SECTION TABLE OF CONTENTS

DIVISION 22 - PLUMBING

SECTION 22 05 83.63

CURED-IN-PLACE PIPE (CIPP) LINING

11/13

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 PROJECT/SITE CONDITIONS
1.4 WARRANTY

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
2.2 PIPE LINING MATERIALS
 2.2.1 CIPP Lining Tube
 2.2.2 Resin
 2.2.3 CIPP Properties

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 General
 3.1.2 Deviations
 3.1.3 Pipe Preparation
 3.1.4 CIPP Installation Procedure
 3.1.4.1 Wet Out
 3.1.4.2 Insertion
 3.1.4.3 Curing
 3.1.4.4 Finish
 3.1.5 Liner Inspection
3.2 FIELD QUALITY CONTROL
3.3 ADJUSTING AND CLEANING

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for cured-in-place pipe lining, including applicable industry standards, installation, and performance verification for facility interior [roof drain leader piping from the roof to floor level] [cold and hot potable water] [drain] [electrical conduit] [gas] [process piping] [steam] [ventilation] [waste water] piping systems.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This section addresses the procedures for the reconstruction of pipelines and conduits, 10 to 244 cm 4 to 96 in. diameter, by the pulled-in-place installation of a resin-impregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure. Safety issues relating to the use of this specification should be addressed in a separate section.
NOTE: Show the following information on the project drawings:

1. Exact Duplication in Terminology:
Specifications and drawings come from different computer programs. The terminology describing these items, systems, equipment, and materials comes from different databases. For this reason, ensure that each piece of equipment, or item, or system is identified absolutely identically in the specification as it is in the drawings. Ensure exact terminology between drawings and specifications, specification sections and drawings sections, and drawings to drawings.

2. Insert additional items to be shown on the drawings.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN PETROLEUM INSTITUTE (API)

API Spec 13A (2010; Errata 2014) Specification for Drilling-Fluid Materials

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C950 (2013) Fiberglass Pressure Pipe

ASTM INTERNATIONAL (ASTM)

the Resistance of Plastics to Chemical Reagents

ASTM F1216 (2009) Standard Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube

ASTM F1743 (2008) Standard Practice for Rehabilitation of Existing Pipeline and Conduits by Pulled-In-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)

1.2 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Installation Equipment; G[, [___]]
CIPP Lining Tube; G[, [___]]
Pipe Thermoset Epoxy Resin; G[, [___]]
Liner Materials; G[, [___]]

SD-08 Manufacturer's Instructions

CIPP Manufacturer's Written Installation Instructions; G[, [___]]

SD-11 Closeout Submittals

Report Summarizing The Extent Of Pipe Lining Performed; G[, [___]]
Pipe Pre-Lining Inspection; G[, [___]]
Pipe Post-Lining Inspection; G[, [___]]
Manufacturer's Warranty; G[, [___]]
Record Drawings; G[, [___]]

1.3 PROJECT/SITE CONDITIONS

Inspect the line with CCTV and determine the overall condition of the pipe prior to starting the Pre-conditioning of the pipe.

1.4 WARRANTY

Submit [_____] copies of the signed Manufacturer's Warranty for all products within [_____] [days] [weeks] of final completion of the work.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Provide new cured-in-place pipe (CIPP) lining system[s] for the [roof drain leader piping from the roof to floor level][cold and hot potable water piping][drain piping][electrical conduit][gas][process piping][steam][ventilation][wastewater piping][_____] complete and ready for operation.
Perform the reconstruction using a tube of one or more layers of flexible needle perforated felt or an equivalent non-woven perforated material, of specified length not to exceed 18.3 meters 60 feet, and a thermo-set resin with physical and chemical properties appropriate for the application, in conformance with ASTM F1216. Submit product data for epoxy resin, liner materials, and installation equipment. Ensure all drilling fluids conform to API Spec 13A.

2.2 PIPE LINING MATERIALS

2.2.1 CIPP Lining Tube

Provide a liner tube consisting of one or more layers of flexible needle perforated felt or an equivalent non-woven perforated material, continuous in length with uniform wall thickness. Overlapping sections are allowed in the length of the liner. Ensure that the liner tube is capable of conforming to 45 and 90 degree bends, offset joints, bells, and disfigured pipe sections.

Provide an integrated bladder within the felt tube that is made from materials compatible with the felt and resin systems used and capable of withstanding the required installation pressure.

[Provide fiberglass pressure pipe conforming to AWWA C950.]

2.2.2 Resin

Provide an epoxy resin impregnated, cured tube that is resistant to shrinkage, corrosion, oxidation, and is resistant to abrasion from solids, grit, sand in rainwater, and is solvent free. Use a resin with proven resistance to storm water and ultra-violet light (sunlight) at any stage prior to installation. Polyester or vinyl ester resins are not acceptable.

Ensure the proposed resin system does not contain silicones, stearates, and/or natural waxes that would adversely affect the adhesives properties or any other chemical or physical properties of the CIPP liner.

2.2.3 CIPP Properties

Provide CIPP with minimum chemical resistance requirements in accordance with ASTM D543. Conduct exposure to the chemical solutions listed in Table 1 at temperatures of up to 23.9 degrees C 75 degrees F. Conduct this test for a minimum period of one month. Loss result can not exceed 20 percent of the initial structural properties.

