UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2015

SECTION TABLE OF CONTENTS

DIVISION 21 - FIRE SUPPRESSION

SECTION 21 13 26.00 40

DELUGE FIRE-SUPPRESSION SPRINKLER SYSTEMS

08/13

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY ASSURANCE
1.4 PROJECT/SITE CONDITIONS
1.5 PREDICTIVE TESTING AND INSPECTION TECHNOLOGY REQUIREMENTS

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Design Requirements
 2.1.1.1 Density of Application of Water
 2.1.1.2 Sprinkler Design
2.2 MATERIALS
2.3 EQUIPMENT
 2.3.1 Sprinkler Heads
 2.3.2 Cabinet
 2.3.3 Valves
 2.3.4 Water Supply
 2.3.5 Detection Systems
 2.3.5.1 Spot Heat Detection Units
 2.3.5.2 Smoke Detection Units
 2.3.5.3 Control Panel
 2.3.5.4 Secondary Power Supply
 2.3.5.5 Wiring
 2.3.5.6 Conductor Identification
 2.3.5.7 Supervision
 2.3.6 Alarms
 2.3.6.1 Water Motor Alarm
 2.3.6.2 Local Alarm
 2.3.6.3 Fire Alarm
 2.3.6.4 Trouble Alarm
 2.3.7 Aboveground Piping Systems
 2.3.7.1 Water Pipe
 2.3.7.2 Sprinkler Pipe and Fittings
NOTE: This guide specification covers the requirements for the preparation of installation drawings and performance calculations, and the fabrication and installation of an automatic, heat-activated, open-head deluge type sprinkler system.

Materials and installation should be in strict accordance with NFPA requirements.

Adhere to *UFC 1-300-02* Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: If Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS is not included in the project specification, applicable requirements therefrom should be inserted and the following paragraph deleted.

Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS applies to work specified in this Section.
1.1 REFERENCES

**
NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.
**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C500 (2009) Metal-Seated Gate Valves for Water Supply Service

AWWA C651 (2005; Errata 2005) Standard for Disinfecting Water Mains

ASME INTERNATIONAL (ASME)

ASME B36.10M (2004; R 2010) Standard for Welded and Seamless Wrought Steel Pipe

ASTM INTERNATIONAL (ASTM)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA)

1.2 SUBMITTALS

**

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority.
Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Material, Equipment, and Fixture Lists[; G[, [____]]]

Record of Existing Conditions[; G[, [____]]]

SD-02 Shop Drawings

Connection Diagrams[; G[, [____]]]

Control Diagrams[; G[, [____]]]

Installation Drawings[; G[, [____]]]

SD-03 Product Data

Equipment and Performance Data[; G[, [____]]]

Equipment Foundation Data[; G[, [____]]]

Piping Materials[; G[, [____]]]

Aboveground Piping Systems[; G[, [____]]]

Valves[; G[, [____]]]

Detection Systems[; G[, [____]]]

Alarms[; G[, [____]]]
1.3 QUALITY ASSURANCE

Submit a listing of product installations for deluge automatic sprinkler systems showing at least five installed units, similar to those proposed, that have been in successful service for a minimum period of five years. Include the following information in the list: purchaser, address of installation, service organization, and date of installation.

1.4 PROJECT/SITE CONDITIONS

Submit installation drawings for deluge automatic sprinkler systems showing subsurface soil conditions, and locations and elevations of existing obstructions and utilities. Show on the drawings, coordination of work between different trades and with the structural and architectural elements of work. Ensure drawings are of sufficient detail to show overall...
dimensions of related items, clearances, and relative locations of work in allotted spaces. Indicate where conflicts or clearance problems exist between various trades. Also submit details of equipment room layout and arrangement.

Conduct a survey and submit a record of existing conditions showing the survey results of the work area conditions and features of existing structures and facilities within and adjacent to the jobsite. Commencement of work constitutes acceptance of existing conditions.

1.5 PREDICTIVE TESTING AND INSPECTION TECHNOLOGY REQUIREMENTS

**

NOTE: The Predictive Testing and Inspection (PT&I) tests prescribed in Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS are MANDATORY for all [NASA] [_____] assets and systems identified as Critical, Configured, or Mission Essential. If the system is non-critical, non-configured, and not mission essential, use sound engineering discretion to assess the value of adding these additional test and acceptance requirements. See Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS for additional information regarding cost feasibility of PT&I.

