applied. Use a safety factor as required by applicable codes, but in no case less than 4. Submit complete shop drawings.

Insert anchor devices into concrete sections not less than twice the overall length of the device and locate the anchor devices not less than the following distance from any side or end edge or centerline of adjacent anchor service:

<table>
<thead>
<tr>
<th>Anchor Bolt Size</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M15</th>
<th>M16</th>
<th>M20</th>
<th>M22</th>
<th>Millimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Edge</td>
<td>85</td>
<td>90</td>
<td>105</td>
<td>130</td>
<td>150</td>
<td>180</td>
<td>205</td>
<td>Space Millimeter*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anchor Bolt Size</th>
<th>1/4</th>
<th>5/16</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>3/4</th>
<th>7/8</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Edge</td>
<td>3-1/4</td>
<td>3-1/2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>Space Inches</td>
</tr>
</tbody>
</table>

* Except where manufacturer requires greater distance.

In special circumstances, with prior written approval of the Contracting Officer, center-to-center distance may be reduced to 50 percent of given distance provided load on the device is reduced in direct proportion to the reduced distance.

Run new piping parallel with the lines of the building. Space and install piping and components so that there is not less than 15 millimeter 1/2 inch of clear space between the finished surface and other work and between the finished surfaces of parallel adjacent piping.

For parallel pipe runs installation, allow for tool space around mechanical
connections. Where it is necessary to avoid any transfer of load from support to support or onto connecting equipment, use constant-support pipe hangers.

Weld anchors and pipe-alignment guides to the piping in accordance with requirements specified herein and attached to the building structure in a manner indicated or approved by the Contracting Officer.

Suitably brace piping against reaction, sway, and vibration. Bracing consists of hydraulic and spring devices, brackets, anchor chairs, rods, and structural steel.

Locate pipe lines, when supported from roof purlins, not greater than one-sixth of the purlin span from the roof truss. Load per hanger cannot exceed 1800 newton 400 pounds when support is from a single purlin or 3600 newton 800 pounds when hanger load is applied to purlins halfway between purlins by means of auxiliary support steel supplied by the piping Contractor. When support is not halfway between purlins, the allowable hanger load is the product of 400 times the inverse ratio of the longest distance to purlin-to-purlin spacing.

When the hanger load exceeds the above limits, furnish and install reinforcing of the roof purlin(s) or additional support beam(s). When an additional beam is used, ensure the beam bears on the top chord of the roof trusses, and the bearing is over gusset plates of top chord. Stabilize beam by connection to roof purlin along bottom flange.

Install hangers and supports for piping at intervals specified herein at locations not more than 900 millimeter 3 feet from the ends of each runout and not over 25 percent of specified interval from each change in direction of piping.

**
NOTE: Check following intervals for project materials application permissible for combined bending and shearing stresses.
**

Base load rating for all pipe hanger supports on weight and forces imposed on all lines. Deflection per span cannot exceed slope gradient of pipe. Ensure Schedule 40 and heavier pipe supports are in accordance with the following minimum rod size and maximum allowable hanger spacing; concentrated loads reduce the allowable span proportionately:

<table>
<thead>
<tr>
<th>PIPE SIZE MILLIMETER (DN)</th>
<th>ROD SIZE MILLIMETER</th>
<th>HANGER SPACING MILLIMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 and smaller</td>
<td>10</td>
<td>1500</td>
</tr>
<tr>
<td>20 to 25</td>
<td>10</td>
<td>1800</td>
</tr>
<tr>
<td>32 to 40</td>
<td>10</td>
<td>2700</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>3000</td>
</tr>
<tr>
<td>65 to 80</td>
<td>15</td>
<td>3600</td>
</tr>
<tr>
<td>PIPE SIZE MILLIMETER (DN)</td>
<td>ROD SIZE MILLIMETER</td>
<td>HANGER SPACING MILLIMETER</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>100 to 125</td>
<td>16</td>
<td>4500</td>
</tr>
<tr>
<td>150</td>
<td>20</td>
<td>4800</td>
</tr>
<tr>
<td>200 to 300</td>
<td>22</td>
<td>6100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIPE SIZE INCHES</th>
<th>ROD SIZE INCHES</th>
<th>HANGER SPACING FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 and smaller</td>
<td>3/8</td>
<td>5</td>
</tr>
<tr>
<td>3/4 to 1</td>
<td>3/8</td>
<td>6</td>
</tr>
<tr>
<td>1-1/4 to 1-1/2</td>
<td>3/8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>10</td>
</tr>
<tr>
<td>2-1/2 to 3</td>
<td>1/2</td>
<td>12</td>
</tr>
<tr>
<td>4 to 5</td>
<td>5/8</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>3/4</td>
<td>16</td>
</tr>
<tr>
<td>8 to 12</td>
<td>7/8</td>
<td>20</td>
</tr>
</tbody>
</table>