<table>
<thead>
<tr>
<th>Chemical Solution Concentration</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap Water (pH 6-9)</td>
<td>100.0</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>5.0</td>
</tr>
</tbody>
</table>
TABLE 1 - CHEMICAL RESISTANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>Chemical Solution Concentration</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoric Acid</td>
<td>10.0</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>10.0</td>
</tr>
<tr>
<td>Gasoline</td>
<td>100.0</td>
</tr>
<tr>
<td>Vegetable Oil</td>
<td>100.0</td>
</tr>
<tr>
<td>Detergent or Soap</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Ensure the CIPP meets the minimum structural properties listed in Table 2 below:

TABLE 2 - CIPP INITIAL STRUCTURAL PROPERTIES - ASTM F1743

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM Test Method</th>
<th>Minimum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>20684 kilopascal</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>ASTM D790</td>
<td>31026 kilopascal</td>
</tr>
<tr>
<td>Short Term Flexural Modulus of Elasticity</td>
<td>ASTM D790</td>
<td>1724 megapascal</td>
</tr>
</tbody>
</table>

Provide a cured liner with a light blue reflective internal wall color so that a clear detail CCTV inspection can be accomplished.

PART 3 EXECUTION

3.1 INSTALLATION

Provide installation of CIPP system, including materials, workmanship, fabrication, assembly, erection, examination, and inspection.

3.1.1 General

**
NOTE: Use the first paragraph for roof drains only.
**
Inform the Contracting Officer of temporary roof drain flow stoppage, for a typical period of 2 to 3 days. Provide by-pass of the collector pipe.

For access at the bottom of the pipe sections, remove pipe sections near the floor at the appropriate point on the vertical rain leader in accordance with the design drawings.

3.1.2 Deviations

Should pre-installation inspection reveal conditions in the rain leader to be substantially different than those used in the design of wall thickness, liner tube construction, liner tube length, or resin system; notify the Contracting Officer and provide a videotape recording of existing conditions and design data. Do not proceed without direction from Contracting Officer.

3.1.3 Pipe Preparation

Perform pre-conditioning of the pipe section, including preparatory cleaning, corrosion removal, removal of grease buildup, or any other obstruction that may interfere with lining operations.

Leave obstructions that are less than 15 percent of the pipe diameter, that can not be removed from the pipe, in place and line over.

CCTV inspect the line immediately prior to lining and after the cleaning is complete to ensure that the pipe is ready for lining.

3.1.4 CIPP Installation Procedure

3.1.4.1 Wet Out

Accurately calculate and measure the amount of resin and catalyst required. Thoroughly mix the resin and catalyst. Thoroughly saturate/impregnate the flexible felt tube with the pre-calculated amount of epoxy resin prior to installation. Handle the resin impregnated flexible tube to retard or prevent resin setting until it is ready for insertion.

3.1.4.2 Insertion

Install the liner/bladder system using the pull in place method. Pull the liner/bladder system to the specified location in the pipe. Inflate the bladder using compressed air to a pressure adequate to form the liner to tightly fit the internal circumference of the pipe and to cause the resin to migrate into pipe joints, voids and defects. Install the liner at low pressure (not to exceed 69 kilopascal 10 psi) to prevent initial or further damage to the host pipe.

3.1.4.3 Curing

Inflate the bladder using compressed air and leave the liner in place until the resin curing cycle is complete. Curing occurs at ambient temperature within one hour.

When the curing process is complete, release the pressure and pull out the inflation bladder. Ensure the cured composite liner remains in place within the host pipe and provides a smooth bore interior that conforms to
the existing pipe[, eliminating rain water leakage]. Ensure the tube is continuous in length, wall thickness, and is uniform. Reline any existing defects in the original pipe.

3.1.4.4 Finish

Do not leave in the host pipe, any barriers, coatings, or any material other than the cured liner tube/resin composite, specifically designed for desirable physical and chemical resistance properties. Remove any materials used in the installation, other than the cured liner tube/resin composite. Remove any cured liner tube/resin composite pipe left protruding from the service connection. Ensure that the finished CIPP is continuous and free from visual defects such as foreign inclusions, dry spots, pinholes, and delimitation.

3.1.5 Liner Inspection

Perform a final Closed-Circuit Television (CCTV) inspection to verify proper cure and integrity of the composite liner.

3.2 FIELD QUALITY CONTROL

Test system in accordance with ASTM F1743, as supplemented and modified by CIPP manufacturer's written installation instructions.

Upon completion, submit the DVD records of pre-lining inspection and post-lining inspection, along with the written report summarizing the extent of pipe lining performed. Update pipe lining contract record drawings to reflect the as-built condition after lining is complete and submit to the Contracting Officer. The Contracting Officer may review the video and documentation, and may inspect the work site to determine that the scope of work is complete, that the work is satisfactory, and the site has been returned to its original condition.

3.3 ADJUSTING AND CLEANING

After liner installation has been completed and accepted, clean the entire project area and restore the site to its original condition prior to the commencement of work. Dispose of all excess material and debris not incorporated into the permanent installation.

-- End of Section --