**

This section contains systems and/or equipment components regulated by NASA's Reliability Centered Building and Equipment Acceptance Program. This program requires the use of Predictive Testing and Inspection (PT&I) technologies in conformance with RCBEA GUIDE to ensure building equipment and systems installed by the Contractor have been installed properly and contain no identifiable defects that shorten the design life of a system and/or its components. Satisfactory completion of all acceptance requirements is required to obtain Government approval and acceptance of the Contractor's work.

Perform PT&I tests and provide submittals as specified in Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS.

PART 2 PRODUCTS

Submit connection diagrams indicating the relations and connections for piping materials, supporting elements, air compressor, sprinkler heads, valves, existing water systems and alarms. Indicate on the drawings the general physical layout of all controls, internal tubing, and wiring details.

Submit control diagrams for deluge automatic sprinkler systems showing the physical and functional relationship of equipment. Show on the controls diagrams, size, type, and capacity of the systems.

Provide material, equipment, and fixture lists including: manufacturer's style or catalog numbers, specification and drawing reference numbers, warranty information, and fabrication site information.

Submit design analysis and calculations for deluge automatic sprinkler systems including information on spray areas, hazard by class, temperature setting of heads, and hydraulic calculations.
Submit equipment and performance data for deluge automatic sprinkler systems including graphs and tables showing system pressures.

Submit equipment foundation data for deluge automatic sprinkler systems consisting of the following items:

a. Equipment weight and operating loads.
b. Horizontal and vertical loads.
c. Size, location, and projection of anchor bolts.
d. Horizontal and vertical clearances for installation, operation and maintenance.
e. Plan dimensions of foundations and relative elevations.
f. Installation requirements such as noise abatement, vibration isolation, and utility service.

2.1 SYSTEM DESCRIPTION

**
NOTE: Make selections and fill in blanks.
**

The work to be performed under this section includes designing and providing new or modifying existing automatic open-head or pre-action fire extinguishing sprinkler systems for [_____] hazard occupancy [uniform distribution of water] to afford complete fire protection coverage throughout Room [____], Building [____]. Ensure the design, equipment, materials, installation, and workmanship is in strict accordance with the required and advisory provisions of NFPA 13, except where modified herein.

Provide devices and equipment that are makes and types listed by UL or approved by the FM laboratories and are from the same manufacturer.

Ensure all electrical work and fire detection associated with the sprinkler system meets the requirements in the appropriate sections of DIVISION 26 ELECTRICAL.

2.1.1 Design Requirements

Design of (pre-action) (deluge) fire extinguishing sprinkler systems is by hydraulic calculations for uniform distribution of water over the design area [pipe schedules for [_____] hazard occupancy] and conforms to NFPA 13 and the requirements specified herein.

**
NOTE: Select design.
**

Design each system to withstand [earthquakes] [hurricanes].

Ensure the deluge sprinkler system meets the requirements for an extra-hazard system as defined in NFPA 13.
Specify type(s) of sensing.

Consider each deluge valve used to supply water a separate sprinkler system and provide each with: an individual automatic heat-responsive system that senses a predetermined fixed temperature, a rate of rise of temperature, a combination of predetermined fixed temperature and rate of rise of temperature, infrared (6,500 to 8,500 angstroms) heat sources, or ultraviolet (1,700 to 2,900 angstroms) heat sources, as specified. Ensure each deluge valve contains an approved manual release located at the valve.

Base size of pipe on hydraulic calculations to give an even distribution of water throughout the protected area.

2.1.1.1 Density of Application of Water

Size pipes to provide the specified density when the system is discharging the specified maximum required flow. Application to horizontal surfaces below the sprinklers is [_____] gallons per minute (gpm) per square foot with outside hose stream requirements of [____] lpm [_____] gpm.

2.1.1.2 Sprinkler Design

Design area is the hydraulically most remote [_____] square meter foot area as defined in NFPA 13.

Design area is as indicated based on the [_____] meter [_____] foot radius rule and conforms to NFPA 409 for aircraft hangars.