Support vertical risers independently of connected horizontal piping wherever practical and guide for lateral stability. Provide only one rigid support for risers subject to expansion.

After the piping systems have been installed, tested, and placed in satisfactory operation, tighten hanger rod nuts and jam nuts to prevent any loosening.

3.1.2.4 Sound Stopping

Provide effective sound stopping and adequate operating clearance to prevent structure contact where pipes penetrate walls, floors, or ceilings. Where penetrations occur from pipe chases into occupied spaces, provide special acoustic treatment of ceiling. Occupied spaces include space above ceilings where no special acoustic treatment of ceiling is provided. Finish penetrations to be compatible with the surface being penetrated.

Specify sound stopping under "Sleeves" in this section.

Leadwool and viscoelastic damping compounds may be proposed for use where other sound-stopping methods are not practical, provided temperature and fire-resistance characteristics of the compound are suitable for the service.

3.1.2.5 Sleeves

Supply and install sleeves where piping passes through roofs, through masonry or concrete walls, and through floors.
Lay out sleeve work before placement of slabs or construction of walls and roof, and set all sleeves necessary to complete the work.

Where pipe sleeves are required after slabs and masonry are installed, make holes to accommodate these sleeves with core drills. Set sleeves in place with a two-component epoxy adhesive system approved by the Contracting Officer. Ensure no load is carried by such sleeves unless approved by the Contracting Officer.

Install sleeves flush with ceilings and where indicated.

Install sleeves flush with the floor in finished spaces and extend 50 millimeter 2 inches above the floor in unfinished spaces.

Continuously weld or braze sleeves passing through steel decks to the deck.

For sleeves extending through floors, roofs, load bearing walls, and fire barriers, ensure sleeves are continuous and fabricated from Schedule 40 steel pipe with welded anchor lugs. Form other sleeves by molded linear polyethylene liners or similar materials which are removable. Ensure diameter of sleeves are large enough to accommodate pipe and isolation and sealing materials with a minimum of 10 millimeter 3/8-inch clearance. Install sleeves to accommodate mechanical and thermal motion of pipe, to preclude transmission of vibration to walls, and the generation of noise.

Pack solid the space between a pipe and the inside of a pipe sleeve or a construction surface penetration with a mineral fiber conforming to ASTM C553 wherever the piping passes through firewalls, equipment room walls, floors, and ceilings connected to occupied spaces, and other locations where sleeves or construction surface penetrations occur between occupied spaces. Where sleeves or construction surface penetrations occur between conditioned and unconditioned spaces, fill the space between a pipe, bare or insulated, and the inside of a pipe sleeve or construction surface penetration with an elastomer caulk to a depth of 15 millimeter 1/2 inch. Ensure all caulked surfaces are oil- and grease-free.

Caulk exterior wall sleeves watertight with lead and oakum or mechanically expandable chloroprene inserts with mastic sealed metal components.

3.1.2.6 Escutcheons

Provide escutcheons at all penetrations of piping into finished areas. Where finished areas are separated by partitions through which piping passes, provide escutcheons on both sides of the partition. Where suspended ceilings are installed, provide plates at the underside only of such ceilings. Use chrome-plated escutcheons in all occupied spaces and of sufficient size to conceal openings in building construction. Firmly attach all escutcheons, preferably with setscrews.