The spacing of sprinkler heads cannot exceed that permitted by NFPA 13 for ordinary hazard occupancy, except that for a discharge density of more than 8.1 liter per minute per square meter 0.20 gpm per square foot, the spacing of the sprinkler heads cannot exceed that for extra hazard occupancy. Ensure the spacing of sprinklers on the branch lines is essentially uniform.

2.2 MATERIALS

Provide materials and work in accordance with the required and advisory provisions of NFPA 13 and NFPA 24, unless otherwise specified. In each of the NFPA standards referred to herein, the advisory provisions are mandatory, as though the word "shall" is substituted for the word "should" wherever it appears. Reference in these standards to the authority having jurisdiction is interpreted to mean the Contracting Officer.
2.3 EQUIPMENT

2.3.1 Sprinkler Heads

**
NOTE: Select required orifice size.
**
Provide open heads with a nominal [12.7 millimeter] [13.5 millimeter] [0.50-inch] [0.53-inch] orifice. For suspended ceilings, provide chrome-plated escutcheons and pendant sprinklers below the ceiling. Provide Nickel-Teflon coated corrosion-resistant sprinkler heads in exterior systems and systems exposed to corrosive environments. Provide sprinkler-head guards in areas subject to mechanical damage.

2.3.2 Cabinet

Provide extra sprinkler heads and a sprinkler-head wrench in a metal cabinet adjacent to the pre-action valve within each building. The number and type of extra sprinkler heads is as specified in NFPA 13.

2.3.3 Valves

**
NOTE: Select wording to suit project.
**
Operate valves by an independent detection system. Incorporate a mechanical latching mechanism for [deluge] [pre-action] valve clappers that is not affected by changes of pressure in the water system. If 150 millimeter 6-inch valves are used in 200 millimeter 8-inch risers, provide smoothly tapered connections. In addition to automatic operation, arrange each valve for manual release at the valve. Provide gages at the valves. Provide a test detection device for each actuation circuit adjacent to each valve that the device controls, as required by NFPA 13. Provide remote manual releases at [______].

2.3.4 Water Supply

Ensure distribution is essentially uniform throughout the sprinkled area. Variation in discharge from individual heads in the hydraulically most remote area is between 100 and 120 percent of the specified density.

**
NOTE: Select wording to suit project.
**
Base the hydraulic calculations on a static pressure of [______] kilopascal, gage pounds per square inch, gage (psig) with [______] lpm [______] gpm being available at a residual pressure of [______] kilopascal [______] psig at the [point indicated] [junction with the distribution system].

2.3.5 Detection Systems

**
NOTE: Select wording to suit project.
**
Provide a [pneumatic] [hydraulic] [electric] [heat] [smoke] detection system. Ensure the nondetecting connecting (piping) (tubing) (wiring) have supervised circuits. Install tubing and wiring in protective (material) (metal) conduit or tubing.

2.3.5.1 Spot Heat Detection Units

**
NOTE: Select wording to suit project.
**

Provide units for [surface] [flush] outlet box mounting. Support units independently of conduit, tubing, or wiring connections. Provide completely enclosed metal units and [combination fixed temperature and rate-of-rise] [fixed temperature and rate-compensated] [infrared] [ultraviolet] [_____] type. Provide self-resetting contacts after (response to rate-of-rise) actuation. Operation under fixed temperature actuation results in an indication that may be noted by external visual inspection of the unit or the unit may be of the self-resetting type. Provide at least two units in spaces over 55.7 square meter 600 square feet. Provide fixed temperature type units in areas subject to abnormal temperature changes, such as showers and boiler rooms. Units located in areas subject to moisture or exterior atmospheric conditions are types approved for such locations. Removal of any unit from the system results in the actuation of a trouble signal. Provide not less than two extra detection devices of each type for each system. Furnish a portable electric device suitable for testing the detectors.

2.3.5.2 Smoke Detection Units

**
NOTE: Select wording to suit project.
**

Provide detection of abnormal smoke densities by the (ionization principle) (photoelectric principle) (cloud-chamber principle). Provide required control and power panels either as individual units or integral with the main control panel. Provide detectors and associated panels that are compatible with the main control panel and suitable for use in a supervised circuit. If a malfunction of the electrical circuitry to the detector or its control or power units occurs, the result is the operation of the system trouble devices. Each detector contains a visible indicator lamp that shows when the unit is activated. Each detector is the plug-in type in which the detector base contains screw terminals for making wiring connections. Ensure detector spacing and location is in accordance with the manufacturer's recommendation. Provide a remote indicator lamp for each detector that is located above suspended ceilings, beneath raised floors, or otherwise concealed from view.

Provide multiple chamber type ionization detectors responsive to both invisible and visible products of combustion. Ensure detectors are not susceptible to operation due to changes in relative humidity. Ensure the sensitivity of each detector is field-adjustable to compensate for the conditions under which it is to operate. Use two-wire type detectors.

Ensure detectors operate on a multiple cell concept using a light-emitting diode (LED) light source. Failure of the LED does not cause an alarm condition but operates the detector indicating lamp.
Provide a UL-listed FM-approved detector measuring particles in the 0.0025 to 0.01 micrometer range through a sampling mechanism. Failure of the sampling mechanism will cause a trouble signal.

2.3.5.3 Control Panel

**
NOTE: Select wording to suit project.
**

Provide a modular type control panel for electrically operated detection systems. Install the panel in a surface-mounted steel cabinet with hinged doors and cylinder lock. Ensure the control panel is a neat, compact, factory-wired assembly containing all parts and equipment required to provide all specified operating and supervisory functions of the system. Locate batteries in a steel, lockable cabinet. Provide a cabinet, enamel-finished on the inside and the outside, with prominent rigid plastic or metal identification plates attached. Locate trouble lights on doors of cabinets with a trouble alarm located above top of cabinet. System power is 120-volt, 60-hertz service, transformed through a two-winding isolation transformer and rectified to low voltage dc for operation of all system actuating, signal sounding, trouble signal, and fire alarm tripping circuits. Electric detection system is electrically supervised against opens on all circuits. A ground fault condition that prevents the required operation of the system or a single break in any of the actuation system circuits results in the activation of a [100 millimeter] [4-inch] system trouble bell [______]. Loss of ac power results in operation of the system trouble alarm. Trouble alarm sounds continuously until the system has been restored to normal or trouble silencing switch has been operated. Provide a silencing switch that transfers trouble signals to an indicating lamp so that correction of the trouble condition automatically transfers the trouble signal from indicating lamp back to trouble alarm until the silencing switch is restored to normal position. Locate the electrical control panels, batteries, and battery charger for electrically actuated systems in areas not subject to water damage or are the weatherproof type.

2.3.5.4 Secondary Power Supply

Provide a battery charger and the specified quantity of nickel-cadmium, lead-calcium, or sealed lead-acid, rechargeable storage batteries.

Provide a charger with completely automatic high and low charging rate and is capable of recovery of the batteries from full discharge to full charge in 24 hours or less. Provide an ammeter for recording rate of charge and a voltmeter to indicate the state of battery charge. If a high-rate switch is provided, provide a red pilot light as part of the unit assembly to indicate when batteries are manually placed on a high rate of charge.

Provide batteries of the proper ampere-hour rating to operate the system and provide supervision for up to 60 hours. Submit calculations that substantiate the battery capacity. Provide reliable separation between cells to prevent contact between terminals of adjacent cells and between battery terminals and other metal parts.

2.3.5.5 Wiring

Obtain alternating current (ac) operating power for control panel, battery charger, and air compressor, ahead of all building services, from the line side of the incoming facility power source. Provide independent properly
fused safety switches, with provisions for locking the covers and operating handles in the POWER ON position for these connections. Locate switches adjacent to the main distribution panel. Paint the switch boxes red and identified by a permanent lettered designation. Provide wiring with color code in accordance with NFPA 70. Wire for 120-volt circuits is No. 12 AWG minimum. Wire for low-voltage dc circuits is No. 14 AWG, minimum. Provide wiring in rigid metal conduit, intermediate metal conduit, electrical metallic tubing, as specified.

2.3.5.6 Conductor Identification

Identify circuit conductors within each enclosure where a tap, splice, or termination is made. Identify conductor by plastic-coated, self-sticking, printed markers or by heat-shrink-type sleeves. Attach the markers in a manner that will preclude accidental detachment. Identify the control circuit terminations.