3.1.2.7 Flashings

**
NOTE: Coordinate with drawings and check roof flooding provisions, if any.
**

Provide all require flashings at mechanical systems penetrations of building boundaries as indicated.
3.2 FIELD QUALITY CONTROL

**
NOTE: Delete paragraph title and following paragraphs when compressed air systems are not applicable to the project.

Determine whether or not systems supports are adequate for loads normal to specified hydrostatic testing.
**

3.2.1 General

Prior to acceptance of the work, pressure test completed systems in the presence of the Contracting Officer.

**
NOTE: Because of the expansive force of compressed air at the 690 kilopascal 100-psi and higher range of pressures normally used, pneumatic testing requires special precautions and competent supervision to prevent injury and damage should a failure occur.
**

[Perform pneumatic tests using dry, oil-free compressed air, carbon dioxide, or nitrogen as specified for the system under test. Conduct pressure testing in two stages; i.e. preliminary and acceptance.

][Perform hydrostatic tests. Only use potable water for testing. Government will supply testing water at a location determined by the Contracting Officer, but the Contractor is responsible for the approved disposal of contaminated water. Ensure the temperature of water used for testing does not cause condensation on system surfaces. Provide supplementary heat if necessary.

] Do not perform pressure tests in excess of 34 kilopascal 5 psi until personnel not directly involved in the tests are evacuated from the area.

Contractor may conduct tests for his own purposes, but preliminary tests and acceptance tests are conducted as specified herein.

**
NOTE: Select the following paragraph only when pneumatic testing is specified.
**

System testing includes preliminary tests by applying internal pressures exceeding 34 kilopascal 5 psi swabbing all joints under test with a high film strength soap solution, and observing for bubbles.

If testing reveals that leakage exceeds specified limits, isolate and repair the leaks, replace defective materials where necessary, and retest the system until specified requirements are met. Remake leaking gasket joints with new gaskets and new flange bolting. Do not use removed bolting and gaskets again.

**
Regardless of the amount of measured leakage, immediately repair visible leaks or defects in the pipeline.

Only use standard piping flanges, plugs, caps, and valves for sealing off piping for test purposes.

Vent compressed air trapped during high pressure hydrostatic testing to preclude injury and damage. If purging or vent valves are not provided, the Contracting Officer may require the removal of any system component such as plugs and caps to verify that water has reached all parts of the system.

Remove components from piping systems prior to testing whenever the component would otherwise sustain damage due to test pressure.

Check piping system components such as valves for proper operation under system test pressure.

Add no test media to a system during a test for a period as specified or to be determined by the Contracting Officer.

Duration of a test will be determined by the Contracting Officer. Test may be terminated by direction of Contracting Officer at any point during a 24-hour period after it has been determined that the permissible leakage rate has not been exceeded.

Drain and purge dry piping system, upon completion of testing, with dry air. Verify system dryness by hygrometer comparison with purging air.

Prepare, maintain, and submit test records of piping systems tests for approval. Ensure records show Government and Contractor test personnel responsibilities, dates, test gage identification numbers, ambient temperatures, pressure ranges, rates of pressure drop, and leakage rates. Each acceptance test will be signed by the Contracting Officer. Deliver two [_____] record copies to the Contracting Officer after acceptance.

3.2.2 Test Gages

Ensure test gages conform to ASME B40.100 and have a dial size 200 millimeter 8 inches or larger. Maximum permissible scale range for a given test is such that the pointer has a starting position at midpoint of the dial or within the middle third of the scale range. Certification of accuracy and correction table bears a date within 90 calendar days prior to the test date and shows the test gage number and the project number, unless otherwise approved by the Contracting Officer.
3.2.3 Acceptance Pressure Testing

Conduct testing during steady ambient temperature conditions.

**

NOTE: Specify hereunder system test pressures and allowable leakage rates to suit project conditions.
**

3.2.4 Support Elements Testing

Test systems containing hydraulic or spring shock absorbers for ability to accommodate system forces by manipulation of system components as directed by the Contracting Officer.

-- End of Section --