2.3.5.7 Supervision

**

NOTE: Select wording to suit project.
**

Provide a supervised [pre-action sprinkler piping] [pneumatic detection system] system. If a break in the piping or tubing systems resulting in loss of pneumatic pressure occurs, the result is the activation of a trouble alarm. Ensure that a silencing switch is provided. Arrange the switch to transfer trouble signals to an indicating lamp and ensure that correction of the trouble condition automatically transfers the trouble signal from the indicating lamp back to the trouble alarm until the silencing switch is restored to normal position.

2.3.6 Alarms

2.3.6.1 Water Motor Alarm

Provide alarms of the approved weatherproof and guarded type. Ensure each alarm sounds locally upon flow of water in the sprinkler system to which it is connected. Mount alarms on the outside of the outer walls of each building, at a location as directed.

2.3.6.2 Local Alarm

For either an electric alarm horn or bell, as specified, provide the alarm to sound locally on operation of any detection system, regardless of whether water flows or not. Ensure the current for these alarms is taken from the facility service where connection is made ahead of all other services.

2.3.6.3 Fire Alarm

Provide and arrange equipment for the automatic transmittal of an alarm over the facility fire alarm system to actuate by detection system and by the flow of water in each sprinkler system. Provide Class A supervision of detection and actuation circuits.

2.3.6.4 Trouble Alarm

**

SECTION 21 13 26.00 40 Page 14
Provide a local [100 millimeter] [4-inch] electric alarm [bell] [horn] to indicate trouble or failure of the detection system air compressor, including abnormal low-pressure conditions [pre-action sprinkler piping system].

2.3.7 Aboveground Piping Systems

Provide fittings for changes in direction of piping and for all connections. Make changes in piping sizes through standard tapered reducing pipe fittings; the use of bushings is not permitted. Jointing compound for pipe threads is polytetrafluoroethylene (PTFE) pipe thread tape, pipe cement and oil, or graphite and oil, applied only on male threads. Pipe nipples 150 millimeter 6 inches long and shorter are Schedule 80 steel pipe. Conceal piping in areas with suspended ceilings.

2.3.7.1 Water Pipe

Ensure pipes are carbon steel. Ensure all piping is suitable for a working pressure of not less than 1207 kilopascal gage, 175 psig, in accordance with ASME B36.10M or ASTM A135/A135M.

2.3.7.2 Sprinkler Pipe and Fittings

Ensure sprinkler pipe and fittings meet NFPA 13, except that steel piping is Schedule 10 for sizes smaller than 200 millimeter 8 inches and Schedule 30 for sizes 200 millimeter 8 inches and larger. Water motor alarm piping is zinc-coated steel pipe and fittings. Rubber gasketed grooved-end pipe and fittings with mechanical couplings are permitted only in pipe sizes 100 millimeter 4 inches and larger. Ensure rubber gaskets for use in dry pipe sprinkler system are UL listed. Restriction orifices, reducing flanges, and plain-end fittings with mechanical couplings that use steel gripping devices to bite into the pipe when pressure is applied cannot be used.

2.3.7.3 Double Basket Strainers

When specified, provide double gasket strainers with removable screens having standard perforations 3 millimeter 0.125 inch in diameter in the riser beneath the deluge valves.

2.3.7.4 Pipe Hangers and Supports

Provide pipe hangers and supports in accordance with NFPA 13 and constructed from black iron.

2.3.7.5 Valves

Provide valves as required by NFPA 13 and of types approved for fire service. Ensure gate valves open by counterclockwise rotation. Check valves are flanged, clear opening, swing check type with flanged inspection and access cover plate for sizes 100 millimeter 4 inches or larger. Provide an outside screw and yoke (OS&Y) valve beneath each [deluge] [pre-action] valve in each riser when more than one valve is supplied from
the same water supply pipe.

Equip sprinkler system valves with electrical supervision devices, connected to the building fire alarm system, indicating the open or closed position of the valve or any trouble condition. Ensure the devices meet requirements of Division 26 ELECTRICAL.

2.3.7.6 Identification Signs

Attach properly lettered approved metal signs conforming to NFPA 13 to each valve and alarm device. Permanently affix design data identification plates to the riser of each system.

2.3.7.7 Inspector's Test Connection

Provide test connections about 1830 millimeter 6 feet above the floor for each sprinkler system, located at the most hydraulically remote part of each system. Provide test connection piping to a location where the discharge is readily visible and where water may be discharged without damage.

2.3.7.8 Main Drains

Provide drain piping that discharges at safe points outside the building or to sight cones attached to drains of adequate size to readily receive the full flow from the drain under maximum pressure. Provide auxiliary drains as required by NFPA 13.

2.3.7.9 Pipe Sleeves

Provide pipe sleeves where piping passes through walls, floors, roofs, and partitions. Secure sleeves in proper position and location during construction. Provide sleeves of sufficient length to pass through entire thickness of walls, floors, roofs, and partitions. Provide not less than a 6.0 millimeter 0.25-inch space between exterior of piping or pipe insulation and interior of sleeve. Firmly pack space with insulation and caulk at both ends of the sleeve with plastic waterproof cement.

Provide ASTM A53/A53M, Schedule 40 or standard weight, zinc-coated steel pipe sleeves in masonry and concrete walls, floors, and roofs as required. Extend sleeves in floor slabs 75 millimeter 3 inches above the finished floor.

Provide zinc-coated steel-sheet sleeves having a nominal weight of not less than 0.633 gram per square millimeter 0.90 pound per square inch in other than masonry and concrete partitions and walls, floors, and roofs.

2.3.7.10 Escutcheons

Provide approved one-piece or split-hinge-type escutcheons for piping passing through floors, walls, and ceilings in both exposed and concealed areas. Provide chrome-plated metal escutcheons where pipe passes through finished ceilings. Provide other escutcheons of steel or cast iron with aluminum paint finish where indicated. Securely anchor escutcheons in place with setscrews or other approved positive means.

2.3.7.11 Fire Department Inlet Connections

Provide inlet connections, about [_____] 915 millimeter 3[_____] feet above
grade, of the approved two-way type with 65 millimeter 2.5-inch National Standard female hose threads with plug and chain.

2.3.7.12 Joints

Use threaded or flanged joints; welded joints are not acceptable.

2.3.8 Buried Piping Systems

2.3.8.1 Pipe and Fittings

**
NOTE: Select cover depth.
**

Provide outside-coated cement-lined ductile iron pipe and fittings conforming to NFPA 24 for piping under the building and less than 1525 millimeter 5 feet outside the building walls. Anchor joints in accordance with NFPA 24, using pipe clamps and steel rods. Minimum pipe size is 150 millimeter 6 inches. Minimum depth of cover is [_____] [915] millimeter [_____] [3] feet. Piping more than 1525 millimeter5 feet outside the building walls is outside-coated, cement-lined, ductile, iron pipe and fittings conforming to NFPA 24 and provided under Section 33 11 00 WATER DISTRIBUTION.

2.3.8.2 Valves

Provide valves as required by NFPA 24 for fire service. Ensure gate valves conform to AWWA C500 or UL 262 with cast iron body and bronze trim, and open by counterclockwise rotation.

2.3.8.3 Post Indicator Valve Assembly (PIV)

Assembly consists of a standard FM-approved or UL-listed inside-screw gate valve with an above-grade post indicator or a completely factory-assembled FM-approved quarter-turn valve and above-grade post indicator-operator. Direction to open is counterclockwise.

Quarter-turn valve is a wafer-type butterfly valve, rated at 1207 kilopascal 175 psi, elastomer-lined and sealed. Liner acts as a gasket between ASME B16.1, Class 125 or Class 250 flanges. Post has a fail-safe feature to keep valve intact in case of breaking off above grade. Operator is worm-gear type with permanently oil-lubricated watertight gear case complete with handle.

Ensure surfaces below grade receive a coating of bitumen not less than 0.51 millimeter 20 mils thick. Fill, prime and finish above grade surfaces with a multiple coat of high-gloss, weather-resistant, red enamel.

Fit post indicator valves to accommodate electrical supervisory switches.

Provide electrical supervisory switches for interconnection to the building fire alarm system. Ensure switches and connections meet the requirements of Section 28 31 13.00 40 FIRE DETECTION AND ALARM CONTROL, GUI, AND LOGIC SYSTEMS.

2.3.8.4 Valve Boxes

Except where indicator posts are installed, provide each gate valve in
buried piping with an adjustable cast-iron valve box of a size suitable for the valve on which it is used. Boxes outside of paved areas may be of acrylonitrile-butadiene-styrene (ABS) plastic or of inorganic fiber reinforced black polyolefin plastic. The head is round and the lid has the word WATER cast on it. The least diameter of the shaft of the box is 133 millimeter 5.25 inches. Apply a heavy coat of bituminous paint to each cast-iron box.

2.3.9 Valve Signs

Attach approved, properly lettered metal signs to each control valve.

2.3.10 Modifications To Existing Post Indicator Valves

**

NOTE: Delete or modify this part as required.
**

Modify the existing post indicator valves by furnishing and installing a double-pole double-throw limit switch on each valve. Enclose the limit switch in a NEMA 250, Type 4, enclosure and rated for 15 amperes at 115 volts ac. Install the limit switch to actuate when the valve starts to close and when the valve is fully open.

Extend wiring for these switches to the existing fire-alarm panel. Install wiring in conduit.

PART 3 EXECUTION

Provide the deluge sprinkler system with complete drainage facilities in accordance with the applicable requirements of NFPA 13.

3.1 INSTALLATION

3.1.1 Connections To Existing Water Supply Systems

Use tapping or drilling machine valve and mechanical joint type sleeves for connections to be made under pressure. Bolt sleeves around the mains and the valve in conformance to AWWA C500 is bolted to the branch. Open the valve, attach drilling machine, make tap, close valve, and remove drilling machine, all without interruption of calendar service. Notify the Contracting Officer in writing at least 15 calendar days prior to the date the connections are required. Receive approval before any service is interrupted. Furnish material required to make connections into the existing water supply system. Perform excavating, backfilling, and other incidental labor for connections as required.

**

NOTE: Add any government-furnished assistance.
**

[Furnish] The Government will furnish only the labor and the tapping or drilling machine for making the actual connections to the existing systems.

3.1.2 Disinfection

Disinfect water piping and existing water piping affected by the work in accordance with AWWA C651. Fill piping with a solution containing a minimum of 50 parts per million (ppm) of available chlorine and the
solution allowed to stand for a minimum of 24 hours. Flush the solution from the system with clean water until maximum residual chlorine content is not greater than 0.2 ppm. The Government will supply the water but the Contractor is responsible for approved disposal of contaminated water.

3.1.3 Painting

**
NOTE: Coordinate with painting section.
**
Submit the manufacturer's standard color charts showing the recommended colors and finishes.

For manufacturer's standard-finish equipment, bring surfaces damaged during construction to as-new condition by touchup or repainting to the satisfaction of the Contracting Officer, or replaced with new undamaged equipment at no additional cost to the Government.

Thoroughly clean and paint pipe, pipe hangers, supports, and other iron work in concealed spaces with one coat of primer paint.

Ensure all exposed piping, valves, and appurtenances, including hose racks and reels, but excluding hoses, hose nozzles and Siamese connections, receive one coat of enamel, Color No. 11105 (red) in accordance with MIL-STD-101 and FED-STD-595.

3.1.4 Electrical Work

Electrical work is specified in Division 26 ELECTRICAL except as noted.

Furnish motors, controllers, contactors, and disconnects with their respective pieces of equipment, except that controllers indicated as part of the motor control centers are provided under Section 26 24 19.00 40 MOTOR CONTROL CENTERS. Ensure motors, controllers, contactors, and disconnects conform to and have electrical connections provided under Section 26 05 00.00 40 COMMON WORK RESULTS FOR ELECTRICAL. Controllers and contactors have a maximum 120-volt control circuits and auxiliary contacts for use with the controls furnished.

3.2 FIELD QUALITY CONTROL

**
NOTE: If the specified system is identified as critical, configured, or mission essential, use Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS to establish predictive and acceptance testing criteria, above and beyond that listed below.
**

Perform PT&I tests and provide submittals as specified in Section 01 86 12.07 40 RELIABILITY CENTERED ACCEPTANCE FOR MECHANICAL SYSTEMS.

Perform Pressure Tests, System Tests and Operating Tests required for new work. When the Contracting Officer desires to be present during testing, notify the Contracting Officer 48 hours in advance of the start of testing.

Submit test reports for pressure tests, system tests and operating tests.
3.2.1 Preliminary Tests

NOTE: Select water pressure.

Hydrostatically test each system at [_____] kilopascal [_____] psig for a period of 2 hours and flushed in accordance with NFPA 13. Inspect, test, and approve piping above suspended ceilings before installation of ceilings. Test the alarms and other devices. Test the water flow alarms by flowing water through the inspector's test connection. When tests have been completed and all corrections made, submit a signed and dated certificate, similar to that specified in NFPA 13, with a request for formal inspection and tests.

3.2.2 Formal Inspection and Tests

The Contracting Officer will witness formal tests and approve all systems before they are accepted. Submit the request for formal inspection at least 15 calendar days prior to the date the inspection is to take place. Ensure an experienced technician regularly employed by the Contractor is present during the inspection. At this inspection, repeat any or all of the required tests as directed. Test each detection device and its connection to each valve by the application of heat. Test each deluge system by full flow from the individual system or any combination of systems. Correct defects in the work provided, and make additional tests until it has been demonstrated that the systems comply with all contract requirements. Furnish appliances, equipment, electricity, instruments, connecting devices, and personnel for the tests. The Government will furnish the water for the tests.

3.2.3 Disposition of Test Water

Obtain approval of the plan for the disposal of water issuing from test outlets to avoid property damage.

3.2.4 Test Point

Measure the hydrostatic test pressure at the low point of the individual system or zone being tested.

3.2.5 Leakage

Install the inside sprinkler piping so that there will be no visible leakage when the system is subjected to the hydrostatic Pressure Tests.

3.2.6 Piping Test

Test piping between the check valve in the fire department inlet piping and the outside connection the same as the balance of the systems.

3.2.7 Test Blanks

Test blanks, if used, are of the self-indicating type. Test blanks have red painted lugs protruding beyond the flange in a way to clearly indicate their presence. Number test blanks to enable tracking their use and location and to ensure their removal after the test is completed.
3.3 ADJUSTING AND CLEANING

3.3.1 Flushing of Underground Connections

Flush underground mains and lead-in connections to system riser before connection is made to sprinkler piping to remove foreign materials that may have entered the underground during the course of the installation. Continue the flushing operation until water is clear.

Flush underground mains and lead-in connections at a flow rate not less than indicated below or at the hydraulically calculated water demand rate of the system, whichever is greater.

<table>
<thead>
<tr>
<th>Pipe Size (millimeters)</th>
<th>Flow Rate (liters per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1512</td>
</tr>
<tr>
<td>125</td>
<td>2268</td>
</tr>
<tr>
<td>150</td>
<td>2835</td>
</tr>
<tr>
<td>200</td>
<td>3780</td>
</tr>
<tr>
<td>250</td>
<td>5670</td>
</tr>
<tr>
<td>300</td>
<td>7560</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipe Size (Inches)</th>
<th>Flow Rate (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
</tr>
<tr>
<td>6</td>
<td>750</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>1500</td>
</tr>
<tr>
<td>12</td>
<td>2000</td>
</tr>
</tbody>
</table>

3.4 CLOSEOUT ACTIVITIES

3.4.1 Operation And Maintenance

Submit [6] [_____] copies of the operation and maintenance manuals 30 calendar days prior to testing the deluge automatic sprinkler systems. Update and resubmit data for final approval no later than 30 calendar days prior to contract completion.

Furnish Operation and Maintenance Manuals consistent with manufacturer's standard brochures, schematics, printed instructions, general operating procedures, and safety precautions. Ensure test data is legible and of good quality. Light-sensitive reproduction techniques are acceptable provided finished pages are clear, legible, and not subject to fading. Provide pages for vendor data and manuals with 10 millimeter 3/8-inch holes.
and be bound in 3-ring, loose-leaf binders. Organize data by separate index and tabbed sheets, in a loose-leaf binder. Ensure the binder can lie flat with printed sheets that are easy to read. Ensure caution and warning indications are clearly labeled.

Provide classroom and field instructions in operation and maintenance of systems equipment where required by the technical provisions. These services are directed by the Contractor, using the manufacturer's factory trained personnel or qualified representative. Give the Contracting Officer seven days written notice of scheduled instructional services. Make available to the Contracting Officer, instructional materials belonging to the manufacturer or vendor; e.g., lists, static exhibits, visual aids.

-- End of Section --